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Capacity of Multi-antenna Gaussian Channels

I. Emre Telatar*

ABSTRACT

We investigate the use of multiple transmitting and/or receiving antennas
for single user communications over the additive Gaussian channel with and
without fading. We derive formulas for the capacities and error exponents of
such channels, and describe computational procedures to evaluate such for-
mulas. We show that the potential gains of such multi-antenna systems over
single-antenna systemns is rather large under independence assumptions for the
fades and noises at different receiving antennas.

1 INTRODUCTION

We will consider a single user Gaussian channel with multiple transmitting and/or
receiving antennas. We will denote the number of transmitting antennas by ¢ and the
number of receiving antennas by r. We will exclusively deal with a linear model in
which the received vector y € C" depends on the transmitted vector & € C' via

y=Hzx+mn (1)

where H is a r X t complex matrix and mn is zero-mean complex Gaussian noise with
independent, equal variance real and imaginary parts. We assume £[nn'] = I,, that
is, the noises corrupting the different receivers are independent. The transmitter is
constrained in its total power to P,

Elxtz] < P.
Equivalently, since 'z = tr(zx'), and expectation and trace commute,

tr(Ezzl]) < P. 2)
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This second form of the power constraint will prove more useful in the upcoming
discussion.
We will consider several scenarios for the matrix H:

1. H is deterministic.

2. H is a random matrix (for which we shall use the notation H ), chosen according
to a probability distribution, and each use of the channel corresponds to an
independent realization of H.

3. H is a random matrix, but is fixed once it is chosen.

The main focus of this paper in on the last two of these cases. The first case is
included so as to expose the techniques used in the later cases in a more familiar
context. In the cases when H is random, we will assume that its entries form an
i.i.d. Gaussian collection with zero-mean, independent real and imaginary parts, each
with variance 1/2. Equivalently, each entry of H has uniform phase and Rayleigh
magnitude. This choice models a Rayleigh fading environment with enough separation
within the receiving antennas and the transmitting antennas such that the fades for
each transmitting-receiving antenna pair are independent. In all cases, we will assume
that the realization of H is known to the receiver, or, equivalently, the channel output
consists of the pair (y, H), and the distribution of H is known at the transmitter.

2 PRELIMINARIES

A complex random vector @ € C" is said to be Gaussian if the real random vector
Re(x)
Jm(x)

to specify the distribution of a complex Gaussian random vector x, it is necessary to
specify the expectation and covariance of &, namely,

& € R?" consisting of its real and imaginary parts, & = [ }, is Gaussian. Thus,

E[z] e " and E[(z — E[z))(z — E[2])T] € RPN,

We will say that a complex Gaussian random vector x is circularly symmetric if the
covariance of the corresponding @ has the structure

elle - lale - e = | Jme) ey )

for some Hermitian non-negative definite () € C"*". Note that the real part of an
Hermitian matrix is symmetric and the imaginary part of an Hermitian matrix is
anti-symmetric and thus the matrix appearing in (3) is real and symmetric. In this
case & [(z—Ez])(x—E[z])t] = Q, and thus, a circularly symmetric complex Gaussian
random vector  is specified by prescribing €(z] and &[(z — £[x])(z — E[z])1].

2



For any z € C" and A € C"*" define

s [?eiz;] and A= [9%(14) —Jm(A)} .

LEMMA 1. The mappings z — 2 = [?ni((zg] and A — A = [%(A) 73'“%2‘;] have the

following properties:

C=AB — C=AB (4a)
C=A+B < C=A+B (4b)
C=Al — C=At (4c)
C=A" —= C=4A" (4d)
det(A) = | det(A)> = det(AA") (4de)
r=r+y &= Z=T+Yy (4f)
y=Ar < §j=Ai (4g)
Re(zly) = @'y (4h)

Proof. The properties (4a), (4b) and (4c) are immediate. (4d) follows from (4a) and
the fact that I, = I,,. (4e) follows from

det(A) = det ({é Zﬂ A {é _Zﬂ> — det (Lnf(l N X]) — det(A) det(A)*.

(4f), (4g) and (4h) are immediate. O
COROLLARY 1. U € C**" js unitary if and only if U € R2"*?" s orthonormal.
Proof. UtU = I,, < (U)1U =1, = L,. O
COROLLARY 2. If () € C"*" js non-negative definite then so is ) € R¥*2n.

Proof. Given x = [xy,...,m9,|" € R?" let 2 = [x1 + jTpyi1,- -+, T + jTo,])7 € C*, s0O
that x = 2. Then by (4g) and (4h)

21Qu = Re(2'Qz) = 2'Qz > 0. O

The probability density (with respect to the standard Lebesgue measure on C")
of a circularly symmetric complex Gaussian with mean p and covariance () is given



Yo (@) = det(rQ) M exp(— (3 — 1)'Q (& — 1))
= det(7Q) " exp(—(z — u)'Q 7' (z — )

where the second equality follows from (4d)—(4h). The differential entropy of a com-
plex Gaussian & with covariance () is given by

H(7g) = Erql— log10()
= logdet(7Q) + (loge) E[x'Q ']
= logdet(7Q) + (loge) tr(E[zz']Q )
= logdet(7Q) + (loge) tr(1)
= log det(meq).

For us, the importance of the circularly symmetric complex Gaussians is due to the
following lemma: circularly symmetric complex Gaussians are entropy maximizers.

LEMMA 2. Suppose the complex random vector € € C" is zero-mean and satisfies
Elex'] = Q, ie, Elzixi] = Qij, 1 < i,j < n. Then the entropy of x satisfies
H(x) < logdet(meQ) with equality if and only if x is a circularly symmetric complex
Gaussian with

Elzx') = Q

Proof. Let p be any density function satisfying [, p(z)z} de = Qy, 1 < 0,5 < n.
Let

Yo(z) = det(rQ) ' exp(—2'Q 'z).

Observe that f(cn Yo(2)wia} dv = Qyj, and that logyg(w) is a linear combination of
the terms w;z5. Thus &, [log vo(x)] = Epllog vo(x)]. Then,

H(p) — H(vg) = — /n p(x) log p(x) dx + /Cn 7o () log vg(x) dx
=— /n p(z)logp(x) dx + /Cn p(x)logvg(x) dx

_ g 12
—/np( ) log (@) d

<0,

with equality only if p = 7o. Thus H(p) < H(vg). O

LEmMA 3. Ifx € C" is a circularly symmetric complex Gaussian then so is y = Ax
for any A € C"*",



Proof. We may assume x is zero-mean. Let ) = &[zx']. Then y is zero-mean,
§ = A%, and

where K = AQAT. O

LEMMA 4. Ifx and y are independent circularly symmetric complex Gaussians, then
z =« + 1y Is a circularly symmetric complex Gaussian.

Proof. Let A = E[xat] and B = E[yy']. Then £[227] = 1C with C = A + B. O

1
2
3 THE (GGAUSSIAN CHANNEL WITH FIXED TRANSFER FUNCTION

We will start by reminding ourselves the case of deterministic H. The results of this
section can be inferred from [1, Ch. §]

3.1 CAPACITY

We will first derive an expression for the capacity C'(H, P) of this channel. To that
end, we will maximize the average mutual information Z(x; y) between the input and
the output of the channel over the choice of the distribution of .

By the singular value decomposition theorem, any matrix H € C"*! can be written
as

H=UDVT

where U € C™*" and V € C*! are unitary, and D € R"*! is non-negative and diagonal.
In fact, the diagonal entries of D are the non-negative square roots of the eigenvalues
of HH', the columns of U are the eigenvectors of HH' and the columns of V' are the
eigenvectors of HTH. Thus, we can write (1) as

y=UDVizc +n.

Let y = Uly, & = Viz, n = U'n. Note that U and V are invertible, 7» has the same
distribution as n and, £[&'&] = £[xx]. Thus, the original channel is equivalent to
the channel

§=Di+n (5)

where m is zero-mean, Gaussian, with independent, identically distributed real and
imaginary parts and £[an'] = I,. Since H is of rank at most min{r,t}, at most
min{r, ¢} of the singular values of it are non-zero. Denoting these by )\;/2, 1=
1,...,min{r,t}, we can write (5) component-wise, to get

1/2 -

g’i = )\l .I'Z' —|— ﬁi, 1 S Z S min{T7 t}:



and the rest of the components of 7 (if any) are equal to the corresponding components
of n. We thus see that g; for i > min{t, } is independent of the transmitted signal and
that &; for ¢ > min{¢,r} don’t play any role. To maximize the mutual information,
we need to choose {Z; : 1 < ¢ < min{r,t}} to be independent, with each Z; having
independent Gaussian, zero-mean real and imaginary parts. The variances need to
be chosen via “water-filling” as

E[Re()7] = E[Om(E:)*] = 5(n— A )*

where p is chosen to meet the power constraint. Here, a™ denotes max{0,a}. The
power P and the maximal mutual information can thus be parametrized as

P(p)=> (n=XN"" O =Y (In(u\))".

) )

Remark 1 (Reciprocity). Since the non-zero eigenvalues of H'H are the same as those
of HH', we see that the capacities of channels corresponding to H and H' are the
same.

Example 1. Take H;; = 1 for all 4, j. We can write H as

(Vrt) [V Vit

and we thus see that in the singular value decomposition of H the diagonal matrix
D will have only one non-zero entry, v/rt. (We also see that the first column of U is
V1/r[1,...,1]" and the first column of V is v/1/t[1,...,1]1.) Thus,

C =log(1 +rtP).

The = V& that achieves this capacity satisfies £[z;25] = P/t for all 4, j, i.e., the
transmitters are all sending the same signal. Note that, even though each transmitter
is sending a power of P/t, since their signals add coherently at the receiver, the power
received at each receiver is Pt. Since each receiver sees the same signal and the noises
at the receivers are uncorrelated the overall signal to noise ratio is Prt.

Example 2. Take r =t =mn and H = [,,. Then
C =nlog(l+ P/n)

For @ that achieves this capacity E[x;x}] = d;;P/n, i.e, the components of x are i.i.d.
However, it is incorrect to infer from this conclusion that to achieve capacity one has
to do independent coding for each transmitter. It is true that the capacity of this



channel can be achieved by splitting the incoming data stream into ¢ streams, coding
and modulating these schemes separately, and then sending the ¢ modulated signals
over the different transmitters. But, suppose Nt bits are going to be transmitted,
and we will either separate them into ¢ groups of N bits each and use each group to
select one of 2%V signals for each transmitter, or, we will use all all Nt bits to select
one of 2Vt signal vectors. The second of these alternatives will yield a probability of
error much smaller than the first, at the expense of much greater complexity. Indeed,
the log of the error probability in the two cases will differ by a factor of t. (See the
error exponents of parallel channels in [1, pp. 149-150].)

3.2 ALTERNATIVE DERIVATION OF THE CAPACITY

The mutual information Z(x; y) can be written as
I(x;y) = H(y) — H(ylz) = H(y) — H(n),

and thus maximizing Z(x; y) is equivalent to maximizing H(y). Note that if « satisfies
Elz'xz] < P, so does ¢ — E[z], so we can restrict our attention to zero-mean z.
Furthermore, if & is zero-mean with covariance £[zx’] = @, then y is zero-mean
with covariance [yy'| = HQH' + I,, and by Lemma 2 among such y the entropy
is largest when vy is circularly symmetric complex Gaussian, which is the case when
x is circularly symmetric complex Gaussian (Lemmas 3 and 4). So, we can further
restrict our attention to circularly symmetric complex Gaussian . In this case the
mutual information is given by

T(x;y) = logdet(I, + HQH') = logdet(I, + QHTH)

where the second equality follows from the determinant identity det(/+AB) = det(I+
BA), and it only remains to choose ) to maximize this quantity subject to the
constraints tr(Q)) < P and that @ is non-negative definite. The quantity logdet(I +
HQH?') will occur in this document frequently enough that we will let

U(Q, H) =logdet(I + HQH')

to denote it. Since H'H is Hermitian it can be diagonalized, H'H = UTAU, with
unitary U and non-negative diagonal A = diag(\,..., ;). Applying the determinant
identity again we see that

det(I, + HQH') = det(I, + A'?UQUTAY?).

Observe that Q@ = UQU' is non-negative definite when and only when Q is, and that

tr(Q) = tr(Q); thus the maximization over () can be carried equally well over Q.



Note also that for any non-negative definite matrix A, det(A) <[], Ay, thus

det(Z, + A'?QAY?) < TT(1 + Qudi)

with equality when () is diagonal. Thus we see that the maximizing Q is diagonal,
and the optimal diagonal entries can be found via “water-filling” to be

sz:(/i_)\;l)—i—; Z:L;t

where p is chosen to satisfy ). Qi = P. The corresponding maximum mutual infor-

> (log(pA)) "

)

mation is given by

as before.

3.3 ERROR EXPONENTS

Knowing the capacity of a channel is not always sufficient. One may be interested
in knowing how hard it is to get close to this capacity. Error exponents provide a
partial answer to this question by giving an upper bound to the probability of error
achievable by block codes of a given length n and rate R. The upper bound is known
as the random coding bound and is given by

P(error) < exp(—nFE,(R)),
where the random coding exponent E,(R) is given by

E,(R) = max Ey(p) — pR,

0<p<1

where, in turn, Ey(p) is given by the supremum over all input distributions ¢, satis-
fying the energy constraint of

14p

Eo(p, ¢a) = —log/[/ Go (@)p(yl2)/ P da | dy.

In our case p(y|z) = det(nl,) " exp(—(y—=)T(y—=)). If we choose g, as the Gaussian
distribution g we get (after some algebra)

Eo(p, Q) = plogdet(L, + (1+p) "HQH') = p¥((1 + p) )@, H).



The maximization of Ey over () is thus same same problem as maximizing the mutual
information, and we get Eq(p) = pC(P/(1+ p), H).

To choose ¢, as Gaussian is not optimal, and a distribution concentrated on a
“thin spherical shell” will give better results as in [1, §7.3]—mnonetheless, the above
expression is a convenient lower bound to Ejy and thus yields an upper bound to the
probability of error.

4 THE GAUSSIAN CHANNEL WITH RAYLEIGH FADING

Suppose now that the matrix H is not fixed, but is a random matrix H independent
of both & and n. The realization of H of H is assumed to be known at the receiver,
but not at the transmitter. The channel is thus with input & and output (y, H) =
(Hx + n,H). We will assume that the entries of H are independent and each
entry is zero-mean, Gaussian, with independent real and imaginary parts, each with
variance 1/2. Equivalently, each entry of H has uniformly distributed phase and
Rayleigh distributed magnitude, with expected magnitude square equal to unity. This
is intended to model a Rayleigh fading channel with enough physical separation within
the transmitting and the receiving antennas to achieve independence in the entries of
H. We will first show that such an H is invariant under unitary transformations.

LEMMA 5. Suppose H € C™*! is a complex Gaussian matrix with independent iden-
tically distributed entries, each entry with independent real and imaginary parts with
zero-mean and equal variance. Then for any unitary U € C™*", and V € C'**, the
distribution of UHVT is the same as the distribution H.

Proof. 1t suffices to show that G = U H has the same distribution as H. The lemma
then follows from an application of this to G'. Since columns of H are independent,
the columns of G are independent also. It remains to check that each column of
G has the same distribution as that of H. Since the columns of H are circularly
symmetric complex Gaussian vectors, so are those of G. 1If g, and h; are the 4t
column of G and H respectively, then

€lg,9}] = U EIh;RJUT = E[h;h]]

where the last equality holds because £ [hjh;'-] is a multiple of the identity matrix. [

In this section we will assume that the channel is memoryless: for each use of
the channel an independent realization of H is drawn. In this case we are on famil-
iar ground and the capacity can be computed as the maximum mutual information.
However, the results that follow are valid verbatim for channels for which H is gen-
erated by an ergodic process: as long as the receiver observes the H process only the
first order statistics are needed to determine channel capacity.



4.1 CAPACITY

Since the receiver knows the realization of H, the channel output is the pair (y, H) =
(Hx + n, H). The mutual information between input and output is then

I(z;(y, H)) = Z(z; H) + Z(z; y|H)
= I(z;y|H)
=EulL(z;y|H = H)].

We know from the previous section that if @ is constrained to have covariance (),
the choice of @ that maximizes Z(x; y|H = H) is the circularly symmetric complex
Gaussian of covariance @, and ¥(Q, H) = logdet(l, + HQH') is the corresponding
maximal mutual information. We thus need to maximize

U(Q) = ENV(Q, H)| = Eflogdet(I, + HQH')]

over the choice of non-negative definite @) subject to tr(Q) < P.
Since @ is non-negative definite, we can write it as Q = UDU' where U is unitary
and D is non-negative and diagonal. With this substitution

U(Q) = & [logdet (I, + (HU)D(HU)')]

By Lemma 5 the distribution of HU is the same as that of H, and thus ¥(Q) =
¥ (D). We can thus restrict our attention to non-negative diagonal (). Given any
such () and any permutation matrix II, consider Q" = TIQIIT. Since HTI has the
same distribution as H, ¥(Q") = ¥(Q). Note that for any H, the mapping Q +
I, + HQH' is linear and preserves positive definiteness. Since logdet is concave on
the set of positive definite matrices, Q@ — U(Q, H) = logdet(I, + HQH') is concave.
It then follows that @ +— ¥(Q) is concave. Thus

~ 1
Q:E;QH

satisfies W(Q) > ¥(Q) and tr(Q) = tr(Q). Note that @ is a multiple of the identity
matrix and we conclude that the optimal () must be of the form al. It is clear that
the maximum is achieved when « is the largest possible, namely P/t. To summarize,
we have shown the following:

THEOREM 1. The capacity of the channel is achieved when x is a circularly symmet-

ric complex Gaussian with zero-mean and covariance (P/t)I;. The capacity is given
by € [logdet (I, + (P/t)HHT)].

Note that for fixed r, by the law of large numbers %H H' — I, almost surely as
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t gets large. Thus, the capacity in the limit of large ¢ equals
rlog(l+ P). (6)

4.2 EVALUATION OF THE CAPACITY

Although the expectation & [logdet (I, + (P/t)HH')] is easy to evaluate for either
r =1 or t = 1, its evaluation gets rather involved for r and ¢ larger than 1. We will
now show how to do this evaluation. Note that

det(I, + (P/t)HH") = det(I, + (P/t)H'H)
and define

_JHH' r<t
H'H r>t,
n = max{r,t} and m = min{r, t}. Then W is an m x m random non-negative definite

matrix and thus has real, non-negative eigenvalues. We can write the capacity in
terms of the eigenvalues Ay,..., A, of W:

£ [2 log(1 + (P/t))\,-)] (7)

The distribution law of W is called the Wishart distribution with parameters m, n
and the joint density of the ordered eigenvalues is known to be (see e.g. [2] or [3,

p. 37))

v

p)\,ordered()\la---:)\m)— mn Z)\H)\” mH)\_)\ )\12 )\mZO

1<J

where K, ,, is a normalizing factor. The unordered eigenvalues then have the density

A, - A) = (MK, ) " te Tk HA“ m T = M)
1<J
The expectation we wish to compute

[Zlog (1+ (P/t)A } ZE log(1+ (P/t)Ai)]

i=1

= m&log(1+ (P/t)A1)]
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depends only on the distribution of one of the unordered eigenvalues. To compute
the density of A; we only need to integrate out the Ao, ..., \y:

0 = [ [ mal A s dn

To that end, note that [;_;(A; — A;) is the determinant of a Vandermonde matrix

1 ... 1
M o A
DAL, ..., ) = | . ,
DV Vi

and we can write py as

PACAL -y Am) = (M) T det (DA ) [ AR ™™™

i

With row operations we can transform D(Ay, ..., A,,) into
. e1(A) o e1(Am)
DAy, ... A) = : :
em(A) - om(Am)
where 1, ..., @, is the result of applying the Gram—-Schmidt orthogonalization pro-

cedure to the sequence
LA A%, At

in the space of real valued functions with inner product
()= [ OV i,
0

Thus [; i(A)@;(A)A""™e ™ d\ = 6;;. The determinant of D then equals (modulo
multiplicative constants picked up from the row operations) the determinant of D,
which in turn, by the definition of the determinant, equals

det(D(\s, - Am)) = D (=17 [[ D = D (=1 ] [ 0 (V)

« o
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where the summation is over all permutations of {1,...,m}, and per(«) is 0 or 1
depending on the permutation « being even or odd. Thus

p/\()\b o ’ C’m " Z Per a)+per (8 H 90041 $0/31 )\n m 7)\
Integrating over Ao, ..., A\, we get
Px (M) = Cg Z e By (M) s (M)A e ] das,
1>2

= Chpn(m —1)! Z ©i( M)A e M

i=1
1 - 2\n—m _—A1
= ng()\l) Al e
1=

where the second equality follows from the fact that if o; = 3; for ¢« > 2 then oy = 3,
also (since both a and  are permutations of {1, ... ,m}) and thus @ = 3, and the last
equality follows from the fact that <pi()\1)2)\?’me_’\1 integrates to unity and thus C,, ,
must equal 1/m!. Observe now that the Gram—Schmidt orthonormalization yields

k! 1/2 n—m
oraN) = [t ] L), k=0, m—1

where L7 (z) = Le“a™" "d‘f:k (e 2a™ ™) is the associated Laguerre polynomial of
order k. (See [4, §8.90,8.97].)

To summarize:

THEOREM 2. The capacity of the channel with t transmitters and r receivers under
power constraint P equals

o) m—1
/ log(1+ PA/t) > s [ Lk A PAT e dA (8)
0 k=0

where m = min{r, ¢t} and n = max{r,t}, and L;'- are the associated Laguerre polyno-
mials.

Figure 1 shows the value of the integral in (8) for 1 < r,¢ < 20 and P = 20dB.

Example 3. Consider t = 1. In this case m = 1 and n = r. Noting that Ly ™ (\) = 1,
an application of (8) yields the capacity as

1 OO r—1_-—A
W/o log(1 4+ PA)N" e " du. 9)

13
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Figure 1: Capacity (in nats) vs. r and ¢ for P = 20dB

The values of this integral are tabulated in Table 1 for 1 < r < 10 and P from 0dB
to 35dB in 5dB increments. See also Figure 2. Note that as r gets large, so does the
capacity. For large r, the capacity is asymptotic to log(1 + Pr), in the sense that the
difference goes to zero.

Example 4. Consider » = 1. As in the previous example, applying (8) yields the
capacity as

1 > -1,
W/o log(1 + PA/t)A e du. (10)

As noted in (6), the capacity approaches log(1 + P) as t gets large. The values of the
capacity are shown in Table 2 for various values of ¢t and P. See also Figure 3.

Example 5. Consider r = t. In this case n = m = r, and an application of (8) yields
the capacity as

/ T log(1+ PA/r) TiLk(A)%—A dx, (1)

where Ly = LY is the Laguerre polynomial of order k.
Figure 4 shows this capacity for various values of r and P. It is clear from the
figure that the capacity is very well approximated by a linear function of r. Indeed,

14



)

r 0dB 5dB 10dB 15dB 20dB 25dB 30dB 35dB
1(0.5963 1.1894 2.0146 3.0015 4.0785 ©5.1988 6.3379 7.4845
21 1.0000 1.8133 2.8132 3.9066 5.0377 6.1824 7.3315 8.4822
31 1.2982 2.2146 3.2732 4.3922 5.5329 6.6808 7.8310 8.9820
41 1.56321 2.5057 3.5913 4.7204 5.8646 7.0136 8.1642 9.3153
o5 1.7236 2.7327 3.8333 4.9679 6.1138 7.2634 8.4141 9.5652
6| 1.88563 2.9183 4.0285 5.1663 6.3133 7.4632 8.6141 9.7652
71 2.02560 3.0752 4.1919 5.3319 6.4796 7.6298 8.7807 9.9319
81 2.1479 3.2110 4.3324 5.4740 6.6222 7.7726 8.9235 10.075
91 2.2576 3.3306 4.4556 5.5985 6.7471 7.8975 9.0485 10.200

10 || 2.3565 3.4375 4.5654 5.7091 6.8580 8.0086 9.1596 10.311

The capacity in nats of a multiple receiver, single transmitter fading channel.
The path gain from the transmitter to any receiver has uniform phase and
Rayleigh amplitude of unit mean square. The gains to different receivers are
independent. The number of receivers is r, and P is the signal to noise ratio.

Table 1: Values of the integral in (9)

12 +

The value of the capacity (in nats) as found from (9) vs. r for 0dB < P < 35dB
in 5dB increments.

Figure 2: Capacity vs. r for t = 1 and various values of P.
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)

t 0dB 5dB 10dB 15dB 20dB 25dB 30dB 35dB
1(0.5963 1.1894 2.0146 3.0015 4.0785 ©5.1988 6.3379 7.4845
21 0.6387 1.2947 2.1947 3.2411 4.3540 5.4923 6.6394 7.7893
31 0.6552 1.3354 2.2608 3.3236 4.4441 5.5854 6.7334 7.8837
410.6640 1.3570 2.2947 3.3646 4.4882 5.6305 6.7789 7.9293
51 0.6695 1.3702 2.3152 3.3891 4.5142 5.6571 6.8057 7.9561
6| 0.6733 1.3793 2.3289 3.4053 4.5314 5.6746 6.8233 7.9738
71 0.6760 1.3858 2.3388 3.4169 4.5436 5.6870 6.8358 7.9863
81 0.6781 1.3907 2.3462 3.4255 4.5527 5.6963 6.8451 7.9956
91 0.6797 1.3946 2.3519 3.4322 4.5598 5.7034 6.8523 8.0028

10 || 0.6810 1.3977 2.3565 3.4375 4.5654 5.7091 6.8580 8.0086

The capacity in nats of a multiple transmitter, single receiver fading channel.
The path gain from any transmitter to the receiver has uniform phase and
Rayleigh amplitude with unit mean square. The fades for each path gain is
independent. The number of transmitters is ¢ and P is the signal to noise ratio.

Table 2: Values of the integral in (10).

The value of the capacity (in nats) as found from (10) vs. ¢ for 0dB < P < 35dB
in 5dB increments.

Figure 3: Capacity vs. t for r = 1 and various values of P.
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Figure 4: Capacity vs. r for r = ¢ and various values of P.

first rewrite (7) as

C= 8/ 10g<1 + P—ml/)mdFran(l/)
0 t

where F4(z) is the empirical distribution of the eigenvalues of an m x m Hermitian

matrix A: )
_ the number of eigenvalues of A less than x

F4(x) p-

A very general result from the theory of random matrices (see, e.g., [5]) says that for
W defined as above, as n = max{r,t} and m = min{r,t} are increased with n/m

approaching a limit 7 > 1,

V) R -)(-Y) frve ]
dv 0

otherwise,

with vy = (/7 £ 1)%. Thus, in the limit of large r and ¢,

o [ oo ) ) (-

17
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For the case under consideration, m = n =r = t, for which v_ =0, v, =4, and

4
1 /1 1
C’Nr/ log(1+ Pv)—4/ = — —dv
0 mVr 4

which is linear in 7 as observed before from the figure.

Remark 2. The result from the theory of random matrices used in Example 5 applies
to random matrices that are not necessarily Gaussian. For equation (13) to hold it is
sufficient for H to have i.i.d. entries of unit variance.

Remark 3. The reciprocity property that we observed for deterministic H does not
hold for random H: Compare Examples 3 and 4 where the corresponding H’s are
transposes of each other. In Example 3, capacity increases without bound as r gets
large, whereas in Example 4 the capacity is bounded from above.

Nonetheless, interchanging r and ¢ does not change the matrix W, and the ca-
pacity depends only on P/t and the eigenvalues of W. Thus, if C(r,t, P) denotes the
capacity of a channel with 7 receivers, t transmitters and total transmitter power P,
then

C(a,b, Pb) = C(b,a, Pa).

Remark 4. In the computation preceding Theorem 2 we obtained the density of one of
the unordered eigenvalues of the complex Wishart matrix W. Using the identity (19)
in the appendix we can find the joint density of any number & of unordered eigenvalues
of W:

(m — k)! Y
Parne sy k) = Tolet (Dk()\l,...,)\k)TDk()\l,...,)\k))HAi e N
where
@1()\1) s @1()%)
Spm()‘l) S Spm()‘k)

4.3 ERROR EXPONENTS

As we did in the case of deterministic H we can compute the error exponent in the
case of fading channel. To that end, note first that

1+p

Eo(p,qz) = —log // [/ qm(x)p(y,H|a:)1/(1+”) dx dy dH.
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Since H is independent of @, p(y, H|z) = pa(H)p(y|z, H) and thus

Ey(p, @) = —logé’[/ U Go (©)p(ylz, H)'/H7) dw] v dy}-

Note that
p(yle, H) = det(nl,) " exp(—(y — Hz)'(y — Hx)).

and for ¢, = 7¢, the Gaussian distribution with covariance (), we can use the results
for the deterministic H case to conclude

Eo(p,q) = —log & [det(L, + (14 p) ' HQH')™"].

Noting that A — det(A)~” is a convex function, the argument we used previously to
show that @ = (P/t)I; maximizes the mutual information applies to maximizing Fj
as well, and we obtain

Ey(p) = —log& {det <IT + ﬁﬂH*) p} : (14)

To efficiently compute Ej, one would represent the Wishart eigenvalue density as
a Vandermonde determinant, (just as in the previous section), and orthonormalize
the monomials 1, \, A\?, ..., \™ ! with respect to the inner product

o) = [ N (14 ) e

The multiplicative factor picked up in the orthonormalization is the value of the
expectation in (14).

As before, the restriction of ¢, to Gaussian distributions is suboptimal, but this
choice leads to simpler expressions.

5 NON-ERGODIC CHANNELS

We had remarked at the beginning of the previous section that the maximum mutual
information has the meaning of capacity when the channel is memoryless, i.e., when
each use of the channel employs an independent realization of H. This is not the
only case when the maximum mutual information is the capacity of the channel. In
particular, if the process that generates H is ergodic, then too, we can achieve rates
arbitrarily close to the maximum mutual information.

In contrast, for the case in which H is chosen randomly at the beginning of all time
and is held fixed for all the uses of the channel, the maximum mutual information is in
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general not equal to the channel capacity. In this section we will focus on such a case
when the entries of H are i.i.d., zero-mean circularly symmetric complex Gaussians
with &[|h;;[*] = 1, the same distribution we have analyzed in the previous section.

5.1 CAPACITY

In the case described above, the Shannon capacity of the channel is zero: however
small the rate we attempt to communicate at, there is a non-zero probability that
the realized H is incapable of supporting it no matter how long we take our code
length. On the other hand one can talk about a tradeoft between outage probability
and supportable rate. Namely, given a rate R, and power P, one can find P, (R, P)
such that for any rate less than R and any ¢ there exists a code satisfying the power
constraint P for which the error probability is less than ¢ for all but a set of H whose
total probability is less than P,y (R, P):

Pou(R, P) = Q@ggo P(Y(Q,H) < R) (15)

tr(Q)<P

where

U(Q, H) =logdet(I, + HQHY).

This approach is taken in [6] in a similar problem.

In this section, as in the previous section we will take the distribution of H
to be such that the entries of H are independent zero-mean Gaussians, each with
independent real and imaginary parts with variance 1/2.

Example 6. Consider ¢t = 1. In this case, it is clear that the () = P is optimal. The
outage probability is then
P (logdet(I, + HPH') < R) = P(log(1+ PH'H) < R)

Since H'H is a x? random variable with 2r degrees of freedom and mean r, we can
compute the outage probability as

v(r, (e® —1)/P)
I'(r)

Pout(Ra P) - 5 (16)

where y(a, ) is the incomplete gamma function [ u® e ™ du. Let ¥(P,€) be the
value of R that satisfies

PU(P,H) < R) =« (17)

Figure 5 shows (P, €) as a function of r for various values of € and P.
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5

g) P =30dB (h) P = 35dB

P(P,e) vs. T at t = 1 for various values of P and e. Recall that ¢ (P,¢) is the
highest rate for which the outage probability is less than e. Each set of curves
correspond to the P indicated below it. Within each set the curves correspond,
in descending order, to e = 1071, 1072, 1073, 10~*.

Figure 5: The e-capacity for t = 1 as defined by (17).
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Note that by Lemma 5 the distribution of HU is the same as that of H for unitary
U. Thus, we can conclude that

Y(UQU', H)

has the same distribution as ¥ (@), H). By choosing U to diagonalize () we can restrict
our attention to diagonal Q).
The symmetry in the problem suggests the following conjecture.

CONJECTURE. The optimal () is of the form

P .
— diag(1,...,1,0,...,0)
k | N —

k ones t— k zeros

for some k = 1,...,t. The value of k depends on the rate: higher the rate (i.e., higher
the outage probability), smaller the k.

As one shares the power equally between more transmitters, the expectation of ¥
increases, but the tails of its distribution decay faster. To minimize the probability
of outage, one has to maximize the probability mass of ¥ that lies to the right of the
rate of interest. If one is interested in achieving rates higher than the expectation of
V. then it makes sense to use a small number of transmitters to take advantage of the
slow decay of the tails of the distribution of W. Of course, the corresponding outage
probability will still be large (larger than 3, say).

Example 7. Consider » = 1. With the conjecture above, it suffices to compute
P(\If((P/t)It, H) < R) for all values of t; if the actual number of transmitters is, say,
7, then the outage probability will be the minimum of the probabilitiesfort =1,..., 7.
As in Example 6 we see that HH' is a x? statistic with 2t degrees of freedom and
mean t, thus

(¢, t(e" —1)/P)

I(2)

Figure 6 shows this distribution for various values of ¢ and P. It is clear from the
figure that large ¢t performs better at low R and small ¢ performs better at high R, in
keeping with the conjecture. As in Example 3, let ¢)(P, €) be the value of R satisfying

P(¥((P/t)I;, H) < R) =

P(¥((P/t)I, H) < R) =e. (18)
Figure 7 shows (P, ¢) vs. t for various values of P and e. For the small € values

considered in the figure, using all available transmitters is always better than using
a subset.
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P(¥(P/t)I;, H) < R) vs. R for various values of P and t. Each set of curves
corresponds to the P indicated below it. Within each set, the curves correspond,
in the order of increasing sharpness, tot =1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 100.

Figure 6: Distribution of ¥ ((P/t)I,, H) for r = 1.
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(P, e) vs. t for various values of P and e. Recall that (P, ¢) is the highest
rate for which the outage probability remains less than e. Each set of curves

corresponds to the P indicated below it. Within each set the curves correspond,
in descending order, to e = 1071, 1072, 1073, 10~*.

Figure 7: The e-capacity for r = 1, as defined by (18).
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6 MULTIACCESS CHANNELS

Consider now a number of transmitters, say M, each with ¢ transmitting antennas,
and each subject to a power constraint P. There is a single receiver with r antennas.
The received signal y is given by

L1

Ty

where x,, is the signal transmitted by the m'™ transmitter, n is Gaussian noise as
in (1), and H,,, m =1, ..., M are rxt complex matrices. We assume that the receiver
knows all the H,,’s, and that these have independent circularly symmetric complex
Gaussian entries of zero mean and unit variance. The multiuser capacity for this
communication scenario can be evaluated easily by exploting the nature of the solution
to the single user scenario discussed above. Namely, since the capacity achieving
distribution for the single user scenario yields an i.i.d. solution for each antenna, that
the users in the multiuser scenario cannot cooperate becomes immaterial. A rate
vector (Ry, ..., Ry) will be achievable if

ZR[Z-] < C(r,mt,mP), foralm=1,....M
i=1
where (R, ..., Rjy) is the ordering of the rate vector from the largest to the small-

est, and C(a,b, P) is the single user a receiver b transmitter capacity under power
constraint P.

7 CONCLUSION

The use of multiple antennas will greatly increase the achievable rates on fading
channels if the channel parameters can be estimated at the receiver and if the path
gains between different antenna pairs behave independently. The second of these
requirements can be met with relative ease and is somewhat technical in nature. The
first requirement is a rather tall order, and can be justified in certain communication
scenarios and not in others. Since the original writing of this monograph in late 1994
and early 1995, there has been some work in which the assumption of the availability
of channel state information is replaced with the assumption of a slowly varying
channel, see e.g., [7].
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APPENDIX

THEOREM. Given m functions @i, ..., ¢,,, orthonormal with respect to F, i.e.,

/ (N (N) dF(\) = by

let
@1()\1) s @1()%)
Dk()\l,...,)\k): : :

em(M) oo m(Ak)
and Ak()\laa)\k) == Dk()\laa)\k)TDk()\].;;)\k) Then

/det(Ak()\l,...,)\))dF()\k) (m — &+ 1) det(Aps s oo M) (19)

Proof. Let ®(\) = [¢1(A), ..., @m(A)]T. Then the (i, j)th element of Ag(Ay,..., ) is
®(\;)1®();). Note that [[@(\)T®(N)dF(A) = m and [ ®(N\)P(N)TdF(A) = I,,. By
the definition of the determinant

det(Ae(Ars . M) = S (1P O, ()P (A,,)

(07

where the sum is over all permutations a of {1, ..., k}. Let us separate the summation
over « into k summations, those for which a; =k, j = 1,...,k, and consider each
sum in turn. For the j™ sum, j = 1,...,k — 1, a; = k for j # k. For such an «

we can define § as 3; = «; for ¢ # j,k, and 3; = a;. Note that 3 ranges over all
permutations of {1,...,k — 1} and that per(3) differs from per(a) by 1.

> CUPIII () @ ()

aaj=k

= 3 0P ([T p 0 2 (0,) ) 0) B, )2 2 (N, )

o=k

= = 3P (T () B(4s) ) () @A) B,

g

Integrating over Ay, and recalling [ ®(A\)®(\)1dF(N) = I,

/Z( PO @) (Ao dE (M) = = Y (=1)P DT @ () @ ()

aa;=k B
- — det(Ak,l()\l, ey )\kfl))
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So, the contribution of the first £—1 sums to the integral in (19) is —(k—1) det(Ax—_1).
For the last sum o = k. Define 3 as 3; = «; for i # k. As before (§ ranges over the
permutations of {1,...,k — 1}, but now per(8) = per(a).

S ORI R0 = 31O (TE5 B0 @) () B
o=k B
Integrating over A, and recalling [ ®(\)T®(\) dF () = m,

[ X O L a0 00 aF 0 = 3T # 005)

a:ap=k

== mdet(Ak_l()\l, ey )\k—l))
And so, the contribution of the last sum to the integral in (19) is mdet(A_1). The

result now follows by adding the two contributions. O
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