
Continuous Wireless
Communications

Leif Hanlen
National ICT Australia,

Canberra, Australia
leif.hanlen@nicta.com.au

February 2005

Continuous Wireless Communications, c©2005, Leif Hanlen, leif.hanlen@nicta.com.au



A simple question?

How much information can be stored in a volume of space?
How small can the Library of Congress get?

How much information can be transmitted between two volumes?

Is the answer to these, respectively∞, 0 and∞?

[Sza04] David Szabados. Seagate sees the future: Storing the U.S. library of congress on a 50-cent coin. www.seagate.com , 2004.
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• The background

– Crash Course: Functional
Analysis for Comms

– Crash Course: Information
Theory

– Application: MIMO from the
ground up.

• The idea

– Operators for Comms
– Numerical techniques
– Info Theory for Operator Comms
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Why?
Beyond taunting, why would we care?

• Objective: provide formal background for new work
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House keeping

• This is not undergraduate work anymore

• No exam: Work will be in several blocks. Collaboration acceptable with
appropriate credit. Informal: we can skip through sections and/or focus heavily
on sections as needed. However....

• Options for assessment:

– Review of literature
– Presentation
– New work – eg. paper submission
– Open: If you want a particular form of assessment let me know ASAP.
– 40 hours of assessment.

• Attendance is not compulsory. Participation encouraged
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Structure of course

• Focus on new work, in Wireless Signal Processing group.

• Reading brick available. Brick 6= literature survey

• Recommended Texts:

– Kreysig, Introductory Functional Analysis with Applications
– Telatar, Capacity of Multi-antenna Gaussian Channels
– Gallager, Information Theory and Reliable Communication

• Many others.

[Kre78] Erwin Kreysig. Introductory functional analysis with applications. John Wiley & Sons, New York, USA, 1978.
[Tel99] I. Emre Telatar. Capacity of multi-antenna Gaussian channels. Euro. Trans. Telecomm., 10(6):585–595, November 1999.
[Gal68] Robert G. Gallager. Information Theory and Reliable Communication. John Wiley & Sons, New York, USA, 1968.
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World-wide interest in MIMO

JSAC Special Ed
IT Trans Special Ed
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History of Continuous Spatial Channels

• 1928 Harry Nyquist: temporal sampling as side-issue in Telegraph ISI channel

• 1948 Claude Shannon: discrete and continuous time channels (section 10).
Section 10 largely overlooked in subsequent rush.

• 1962–1968 Robert Gallager: Bandlimited filter channel. 2WT rule-of-thumb.
Vector Channel.

• 1964–1978 Slepian, et.al: precise theory of bandlimited functions
Theory is widely confused as artifact of Fourier Transform.

• 1995 Telatar: Renewed interest in vector channel.
Widely inaccurate application by immature MIMO audience.

[Tel95] I. E. Telatar. Capacity of multi-antenna Gaussian channels. Technical Report # BL0112170-950615-07TM, AT & T Bell
Laboratories, 1995.

[Pet63] M. Petrich. On the number of orthogonal signals which can be placed in a WT -product. J. Soc. Indust. Appl. Math., 11(4):936–
940, December 1963.

[Nyq28] H. Nyquist. Certain topics in telegraph transmission theory. Transactions of the AIEE, pages 617–644, February 1928.
[Sha48] Claude E. Shannon. A mathematical theory of communication. Bell System Tech. J., 27:379–423, 623–656, July 1948.
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History of Continuous Spatial Channels

David Miller

Emre Telatar

• 2000 Miller: Optical channel as eigenmode problem

• 2001 Telatar: 1/N factor for MIMO conditioning Early
concerns about perpetual growth

• 2003 Kennedy et.al: Operator forms for Helmholtz
Balls

[Mil00] David A. Miller. Communicating with waves between volumes: evaluating orthogonal spatial channels and limits on coupling
strengths. Applied Optics, 39(11):1681–1699, April 2000.

[CRT01] N. Chiurtu, B. Rimoldi, and E. Telatar. Dense multiple antenna systems. In IEEE Information Theory Workshop, pages 108–109,
Cairns, Australia, September 2–7 2001.

[KA03] Rodney A. Kennedy and Thushara D. Abhayapala. Spatial concentration of wave-fields: Towards spatial information content
in arbitrary multipath scattering. In 4th Aust. Commun. Theory Workshop, AusCTW, pages 38–45, Melbourne, Australia,
February 4–5 2003.

[FH03] Minyue Fu and Leif W. Hanlen. Capacity of MIMO channels: A volumetric approach. In Proc. IEEE Intl. Conf. Commun., ICC,
pages 2673–2677, Anchorage, Alaska, May 11–15 2003.
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Trouble...
Many authors have attempted to show a spatial limit to capacity

• 2000 Moustakas et. al. Science article on limiting density

• 2001 Hui et al. ISIT claim for scattering matrices

• 2002 Gesbert et.al. “Dense mobile devices”

Unfortunately, while it is easy to say “wireless signals obey Maxwell’s equations”,
it is not clear how to proceed beyond a simple linear model. The results have an
intuitive appeal, but little more.... So, are any of the first questions easier to solve?

[MBB+00] A. L. Moustakas, H. U. Baranger, L. Balents, A. M. Sengupta, and S. H. Simon. Communication through a diffusive medium:
coherence and capacity. Science, 287:287–290, January 1 2000.

[HBS01] J.Y. Hui, Chunyu B., and Hongxia S. Spatial communication capacity based on electromagnetic wave equations. In Proc. IEEE
Intl. Symp. Inform. Theory, ISIT, page 342, Washington USA, June 24–29 2001.

[GEC02] D. Gesbert, T. Ekman, and N. Christophersen. Capacity limits of dense palm-sized MIMO arrays. In Proc. IEEE Globecom,
volume 2, pages 1187 – 1191, November 17–21 2002.

[BK03] Jacob D. Bekenstein and Alfred T. Kamajian. Information in the holographic universe. Sci. Am., pages 48–55, August 2003.
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A simple question?

How much information can be stored in a volume of space?
What is the minimum volume for a fixed amount of information?

How much information can be transmitted between two volumes?

Some suspicion might suggest the answer is not∞, 0 and∞ respectively....

Or it’s going to be a long 10 weeks....
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What to do?

James Clerk Maxwell.
1831–1879.

Developed axiomatic
approach to EM.

Hermann Ludwig
Ferdinand von Helmholtz.

1821–1894

• All wireless transmissions obey Maxwell’s Laws.

∇f(r, t) + kf(r, t)︸ ︷︷ ︸ = g(r, t)︸ ︷︷ ︸
receive fn driving fn

• By itself this is rather impressive, but slightly useless

– We DO NOT want to model EM fields

• Next try: Observe that for g(r) = 0 (we’ll return to
this later) the field is a received field only. Satisfies
Helmholtz equation:

∇f(r) + kf(r) = 0
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What to do?

Helmholtz

• All wireless transmissions obey Maxwell’s Laws.

∇f(r, t) + kf(r, t)︸ ︷︷ ︸ = g(r, t)︸ ︷︷ ︸ = 0

receive fn driving fn

• Some obey additional constraints

Vector 
Maxwell 
Equation

Scalar 
Maxwell 
Equation

Scalar 
Helmholtz 
Equation
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What to do?

Scalar 
Helmholtz 
Equation

sin(wt)

exp(i.wt)f(r)

• Only certain functions obey scalar Helmholtz equation

• Consider bag of objects

• Math-speak: A space of functions

– Don’t care if they’re functions or not.
– A space of vectors

• Question: Do we need to investigate every function in the blue ball?

• We are rapidly approaching Functional Analysis

• Our aim: Use some Hilbert Space techniques to overcome functional
difficulties
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• It is possible to generate most of the results with vague, hand-waves toward
functional representation.

• It is not possible to develop new results without a thorough understanding of
the terminology

• See introduction and section 3 of Miller [Mil00]

[Mil00] David A. Miller. Communicating with waves between volumes: evaluating orthogonal spatial channels and limits on coupling
strengths. Applied Optics, 39(11):1681–1699, April 2000.
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Concept Map

Norm

Inner
product

Metric

Operator
L2

Banach
Space

Hilbert
Space

Vector
Space

Cauchy
Sequence

Separable

Complete

Orthonormal
Sequence

Basis
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Functional Analysis for the Impatient

David Hilbert

Rod Kennedy

• We will cover basic topics in 1–2 lectures.

– Geometrical viewpoint

• Recall early vector space classes

– What is a vector space?
– What is a vector?

• Hilbert spaces arose from need:

– Fourier series representation
– How “big” is∞?
– What is our need?

[Ken02] Rodney A. Kennedy. Hilbert spaces with applications. Research School of Information Science & Engineering, Australian
National University, Australia, 2002. Lecture notes.

[Hil00] David Hilbert. Mathematical problems. Technical report, International Congress of Mathematicians, Paris, France, 1900. http:
//aleph0.clarku.edu/˜djoyce/hilbert/problems.html .

[DM99] L. Debnath and P. Mikusińksi. Introduction to Hilbert Spaces with Applications. Academic Press, San Deigo, CA, USA, 1999.
[Kre78] Erwin Kreysig. Introductory functional analysis with applications. John Wiley & Sons, New York, USA, 1978.
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Objective

• Given a received signal in space, want to know how to represent it

• How close is it to “another” “similar” signal?

• How many “different” signals can we measure?

• Before we can represent objects we need concepts:

1. Distance between objects (why?)
2. Completeness
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Vector space

DEFINITION 1 (VECTOR x).
Atomic mathematical unit. Points x in an abstract setting.

• x = [1, 2, 3]

• x = [a, b, . . .]

• Beware “Matlab” view.

• How can we combine two vectors? x, y
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Vector space

DEFINITION 2 (VECTOR SPACE X ).
A collection of vectors, whose elements x ∈ X obey a common rule.

Space acts over a field F of scalars.

Example: X = {x ∈ X : x = [α, β]} and F = R

Basic Properties

• for any x,y ∈ X and any α, β ∈ F then αx + βy = z ∈ X

• α (x + y) + βx = (α + β)x + αy ∈ X
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Metric

• How “far apart” are two vectors? (eg. x and y)

– For Vector Spaces we can’t answer this!

DEFINITION 3 (METRIC d(x,y)).
Real-valued, with domain X × X and for x,y ∈ X :

1. d(·, ·) is real-valued, non-negative, finite.

2. d(x,y) = 0 if and only if x = y Be careful here....

3. d(x,y) = d(y,x) Symmetric

4. d(x,y) ≤ d(x, z) + d(z,y) Triangle
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Metric Space
• A Vector Space with a metric attached. {X , d(·, ·)}

• How “far apart” are two vectors (eg. x and y) : use metric.

• We can tell how far apart two objects are without knowing how big they are

Vector 
Space

linear 
algebra 

only

Metric 
Space

Vector 
Space

+
relative 
distance
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Norm
• Introduces magnitude: How “big” is x?

DEFINITION 4 (NORM ‖x‖).
A norm is a real-valued function whose domain is a vector space V
and whose value at x ∈ V satisfies

‖x‖ : {x ∈ V 7→ R+}

For x,y ∈ V and α ∈ F a norm satisfies

1. ‖x‖ ≥ 0 (Positive)

2. ‖x‖ = 0 if, and only if x = 0 Note this is 0 the vector!

3. ‖αx‖ = |α|‖x‖ (Linear)

4. ‖x + y‖ ≤ ‖x‖+ ‖y‖ (Triangle inequality)
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Normed Space

• A Vector Space with a norm attached. {X , ‖·‖}

• How “far apart” are two vectors (eg. x and y) in the normed space?

Vector 
Space

linear 
algebra 

only

Metric 
Space

Vector 
Space

+
relative 
distance

Norm 
Space

Metric 
Space

+
magnitude
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Inner Product
• Introduces angle

• Project x onto y

DEFINITION 5 (INNER PRODUCT 〈x|y〉).
Is a real-valued function of pairs of vectors x and y such that for all
vectors x,y, z ∈ V and scalars α,

1. 〈(x + y)| z〉 = 〈x|y〉+ 〈x| z〉

2. 〈αx|y〉 = α〈x|y〉

3. 〈x|y〉 = 〈y|x〉

4. 〈x|x〉 ≥ 0

5. 〈x|x〉 = 0 if and only if x = 0.
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Inner Product Examples

•
∫

f(x)g(x)

•
∑

k fkgk

• Vector Dot Product
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Inner Product Space

• A Vector Space with an inner product attached. {X , 〈·| ·〉}

• How “far apart” are two vectors (eg. x and y) in the inner product space?

Vector 
Space

linear 
algebra 

only

Metric 
Space

Vector 
Space

+
relative 
distance

Norm 
Space

Metric 
Space

+
magnitude

Inner Prod 
Space

Norm 
Space

+
angle
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Inner Product Space

• Very nice properties.

• Parallelogram Inequality Holds:

‖x + y‖2 + ‖x− y‖2 = 2
(
‖x‖2 + ‖y‖2

)
• Schwarz inequality: |〈x| y〉| ≤ ‖x‖‖y‖

• Examples:

l2 is the space of all sequences of complex numbers with finite square-sum∑∞
k=0 |xk|2 <∞

L2 is the space of all Lebesgue integrable functions, with finite mean square
integral

∫
|f(r)|2 dr <∞

• Non-examples: lp, p ∈ Z, p 6= 2
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How do I represent an object?
• Recall vector spaces: we want something like a basis. why?

• We need a set B which is dense in the space.

• Most definitions of “dense” are somewhat circular. So think of successive
approximations of Fourier Series.

0 10 20 30 40 50 60 70 80 90 100
0.5

1

1.5

2

2.5

3
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Transfinite: slightly bigger than finite....

• Finite Vector analysis: matrices

– what is the dimension of a given vector space?

• To get our basis concept, we need sequences.
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Transfinite: slightly bigger than finite....

• Finite Vector analysis: matrices

– what is the dimension of a given vector space?

• To get our basis concept, we need sequences.

DEFINITION 6 (SEQUENCE).
A sequence is a countably infinite ordered set .
The set {x, y, z, . . .} may be made into a (sub-) sequence by defining
an ordering on the elements.

• The integers {1, 2, 3, 4, . . . , k} are a sub-sequence for k <∞

• The set of positive integers Z+ = {i}∞i=1 is a sequence.

• What about the rationals Q ?
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Pop quiz

1. Can negative integers be ordered? Z =
{
{−i}∞i=1, 0, {i}∞i=1

}
2. which of Z and Z+ has more elements?

3. Can rationals be ordered? q
r, q, r ∈ Z

4. Are there more rationals than integers?

5. what about reals?

6. What does this matter?
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Pop quiz answers

Georg Cantor
1845–1918

• The integers have cardinality ℵ0 pronounced “aleph-
zero” from Hebrew.

• ℵ0 + k = ℵ0 ℵ0 + ℵ0 = ℵ0 ℵ0 · k = ℵ0 ℵ0 · ℵ0 = ℵ0

• Countably infinite concept

• The reals are uncountably infinite.

• Cantor introduced concept of equal cardinality: if we can
place a set in 1-to-1 relation with a set of cardinality c
then they both have equal cardinality

• Nasty quiz question: Is the cardinality of a square of
integers equal to the cardinality of a line of integers?
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Transfinite interlude continued

DEFINITION 7 (CONVERGENT SEQUENCE).
Consider a sequence X = {x1, x2, . . . , xk, . . . , xn} in a metric space
M with metric d(x, y).
The sequence X converges if it contains a value x? ∈ X so that the
limit:

lim
n→∞

d(x?, xn) = 0

The value x? is called the limit of the sequence.

• Note x? ∈ X.

• Why do we need a metric space?

• Does the sequence
{
1, 14

10,
141
100,

1414
1000 . . .

}
converge
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Transfinite interlude continued

Augustin Cauchy
1789 - 1857

DEFINITION 8 (CAUCHY SEQUENCE).
Consider a sequence X = {x1, x2, . . . , xk, . . . , xn}
in a metric spaceMwith metric d(x, y). If, for every
scalar ε > 0, there is a scalar N such that

d(xi, xj) < ε, ∀i, j > N

the sequence X is a Cauchy sequence.

• What’s the difference?

• Hint: Cauchy sequences are what we (as engineers) like to think of as limits
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Completeness

Q

DEFINITION 9 (COMPLETENESS ).
cf. [?, pp. 28] A (metric) space X is
complete if every Cauchy sequence
Y in X converges in X . ie. in X
every Cauchy sequence Y is also
convergent.

• The rationals Q are not complete

• We can complete the rationals, by adding in all the limits of all the sequences.

– This gives the reals (continuum)
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Completeness for normed spaces

Stefan Banach
1892–1945

David Hilbert
1862–1943

• Spaces can be completed too.

– Complete normed spaces are Banach Spaces
– Complete inner product spaces are Hilbert Spaces
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Completeness for normed spaces

• Recall the Fourier series earlier.

• Dangerous statement: Consider an infinite sequence of points (functions) in a
normed space.

fk(x) =


−1 x ≤ −1

k

x −1
k < x < 1

k

1 x ≥ 1
k

• What do the functions in this sequence look like as k →∞?

• Is this sequence Cauchy?

• Does this sequence converge?
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Density

DEFINITION 10 (DENSE SET).
A subset M ⊆ X is dense in X if, for
every point x ∈ X, and ε > 0 there is a
point p ∈M such that d(p, x) < ε

Every ball B ∈ X contains elements
from M

DEFINITION 11 (SEPARABLE ).
A set is separable if it contains a
countably dense subset.

• Countable dense sets act as back-bones for spaces.

• We will use them as basis-like objects shortly.
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Our tools
Given a (separable) Hilbert Space H

• Inner product 〈x|y〉

• Completeness

• Dense

• what else do we need?
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Orthonormal

(a) Vectors (b) Ortho(gonal) Vectors (c) Ortho(gonal),
Normal(ised) Vectors:
orthonormal

Vectors, Orthogonal vectors and Orthonormal vectors.
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Complete Orthonormal Sequences

0 10 20 30 40 50 60 70 80 90 100
0.5

1

1.5

2

2.5

3

• When will Fourier series converge?

• We need to use the norm as an error measure

∥∥∥∥∥f(x)−
N∑
k

ϕ(x) · αk

∥∥∥∥∥
• is N →∞ enough?
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Orthonormal Sequences in H
DEFINITION 12 (ORTHONORMAL SET).
A set of vectors S is Orthonormal if for all x,y ∈ S:

〈x|y〉 =

{
0 x 6= y
1 else

and, if we can enumerate each vector

DEFINITION 13 (ORTHONORMAL SEQUENCE).
A sequence of vectors S = {xk}∞k=0 is Orthonormal if 〈xi|xj〉 = δij

for all i, j ∈ Z∗
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Complete Orthonormal Sequences in H

DEFINITION 14 (EQUIVALENCE ).
For a complete orthonormal sequence {ei}∞i=1 in a separable Hilbert
Space H, the following statements are equivalent

1. f =
∑∞

i=1 〈f | ei〉ei ∀f ∈ H, Fourier Expansion

2. ∀ε > 0, ∃N0 < ∞ such that ‖f −
∑n

i=1 〈f | ei〉ei‖ < ε ∀n > N0

and ∀f ∈ H

3. No function g 6= 0 in H which is orthogonal to the set {ei}∞i=0,

4. 〈f | g〉 =
∑∞

i=1 〈f | ei〉〈g| ei〉 ∀f, g ∈ H, and setting f = g gives

5. ‖f‖2 =
∑∞

i=1 |〈f | ei〉|2 ∀f ∈ H
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What does = mean for vectors?

• This was a major stumbling block for Fourier analysis – analysts mistakenly
believed f(x) = g(x) required equality at all points x.

• Item 1 f =
∑∞

i=1 〈f | ei〉ei is read as:

lim
N→∞

∥∥∥∥∥f −
∞∑

i=1

〈f | ei〉ei

∥∥∥∥∥ = 0

• Convergence in mean

Continuous Wireless Communications, c©2005, Leif Hanlen, leif.hanlen@nicta.com.au 46



Do it yourself orthonormal sequences

Jorgen Gram
1850–1916

Erhart Schmidt
1876–1959

Gram-Schmidt Orthonormalisation.
set of vectors {xm}Nm=0

1.
y0 ←

x0

‖x0‖

2. Remove projection of x0 from next vector x1

yk = xk −
k∑

i=0

〈xi|xk〉xi

3. normalise result
yk ←

yk

‖yk‖

4. repeat
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For next week

• We will cover pieces of chaps. 2, 4, 8 of Gallager [Gal68]

• Read Miller [Mil00]

– Intro,
– Section 3, A
– Conclusions
– We will cover the rest in 2-3 weeks.

• Read sections 1, 3 of Telatar [Tel99] + first half of section 4

[Gal68] Robert G. Gallager. Information Theory and Reliable Communication. John Wiley & Sons, New York, USA, 1968.
[Mil00] David A. Miller. Communicating with waves between volumes: evaluating orthogonal spatial channels and limits on coupling

strengths. Applied Optics, 39(11):1681–1699, April 2000.
[Tel99] I. Emre Telatar. Capacity of multi-antenna Gaussian channels. Euro. Trans. Telecomm., 10(6):585–595, November 1999.
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Exercises

1. Is the space of continuous functions complete?

2. Consider the space of vectors, with
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