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Abstract— This paper is concerned with identifiability of an
underlying high frequency multivariate AR system from mixed
frequency observations. Such problems arise for instance in
economics when some variables are observed monthly whereas
others are observed quarterly. If we have identifiability, the
system and noise parameters and thus all second moments
of the output process can be estimated consistently from
mixed frequency data. Then linear least squares methods for
forecasting and interpolating nonobserved output variables can
be applied. Two ways for guaranteeing generic identifiability
are discussed.

I. INTRODUCTION

In a number of applications, for a multivariate time se-
ries the component time series may be available only at
different sampling frequencies. For such a situation, the term
mixed frequency data is used. For instance, in economic
applications some time series may be available monthly, e.g.,
unemployment data, whereas other time series are available
only quarterly, e.g., GDP data. Another area of application is
the analysis of environmental time series. We are interested
in the underlying high frequency system, i.e. the system
generating the data at the highest sampling frequency, or,
to be more precise, in its system and noise parameters.

We restrict ourselves to the case where this high frequency
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system is a vector autoregression of order p, i.e.

yt =

(
yft
yst

)
=

(
aff (1) afs(1)
asf (1) ass(1)

)
︸ ︷︷ ︸

=A1

(
yft−1
yst−1

)
+ · · ·+

+

(
aff (p) afs(p)
asf (p) ass(p)

)
︸ ︷︷ ︸

=Ap

(
yft−p
yst−p

)
+

(
νft
νst

)
︸ ︷︷ ︸
=νt

, t ∈ Z, (1)

where aff (i) ∈ Rnf×nf , ass(i) ∈ Rns×ns , afs(i) ∈
Rnf×ns , and where nf is the number of the components
observed at highest frequency, ns is the number of com-
ponents observed only for t ∈ NZ, i.e., every N th time
point, and n = nf + ns. Throughout we assume that the
high frequency system (1) is stable, and that we restrict
ourselves to the steady state and thus stationary solution.
We consider the case where the innovation variance Σ =

E
((

νft
νst

)((
νft

)T
(νst )

T

))
=

(
Σff Σfs
Σsf Σss

)
, where

Σff ∈ Rnf×nf , Σss ∈ Rns×ns , and Σfs ∈ Rnf×ns , is
regular as well as the case where this variance is singular.
Then, the corresponding autoregressive systems are called
regular and singular respectively. Singular autoregressive
systems are important for generalized linear dynamic factor
models (see [4], [3]). In the singular case, when Σ is of
rank q < n, we can write Σ as Σ = bbT where b is an
(n×q) matrix. Accordingly, νt = bεt, where E

(
εtε

T
t

)
= Iq .

For given Σ, b is unique up to postmultiplication by an
orthogonal matrix and thus b can be made unique. Whereas
in the regular case Σ is parameterized by its on and above
diagonal elements, in the singular case b can be used for the
parameterization of Σ, because its free parameters are more
easily seen in this way.

System (1) can be written in block companion form as

 yt
...

yt−p+1


︸ ︷︷ ︸

=xt+1

=


A1 · · · Ap−1 Ap
In

. . .
In 0


︸ ︷︷ ︸

A

yt−1...
yt−p


︸ ︷︷ ︸

=xt

+


b
0
...
0


︸ ︷︷ ︸
=B

εt.

(2)
The Lyapunov equation, where Γ = E

(
xtx

T
t

)
, for the

system (2) is
Γ−AΓAT = BBT . (3)

The central problem considered in this paper is identi-
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fiability, i.e. whether
(
aff (i) afs(i)
asf (i) ass(i)

)
, i ∈ {1, . . . , p}

and Σ are uniquely identified from those population second
moments which can be observed in principle, i.e. γff (h) =

E
(
yft+h

(
yft

)T)
, h ∈ Z; γfs(h) = E

(
yft+h (yst )

T
)
, h ∈

Z; γss(h) = E
(
yst+h (yst )

T
)
, h ∈ NZ. Note that if

identifiability holds (and there is available an algorithm
to compute the parameters from the observed second mo-
ments) we can reconstruct the missing moments γss(h) =

E
(
yst+h (yst )

T
)
, h ∈ NZ − j; j = 1, . . . , N − 1 and then

linear least squares methods for forecasting and interpolating
nonobserved output variables can be applied. In other words,
this identifiability is an important step in getting consistent
estimators of the system and noise parameters and thus of
the missing second moments γss(h), h ∈ NZ − j; j =
1, . . . , N − 1 based on the mixed frequency data available.

The paper consists of two parts. In the first part, we
analyze (a modification of) the method proposed by Chen
and Zadrozny ([2]) and we prove that it generically gives
the parameters of the high frequency system uniquely. In the
second part, i.e. section III, we consider a restrictive setting,
i.e. regular AR(1) systems with N = 2, nf = ns = 1, and
derive a sufficient and necessary condition for identifiability
in this case. In particular, this shows that the conditions for
identifiability formulated by [2] are only sufficient but not
necessary. Moreover, these second moments can be used for
forecasting and interpolation of missing observations.

II. EXTENDED YULE WALKER EQUATIONS

In this section we discuss the extended Yule Walker
equations as proposed by [2]. A central result in this paper is
that for generic AR(p) systems these equations have a unique
solution. Thus, we generically have identifiability which
in turn implies that the system and noise parameters can
be estimated consistently under an assumption guaranteeing
consistent estimation of those population second moments
which can be observed in principle. The result given holds
for regular as well as for singular AR systems.

A. Derivation of the extended Yule Walker equations for
mixed frequency data

By postmultiplying equation (1) by yTt−j , j > 0 and
forming expectations, we obtain the extended Yule Walker
equations(

γff (1) γfs(1) · · · γff (p) γfs(p) · · ·
γsf (1) γss(1) · · · γsf (p) γss(p) · · ·

)
=

=

(
aff (1) afs(1) · · · aff (p) afs(p)
asf (1) ass(1) · · · asf (p) ass(p)

)
×

γff (0) γfs(0) · · · γff (p− 1) γfs(p− 1) · · ·
γsf (0) γss(0) · · · γsf (p− 1) γss(p− 1) · · ·

γff (1− p) γfs(1− p) · · · γff (0) γfs(0) · · ·
γsf (1− p) γss(1− p) · · · γsf (0) γss(0) · · ·


(4)

Let G = E(xty
T
t−1) =


γff (0) γfs(0)

γsf (0) γss(0)

...
...

γff (1−p) γfs(1−p)
γsf (1−p) γss(1−p)

 = Γ

 In
0

...
0

.

The block columns of the second matrix on the right
hand side of (4) are of the form E

(
xty

T
t−j−1

)
=

E
(
(Axt−1 + Bεt−1) yTt−j−1

)
= E(Axt−1yTt−j−1) =

AE(xt+j−1y
T
t−1) = · · · = AjG, j ≥ 0. Thus this matrix

can be written as (G,AG,A2G, . . . ). From the Cayley
Hamilton theorem we see that the second matrix on the right
hand side of (4) has full row rank if and only if the matrix
consisting of the first np blocks has full row rank. We now
suggest to use only those equations in (4) where the columns
on the left hand side or the columns of the second matrix
on the right hand side contain only second moments which
can be observed. In other words we consider the equation
system

Eyt(yft−1, . . . , y
f
t−np)

T =

(A1, . . . , Ap)E

yt−1...
yt−p

((yft−1)T , . . . , (yft−np)
T
)

︸ ︷︷ ︸
=Z

. (5)

Note that [2] uses a larger subsystem of equations of (4) and
thus, in particular, our identifiability result implies theirs.

As is easily seen, Z can be written as

(K,AK,A2K, . . . ,Anp−1K), where K = Γ

 Inf
0
...
0


and therefore has the structure of a controllability matrix.

Clearly, the AR parameters A1, . . . , Ap of the system (1)
are identifiable if Z has full row rank np, or equivalently
the pair (A,K) is controllable. As will be shown below, this
rank condition is not necessary for identifiability.

B. Generic identifiability of system parameters

Consider the set of all AR systems for given order p and
given rank q of the innovation covariance matrix satisfying
the stability condition. As easily can be seen, the parameter
space for this set is an open subset of Rpn2+nq− q(q−1)

2 if
we take into account the uniqueness of the transfer function
only up to orthogonal postmultiplication. A property on this
parameter space is said to hold generically if it holds on
a superset of an open and dense subset of the parameter
space. For simplicity of notation, we do not take into
account the restriction arising from making the orthogonal
postmultiplication unique and thus consider a parameter
space Θ ⊆ Rpn2+nq . In this case, the notions of genericity
are the same in both spaces, that means a generic set in
Θ intersected with the zero restrictions corresponding to
normalizing the orthogonal postmultiplication gives a generic
set in the restricted parameter space.

The next two theorems, which are the central results of this
paper, show that the matrix Z in equation (5) is generically of
full row rank and thus we have generic identifiability of the
Ai. In addition, Σ is shown to be generically identifiable.
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Note that this holds both for regular and singular AR
systems, for all sampling frequency ratios N , and all nf ≥ 1.

Theorem 1: The matrix Z in equation (5) has full row
rank n · p on a generic subset of the parameter space Θ.

The proof of the theorem, which uses system theoretic
tools (see [5], [1]), is quite intricate and we start by proving
three lemmas and a corollary.

Lemma 1: Let A denote the block companion matrix
defined above, and let Ā(z) denote the polynomial matrix
zpI − A1z

p−1 − A2z
p−2 − · · · − Ap. Suppose that αT =(

αT1 , α
T
2 , . . . , α

T
p

)
, where α ∈ Rnp, αi ∈ Rn. If αT is a

left eigenvector of A corresponding to eigenvalue λ, then
αT1 6= 0 and lies in the left kernel of Ā(λ), i.e. αT1 Ā(λ) = 0.
Conversely, if α1 6= 0 is such that αT1 Ā(λ) = 0, and
αT2 = αT1 (λI − A1), αT3 = αT1 (λ2I − λA1 − A2), . . . ,
holds for some λ, then αT =

(
αT1 , α

T
2 , . . . , α

T
p

)
is a left

eigenvector of A corresponding to eigenvalue λ.
Proof: Suppose that αT is a left eigenvector of A

corresponding to eigenvalue λ. Then at once

αT1 A1 + αT2 = λαT1

αT1 A2 + αT3 = λαT2
... (6)

αT1 Ap−1 + αTp = λαTp−1

αT1 Ap = λαTp

Evidently, α1 6= 0, else these equations yield that α itself
would be zero, contradicting the fact that α is an eigenvector.
It is trivial to eliminate α2, α3, . . . to obtain

αT1 (λpI − λp−1A1 − λp−2A2 − · · · −Ap) = 0 (7)

Conversely, suppose αT1 Ā(λ) = 0 with α1 6= 0, and that
α2, α3 . . . are defined as in the lemma hypothesis. Equations
(6) easily follow and then the eigenvalue property αTA =
λαT is immediate.

Corollary 1: With A, B as above, the pair (A,B) is con-
trollable for a generic subset of the parameter space.

Proof: We argue first that generically, for each value
of λ for which Ā(λ) is singular, the left kernel is one-
dimensional:

Let α1 6= 0 be such that αT1 Ā(λ) = 0. Then we can find
a nonsingular matrix T such that the first row of TĀ(λ) is
zero. Thus,

0 = αT1 T
−1TĀ(λ)

and thus the first element of
(
αT1 T

−1) can be chosen to be
nonzero. Now, consider the polynomial matrix formed by the
rows 2 till n of the polynomial matrix TĀ(z). By the result
on generic zerolessness of tall rational transfer functions, see
[1], the components 2 till n of the vector

(
αT1 T

−1) must be
zero which gives the desired result. For any nonzero vector
α, say, generating such a left kernel, there holds αTB =
αT1 b 6= 0, by virtue of the genericity, and this will hold for an
arbitrary but finite number of α. Now the inequality above
is easily seen to hold in an open subset of the parameter
space: This is a consequence of the continuity of the mapping

attaching a suitably normalized eigenvector α of A to A
and the continuity of the inner product αTB. This means
that controllability is established in an open subset of the
parameter space. The density of this set is shown as follows:
If αT1 b = 0, then there is a sequence bi → b such that
αT1 bi 6= 0.

Lemma 2: Let A denote the block companion matrix
defined above, and let Ā(z) denote the polynomial matrix
defined above. Suppose that c is an np-vector, with c =(
cT1 , c

T
2 , . . . , c

T
p

)T
and each ci an n-vector. Then if c is a

right eigenvector of A corresponding to eigenvalue λ 6= 0,
then c1 6= 0 and lies in the kernel of Ā(λ). Conversely, if
c1 6= 0 is such that Ā(λ)c1 = 0 with λ 6= 0 and ci =

λ−i+1c1, then c =
(
cT1 , c

T
2 , . . . , c

T
p

)T
is a right eigenvector

of A with eigenvalue λ.
Proof: Assume that Ac = λc. Then it is easily seen

that
p∑
i=1

Aici = λc1

c1 = λc2

c2 = λc3
...

cp−1 = λcp

The result is easily proved using these equations.
Denote by ej the n-vector with 1 in the j-th entry and

all other entries zero. Denote by Ej the np-vector Ej =(
eTj , 0, 0, . . . , 0

)T
. Then we have

Lemma 3: The pair (A, Ej) is observable on a generic
subset of the parameter space Θ.

Proof: It is well known that nonobservability of the pair
(A, Ej) is equivalent to the existence of a nonzero vector c
for which, for some λ, there holds Ac = λc, ETj c = 0.

Suppose the conclusion of the lemma is false. Let c1
denote the vector comprising the first n entries of c and let
λ be the corresponding eigenvalue of A which is nonzero
because Ap can be assumed as nonsingular on a generic set.
Then by the result of Lemma 2, there holds

Ā(λ)c1 = 0

eTj c1 = 0.

Now observe that the second equation requires that the
j-th entry of c1 be zero. From the generic zerolessness of
tall transfer functions, see [1], we conclude that the other
n− 1 entries of c1 must be zero for a generic subset of the
parameter space, i.e. that c1 itself is zero. This is clearly
false. Hence the conclusion of the lemma is established by
contradiction.

Proof: of the main theorem. The following equations
can be verified using equation (3)

(zI −A)Γ(z−1I −AT ) +AΓ(z−1I −AT ) + (zI −A)ΓAT = BBT

Γ + (zI −A)−1AΓ + ΓAT (z−1I −AT )−1 =

= (zI −A)−1BBT (z−1I −AT )−1
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Premultiplying and postmultiplying by ET1 and E1 leads
to

ET1 ΓE1 + ET1 (zI −A)−1AΓE1 + ET1 ΓAT (z−1I −AT )−1E1 =

ET1 (zI −A)−1BBT (z−1I −AT )−1E1 (8)

Since by corollary 1 (A,B) is controllable on a generic
subset of the parameter space, and by lemma 3, we have that
(A, E1) is observable on a generic subset of the parameter
space, and since the intersection of two generic sets is
generic again, (A,B, E1) is minimal and thus the McMillan
degree of ET1 (zI − A)−1B is np, the dimension of A.
It follows that the transfer function BT (z−1I − AT )−1E1
also has McMillan degree np, since transpose operations
preserve McMillan degree, and replacements of a variable by
a Mobius transformation (see [6]) of that variable preserve
McMillan degree.

Further, by the stability assumption on the underlying
AR system and because Ap is assumed as nonsingular, the
McMillan degree of the product ET1 (zI−A)−1BBT (z−1I−
AT )−1E1 will be 2np, due to the absence of any pole-zero
cancellations. Now the two nonconstant transfer functions
in (8) on the left side necessarily have the same McMillan
degree, one being obtainable from the other by transposition
and Mobius transformation of the variable. Further, the
nonconstant transfer functions on the left side of equation
share no common poles, so that their sum has McMillan
degree equal to the sum of the two McMillan degrees, or
twice the McMillan degree of one of the transfer functions.
Hence on the left side, we must have the McMillan degree
of ET1 (zI − A)−1AΓE1 equal to np, so that A,AΓE1 is
controllable. It follows trivially that (A,ΓE1) is controllable.

Up to now, the proof has only been given for the case
nf = 1. As is easily seen, the result is true a fortiori for
nf > 1.

The importance of theorem 1 is that if Z has full row
rank, the mapping from the second moments which can be
observed in principle to the parameters is continuous and
thus consistent estimators of the corresponding population
second moments give consistent estimators for the underlying
high frequency parameters. This also holds for the case
of generalized factor models where the static factors can
be estimated by principal component analysis, see [3]. Of
course, also the asymptotic covariances of the estimators are
of interest. This however is left to future research.

C. Generic identifiability of the noise parameters

To show generic identifiability of the noise parameters
Σ we proceed as follows. We commence from identifiable
system parameters A1, . . . , Ap. Rewriting equation (2) as

 yt
...

yt−p+1


︸ ︷︷ ︸

=xt+1

= A

yt−1...
yt−p


︸ ︷︷ ︸

=xt

+


In
0
...
0


︸ ︷︷ ︸

=G

νt. (9)

yt = (In, 0, . . . , 0)︸ ︷︷ ︸
=H

xt+1 (10)

we obtain through vectorization of
Γ = E

(
xtx

T
t

)
= AΓA + GΣG

and
γ0 = E

(
yty

T
t

)
= HΓHT

that

vec(Γ) = (A⊗A)vec(Γ) + (G ⊗ G)vec(Σ)

= (I −A⊗A)−1(G ⊗ G)vec(Σ) (11)

and
vec(γ0) = (H⊗H)vec(Γ). (12)

Therefore, we obtain that

vec(γ0) = (H⊗H)(I −A⊗A)−1(G ⊗ G)vec(Σ). (13)

Note that the absolute value of all eigenvalues of A is
smaller than one by the stability assumption and therefore
the same holds for the eigenvalues of (A⊗A). This implies
that (I − A ⊗ A) is regular. For A1 = · · · = Ap = 0,
the matrix (I − A ⊗ A)−1 is triangular with ones on its
diagonal. Thus (H⊗H)(I−A⊗A)−1(G⊗G) is a principal
submatrix with the same property and is therefore nonsin-
gular. This nonsingularity holds in an open neighborhood
of A1 = · · · = Ap = 0 and this neighborhood has a
nonempty intersection with the generic set of identifiable
system parameters as described in theorem 1. Now, there
exists a point in this intersection for which the determinant
of (H⊗H)(I −A⊗A)−1(G ⊗G) is unequal to zero. Since
this determinant is a rational function in the free entries
A1, . . . , Ap the nonsingularity holds for a generic set in the
parameter space. For the properties of the set of zeros of
multivariate polynomials and thus rational functions see e.g.
[7].

Clearly, if the matrix on the right hand side of equation
(13) is nonsingular we have identifiability of Σ.

Thus we obtain the desired result:
Theorem 2: The noise parameters Σ are generically iden-

tifiable.
Note that, as immediate from the proof above, for generic

values of A1, . . . , Ap, Σ is always identifiable.
A consistent estimator in this context has been derived in

[2].

III. SUBSTITUTION METHOD FOR THE REGULAR CASE
WITH p = 1, AND N = 2

In this section, we discuss a procedure obtained by sub-
stitution which gives more detailed identifiability results.
However, the derivation is only for the regular AR(1) case
with N = 2 and nf = ns = 1.
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A. Transformation of the high frequency AR(1) system into
a system in observed variables

For ease of notation we write AR(1) systems as(
yft
yst

)
=

(
aff afs
asf ass

)(
yft−1
yst−1

)
+

(
νft
νst

)
, t ∈ Z.

The system (1) can be decomposed in two subsystems,

yft =
(
aff afs

)(yft−1
yst−1

)
+ νft (14)

yst =
(
asf ass

)(yft−1
yst−1

)
+ νst . (15)

Note that in (14) all the moments needed for a projec-
tion of yft on yft−1 and yst−1 are available and thus aff ,
afs, and Σff are uniquely determined. On the other hand,
for the second equation (15) the autocovariance γss(1) =

E
(
yst
(
yst−1

)T)
is not available. For this reason, we replace

yst−1 by asfy
f
t−2+assy

s
t−2+νst−1 which gives the projection

of
(
yft
yst

)
onto

yft−1yft−2
yst−2

.

(
yft
yst

)
=

(
aff afsasf afsass
asf assasf a2

ss

)yft−1

yft−2
yst−2

+

+

(
afs
ass

)
E
(
νst−1

∣∣∣yft−1, y
f
t−2, y

s
t−2

)
+

(
ν̃ft
ν̃st

)
=

=

(
aff afsasf afsass
asf assasf a2

ss

)yft−1

yft−2
yst−2

+

+

(
afsΣsfΣ−1

ff −afsΣsfΣ−1
ff aff −afsΣsfΣ−1

ff afs

assΣsfΣ−1
ff −assΣsfΣ−1

ff aff −assΣsfΣ−1
ff afs

)yft−1

yft−2
yst−2


+

(
ν̃ft
ν̃st

)
. (16)

In equation (16), the error term is

(
ν̃ft
ν̃st

)
=

(
afs
ass

)(
νst−1 − E

(
νst−1

∣∣∣yft−1, y
f
t−2, y

s
t−2

))
+

(
νft
νst

)
.

(17)

Note that the components of the regression vector

(
yft−1

yft−2

yst−2

)
are linearly independent and thus the regression coefficients
bij , i = 1, 2, j = 1, 2, 3, which are the block entries
of the matrix multiplying the regression vector in (16) are
uniquely determined. To sum up, and recalling that aff , afs,
and Σff can be assumed known based on use of (14), the
problem of identifiability has now been reduced to the unique
solvability of the following equation system in the variables
asf , ass, Σfs, and Σss:

b11 = aff + afsΣsfΣ−1ff

b12 = afsasf − afsΣsfΣ−1ff aff

b13 = afsass − afsΣsfΣ−1ff afs

b21 = asf + assΣsfΣ−1ff

b22 = assasf − assΣsfΣ−1ff aff

b23 = a2ss − assΣsfΣ−1ff afs.

Finally we obtain for the covariances of the new error term

Σ̃ff = Σff + afs

(
Σss − ΣsfΣ−1ff Σfs

)
aTfs

Σ̃ss = Σss + ass

(
Σss − ΣsfΣ−1ff Σfs

)
aTss

Σ̃fs = Σfs + afs

(
Σss − ΣsfΣ−1ff Σfs

)
aTss.

As can be seen, no further information for the underlying
parameters can be obtained by further substitutions in this
case.

B. Identifiability Analysis for the case nf = ns = 1

In this subsection, nonidentifiability is characterized by the
existence of a static linear transformation which orthogonal-
izes the two components and leaves the second component
as an AR(1) process (i.e. not white noise).

1) The case Σsf = 0:
Lemma 4: The system and noise parameters(
aff afs
asf ass

)
, Σff , and Σss are not identified if and

only if (afs = 0) ∧ (asf = 0) ∧ (ass 6= 0) .

Proof:
a) If either afs 6= 0 or asf 6= 0 or ass = 0, then the

system is identifiable: The regression coefficients of the two
systems (14) and (16) are

β(1) =
(
aff afs

)
(18)

β(2) =

(
aff afsasf afsass
asf assasf a2ss

)
. (19)

Their respective error covariance matrices are Σff and
(for (16))

E
((

ν̃ft
ν̃st

)((
ν̃ft

)T
, (ν̃st )

T

))
=

(
Σ̃ff Σ̃fs
Σ̃sf Σ̃ss

)
=

=

(
afs
ass

)
Σss

(
aTfs aTss

)
+

(
Σff 0

0 Σss

)

which is obtained from
(
ν̃1,t
ν̃2,t

)
=

(
afs
ass

)
νst−1 +

(
νft
νst

)
.

Thus, we obtain from equation (14)aff , afs and Σff and
from (16) asf and Σss (from Σ̃ss).

If afs 6= 0 or asf 6= 0 or ass = 0, then the system
is identified from the coefficients β

(2)
13 , β

(2)
22 and β

(2)
23 in

equation (19).
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b) If (afs = 0)∧(asf = 0)∧(ass 6= 0), then the system
is not identifiable: Obviously, then the process consists of
two orthogonal components, and therefore only a2ss can be
obtained.

Remark 1: As is seen from the discussion above, in the
nonidentifiable case the fast process contains no information
about the parameters of the slow process, which is an AR(1)
process on t ∈ 2Z. Thus only a2ss (and Σss) can be obtained
from the observable second moments of the observations. If
a2ss 6= 0 then +

√
a2ss and −

√
a2ss are possible solutions.

Note that observable covariances corresponding to higher
lags provide no additional information.

Remark 2: According to the lemma 4, we have identifi-
ability if afs 6= 0 or asf 6= 0 or ass = 0. The matrix Z
in equation (5) is rank deficient for ass = 0, asf = 0 even
if afs 6= 0 which shows that the condition that rk(Z) =
np hold, is not necessary for identifiability. Whereas the
equivalence classes of observational equivalent parameters
in Remark 1 consist of two points the solution set of the
extended Yule Walker equations consist of affine subspaces.
This shows that the extended Yule Walker equations do not
use the full information contained in the second moments
which are in principle observed.

2) General case (no assumption on Σsf ):
Theorem 3: The system and noise parameters(
aff afs
asf ass

)
, Σff , Σsf and Σss are not identifiable

if and only if they are on the manifold described by the
equations

afs = 0

asf +
Σsf
Σff

(ass − aff ) +

(
Σsf
Σff

)2

afs = 0

ass − afs
Σsf
Σff

6= 0

whose complement is a superset of an open and dense set
(with respect to the whole parameter space). In the noniden-
tifiable case, it is possible to orthogonalize the system by a
linear static transformation.

Proof: The proof consists in tracing the case without
restrictions on Σsf back to the case with Σsf 6= 0.

a) Applying a static linear transformation on the system
(1): Applying the transformation T defined by

T =

(
I 0

−ΣsfΣ−1ff I

)
, T−1 =

(
I 0

ΣsfΣ−1ff I

)
,

we obtain as new system matrix
(
ãff ãfs
ãsf ãss

)
the following:

T

(
aff afs
asf ass

)
T−1 =

(
ãff ãfs
ãsf ãss

)

=

 aff + afsΣsfΣ−1
ff afs

asf +
Σsf
Σff

(ass − aff ) +
(

Σsf
Σff

)2
afs ass − ΣsfΣ−1

ff afs



Thus, the new system with diagonal error covariance matrix
is

T

(
yft
yst

)
= T

(
aff afs
asf ass

)
T−1T

(
yft
yst

)
+ T

(
νft
νf⊥t

)
(
yft
ỹst

)
=

(
ãff ãfs
ãsf ãss

)(
yft−1
ỹst−1

)
+

(
νft
νf⊥t

)
.

b) Using the new system for identifiability analysis.: As
in the diagonal, i.e. Σsf = 0, case, we obtain identifiability
if and only if (ãfs = 0) ∧ (ãsf = 0) ∧ (ãss 6= 0).

IV. CONCLUSION

This paper has demonstrated that vector autoregressions
are generically identifiable from covariance data in which
signifcant information is missing, corresponding to the fact
that some system outputs are only available every N -th time
instants for some N > 1. Identifability is however then a
generic property. We have yet to determine what systems
will be hard to identify, i.e. close to the nonidentifiable set
in some metric.
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