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Schauder Basis

DEFINITION 1 (SCHAUDER BASIS).
If, for every x ∈ X , there is a unique representation of scalars xi such
that

lim
n→∞

∥∥∥∥∥x−
n∑

i=0

xiei

∥∥∥∥∥ = 0

holds in a normed space X , then the set {e1, . . .} = {ei}∞i=0 is
called a Schauder Basis or basis for X , and limn→∞ ‖·‖ is called
an expansion of x.

• has same interpretation as linear algebra basis

• No inner product required.

• So why do the Fourier coefficients use one?
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Compact
Recall the question about convergence versus Cauchy sequences.

David Hilbert and Augustine Cauchy are playing dodgeball in a Banach Space
K. David is running around in K, and being a mathematician he need not move
continuously, he appears over here, then there, then somewhere else.... And
Augustine’s too old to be running around

However, Augustine has (sneakily) attached a K-compatible global positioning
system to Hilbert and is reading off the locations as David moves. We have an
infinite sequence. Cauchy wins if he’s guaranteed to hit Hilbert with the ball, ie. if
the sequence converges. (why?)

So the rules are:

• David picks all his positions out ahead of time

• Augustine sits back and waits with the ball

Is there a space where Cauchy always wins?
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Compact

Now Cauchy’s lazy (or faster aiming!), and just waits for Hilbert to appear some
of the time at the appropriate spot.

Are there space(s) now where Cauchy is guaranteed to win?
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Compact
What do we need to force Cauchy to always win, regardless of what David

does?
Hint: think of a sub-sequence of Hilbert’s trajectory
Hint: think of noise

Continuous Wireless Communications, c©2005, Leif Hanlen, leif.hanlen@nicta.com.au 4



Essential Dimension

DEFINITION 2 (COMPACT SPACE : SHOCK AND AWE REVIEWERS ).
A compact space K is one for which every sequence x = {xi}∞i=1 has
a sub-sequence x′ = {xk}k∈Z, x′ ⊆ x ∈ K, such that x′ converges.

• Consider the space of n×n, n < ∞ dimensional matrices with complex entries:
Cn×n.

• Can we use a member x ∈ Cn×n to represent an element y ∈ Cn+1×n+1

• Why/why not? If so how? Think: finite precision.
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Essential Dimension

DEFINITION 3 (ESSENTIAL DIMENSION).
A compact space K with dimension ℵ0 has essential dimension N if,
for every vector x ∈ K we may write:∥∥∥∥∥x−

N∑
i=0

xiei

∥∥∥∥∥ < ε

for a fixed ε ≥ 0

What role does ε play?
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T is for Operator

• Recall Functions.

•

T : X 7→ Y
Tx = y x ∈ X ,y ∈ Y

• We will look at linear bounded operators acting between Hilbert Spaces over
the complex field

• act on vectors x ∈ X to produce (other) vectors y ∈ Y.

• What properties would we expect from linear operators? Superposition?
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Examples

• Identity: IX : X 7→ X , IXx = x

• Zero: 0 : X 7→ Y

• Integration

• Differentiation

• Spot an operator: ∇x + kx = 0
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Bounded Linear Operators

DEFINITION 4 (BOUNDED L INEAR OPERATOR).
For normed spaces X and Y, with operator T : D(T ) 7→ Y and
D(T ) ⊆ X then T is bounded by a real scalar constant c if,

‖y‖Y = ‖Tx‖Y ≤ c‖x‖X ∀x ∈ D(T ), y = Tx

where we have noted that the norms are over different spaces.

• May be written as (infinite dimension) matrices.

• Outline: write Tx = y and expand x and y
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Operator Norm

DEFINITION 5 (NORM OF OPERATOR T ).
The norm of an operator is given by the supremum over all outputs
for inputs of a fixed size

‖T‖ , sup
x ∈ D (T )

x 6= 0

‖Tx‖
‖x‖

= sup
x ∈ D (T )

‖x‖ = 1

‖Tx‖
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Operator Action

x
y

1

1/2

1/3

1/4

T

• Operator acts on all vectors x ∈ X

• Can use basis expansion in X .

• Think of operator in terms of effect on the unit ball B = {x : ‖x‖ < c} in X .
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Compact Operators

• A special type of linear bounded operator

• Maps Bounded Balls to Compact Balls.

• Smoothing/Filtering Effect.

B
Compact 
Operator
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Compact Operators
Example 1. Consider the following “sequence” which is the Fourier expansion of
a function f(t), under a particular complete orthonormal sequence {ϕi(t)}∞i=0:

f(t) =
∞∑

i=0

fiϕ(t)

The operator

K : Kf(t) =
∞∑

i=0

fi exp{−i2}

is compact.

Example 2. The identity operator in infinite dimensions is not compact.
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Compact Operators: Hilbert-Schmidt

Tf(t) =
∫ b

a

k(t, τ)f(τ) dτ

T is compact for |k(t, τ)| < ∞

• Hilbert-Schmidt operator has “trace-rule”∑
ij

|Tij|2 = K

• Look for H-S in Miller

[Mil00] David A. Miller. Communicating with waves between volumes: evaluating orthogonal spatial channels and limits on coupling
strengths. Applied Optics, 39(11):1681–1699, April 2000.
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Information Theory Crash Course
• Entropy

• Mutual Information

• Capacity

• Next week: Fidelity & Random MIMO
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Before the crash: Probability notation

• Random objects x live in spaces Ωx

• Probability functions define measures on the space.

• Most of today’s work will be from [Gal68] chap.2 and chap.4

[Gal68] Robert G. Gallager. Information Theory and Reliable Communication. John Wiley & Sons, New York, USA, 1968.
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Mutual Information?

DEFINITION 6 (MUTUAL INFORMATION).
Information about the event x = α by another event y = β

IΩx;Ωy(x = α;y = β) = log
PΩx|Ωy (x = α|y = β)

PΩx(x = α)

x ∈ Ωx and y ∈ Ωy where Ωx and Ωy are (separate) probability spaces
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Mutual Information?
DEFINITION 7 (SELF INFORMATION).
Information required to specify the event x = α.

IΩx(x = α) = log
1

PΩx(x = α)
= − log PΩx(x = α)

Event y = β uniquely specifies x = α so PΩx|Ωy (x = α|y = β) = 1.

DEFINITION 8 (CONDITIONAL SELF INFORMATION).
Information required to specify the event x = α,
given another event y = β occurred

IΩx|Ωy(x = α;y = β) = log
1

PΩx|Ωy (x = α|y = β)

= − log PΩx|Ωy (x = α|y = β)
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Mutual Information

• IΩx;Ωy(x = α;y = β) and IΩx(x = α) are random variables.

IΩx;Ωy(x = α;y = β) = IΩx(x = α)− IΩx|Ωy(x = α|y = β)

• Can average these over the ensembles Ωx and Ωy

• We can have expected values and variance

Continuous Wireless Communications, c©2005, Leif Hanlen, leif.hanlen@nicta.com.au 19



Entropy
aka. Average Self Information, only for discrete r.v.

DEFINITION 9 (ENTROPY).
The “amount” of information required to describe a probability space.

H(Ωx) = EΩx{− log (PΩx(x))}

−
∫

Ωx

PΩx(t) log (PΩx(t)) dt

DEFINITION 10 (CONDITIONAL ENTROPY).

H(Ωx|Ωy) = EΩx,Ωy

{
− log

(
PΩx|Ωy (x|y)

)}
−

∫
t∈Ωx

∫
τ∈Ωy

PΩx|Ωy (t, τ) log
(
PΩx|Ωy (t|τ)

)
dt dτ
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Average Mutual Info

I(Ωx; Ωy) = EΩx,Ωy

{
IΩx;Ωy(x = α;y = β)

}
• What is this as an integral?

• Build I(Ωx; Ωy) from Entropy.
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Average Mutual Info Example

y = x + z

where z ∼ N,

(
0, σ2

)
and x ∼ N,

(
0, p2

)
Find I(Ωx; Ωy)
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Average Mutual Info Properties

I(Ωx; Ωy) ≥ 0

I(Ωx; Ωy|Ωz) ≥ 0
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Capacity

C = max
PΩx(x)

I(Ωx; Ωy)

= max
PΩx(x)

EΩx,Ωy

{
IΩx;Ωy(x;y)

}

• Maximum is over all probability assignments
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Capacity for vector inputs

I
(
Ωx

N ; Ωy
N

)
≤

∑
k

I
(
Ωxk; Ωyk

)
I
(
Ωx

N ; Ωy
N

)
≤ NC

Equality in first, iff inputs independent.

Equality in first, iff inputs independent.
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