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ABSTRACT be useful include angle of arrival [5], spatial signal correlation [6]

) ] ] o and changes in multipath profile [7]. In yet other approaches, ge-
We establish that an arbitrary narrowband multipath field in any omerical madels are sedto chaacterize diffuse multipath fields
circular region in two dimensional space has an intrinsic functional [g] and, in [9], a purely theoretical model is used in which the con-
dimensionality of(we) R/ ~ 8.54 R/ that scales only linearly  cept of multipath shaping factors is introduced to derive second
with radius 2/ in wavelengths. This result implies there is N0 rger small-scale fading statistics.
such thing as an arbitrarily complicated multipath field. That is, We use a theoretical model which can be appliedrignar-
a field generated by any number of nearfield and farfield, specu-qhand multipath environment regardless of the number or nature
lar and diffuse multipath reflections is no more complicated than q the multipath sources. We show that there is an intrinsic dimen-
a field generated by a limited number plane waves. As such, theregionajity to a narrowband multipath field in a region of space of
are limits on howrich multipath can be. This result has significant 5 given size. We use this to show that there is an upper limit on
implications including means: i) to determine a parsimonious pa- the degree of multipath richness which can exist in a given sized

rameterization for arbitrary multipath fields, ii) of synthesizing ar-  area. Closely matched theoretical and experimental results are pre-
bitrary multipath fields with arbitrarily located nearfield or farfield, ganteq.

spatially discrete or continuous sources. We give examples of mul- We show that the field in a given area of space can be rep-
tipath field analysis and synthesis. resented by relatively few terms of a functional expansion, the
number of which represent the dimensionality. Furthermore, it is
1. INTRODUCTION possible to synthesize an arbitrary field as accurately as desired

using an appropriate combination of arbitrary sources, nearfield or
The study of the spatial aspects of multipath in wireless commu- farfield, discrete or continuous. We demonstrate the specific case
nications environments is an increasingly important addition to ©f @ small number of plane wave sources synthesizing an arbitrary
the study of the temporal aspects in the search for ways to im- field. Such small parameterizations of arbitrary narrowband mul-
prove system performance, including range extension, capacitytipath fields indicate that even a diffuse field can be synthesized by
improvement, high data rates and improved bit error rate perfor- relatively few discrete multipath terms.
mance [1, 2]. The understanding of the spatial characteristics of

wireless channels is incomplete and the true potential of space- 2 GENERAL 2D MULTIPATH FIELD
time receivers has yet to be realized in a form that is compatible
with the restrictions imposed by physics. Consider a two dimensional (2D) narrowband multipath interfer-

There are many approaches to characterizing the spatial asgnce in a given sized regibn The multipath signals may have
pects of the wireless multipath environment in the literature. A goyrces which are nearfield or farfield, specular or diffuse. We use
common approach is to assume a multiple discrete farfield sourcepo|ar coordinates to represent a point in spaces (||z||, ¢).
model [3, 4]. The complex gains of the multipaths are linearly The field, F(x; k), is a function of the position and the wave num-
combined at each receiver sensor, weighted by the gain of thatper 1, — 27/), where) is the wavelength. It is a solution to
sensor in the direction of arrival of the corresponding multipath he Helmholtz wave equation in polar coordinates [10], the most
component. The complex gains of the multipaths are modelled ac-general solution of which is
cording to the assumed distribution of scatterers causing the mul-
tipath. o0 _

In experimental approaches, physical measurements are taken F(x; k) = Z an Jn (k||||) €0 (1)
in order to statistically characterize a specific wireless multipath n=-00

environment with the intent of generalizing for similar environ- ] -
ments. Parameter characteristics for which a statistical model canYVherean are complex constants lndepe.nd.ent of pos[tlon‘a[(d)
is the ordem Bessel function [11]. That s, in (1) the field strength
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at a pointzx is represented as a weighted sum of orthogonal basis 03
functions. 02
Plane and circular waves are examples of 2D waves which can 01

be expressed in the form (1). A single plane wave with complex & o
amplitudea,, and propagation directiop, hasc, = a,i"e™"%» o1
[12, p.66]. A single circular wave with source position vector,
» = (Iy,ll,6p), hasan = ape™ "7 HY (klly, 1) [12, p.66] ; 1 : 3

whereH " (+) is the ordem Hankel function of the first kind. Argumentz
We illustrate an application of (1) with fields generated by a
superposition ofP plane waves. Let plane wave of indgxhave
complex amplitude:,, and propagation directiog, with normal-
ized directions), = (cos ¢p,sin¢,)". The field strength at is
then given by oo |

g0
)

—ik(®, P -0.15
ape (=,71,,) (2) . - - .

Argument z
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F(x; k) =
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-

T (K| z||)e™ (@ — ) 3) Fig. 1. High pass character of the Bessel functiohkgz) and
Jso(z) versus argument (logarithmic scale). Also shown are a
combination of three bounds as described in the text.

where (2) is a cartesian form and (3) is the polar equivalent. Note

(3) is in the form of (1) with
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a specified errog, of the actual field?'(x; k). Thus, the approxi-

o — f:a meindy _ EP:G o—in(9p=7/2) @) mate field strengtli'x (x; k) is defined by the finite sum
N
Fx(a;k) = Y anda(klz])e™, ®)

Similarly, a field of P circular waves, wherg,, = (||ly, |, ¢») is —
the position vector of the source of indgxis given by "

St | where we wish the approximation to be sufficiently accurate for
Za r (5) x|l < R.
P ||aa —y,ll Fig. 2 shows the actual field strength of the sum of 30 plane
P waves, as in (2), over 8\ x 3\ area, compared with the same
(1) in(be—bp) field represented by the truncated series in (8) withgiven by
Z p Z Hy (klly, I Jn (Kl ]])e © 6 (4) andN = 7. Clearly Fiy (x; k) can model very welF'(x; k) in
p=l m=meo a finite region about the origin.

p=1

o0

and for the representation (1) we have

Approximate Field, N =7 Actual Field, 30 Multipaths

P
an =Y apHY (Klly, [)e” """ @)

p=1

We could also form a field of plane and circular waves by linearly =
combining (3) and (6) to obtain an equation of the form of (1), with >
an, the weighted sum of (4) and (7). -
The Bessel functiong,, () for n > 1in (1) have a spatial high
pass charactet/((-) is spatially low pass). That is, as illustrated
in Fig. 1, forn = 8 andn = 80, J,(z) starts small increasing g
monotonically to its maximum at arguments arounh) before
decaying asymptotically to zero as— oo (oscillating as it does
s0). Also shown in Fig. 1 are limits imposed by three upper bounds Fig. 2. Example of accuracy of truncation in (8). The actual field
on|Jn(2)|: 1/n!(z/2)" (see Appendix A)).6748851/n'/? and (2) has 30 component plane waves in random directions. The ap-
0.7857468704/z1/3 [13]. proximate field (8) ha@ N + 1 = 15 plane waves. The approxi-
mate field is withinl x 1072 of the actual field foR /X < 0.3890.

3. DIMENSIONALITY OF MULTIPATH

We wish to quantify the complexity of an arbitrary multipath field 4 1 Bounding the Relative Error

F(z; k) in circular region of radiug?/ A in wavelengths by defin-
ing the effectivedimensionalityof the field. We do this by trun-  To form arelative error, first bound the peak amplitude of the mul-
cating the series in (1) and determining the minimum number of tipath field to unity. This implies, by Appendix A, that.,,| <
terms,2N + 1, for the field Fiv (x; k), so generated, to be within 1, ¥n. Define the error between the actual and approximate fields



by en(x). Then
ev(@) = [F(@ik) = Fy(@k)| = | 3 an Julkle]) e ™|

In[>N

< S |kl =2 3 |kl

In|>N n>N

9)

Now we need a bound of¥/,,(-)| for n > N. For integer
n > 0, the ordem Bessel function is given by [14]

Jn(2) = i CDE™™ s,

—~ 22t4n 1 (£ 4+ n)!’ -
Itis shown in Appendix B thaf,(-) is always bounded by the first
term in (10). An example of this upper bound is shown in Fig. 1
for Js(-) andJso(+).
By using the Stirling lower bound on! [14] we can further
bound|J, (k||z|)|, as follows

(lzl)" _ 1 (ke|z]\"
| (Kl])| < 2l S\/ﬁ( 2n )
p(N,R)"

= V2r(N +1)

keR meR/\
N,R) = = .
PINB) = oy T N+ )
Substituting (11) and (12) into (9) and choosiNglarge enough
such thatp(N, R) < 1, we obtain an expression for a bound on

the error for given values aV andR

(10)

n>N, |z| <R (11)

where

(12

2 p(N, R)N*
< . < R. 1
The restriction orp(N, R) gives a lower bound ofV
N > (me) R/A — 1 ~ 854 R/\. (14)

With N thus selected’(x; k) and Fy (x; k) are essentially indis-
tinguishable within|z|| < R. As2N + 1 basis elements are used
then2N + 1 characterizes the dimensionality.

The dimensionality of fields of radiug®/A < 3, for error
thresholds betweerd ™" and10~* are shown in Fig. 3. The num-
ber of extra terms required to achieve an errorl@f* over an
error of 10~ is relatively small. FoiR/\ = 1, the minimum val-

ues of N required are 10 and 15, respectively, meaning that just 10
extra terms give 3 orders of magnitude improvement in accuracy.

Simulation results for the relationship betwe€rand the error
¢ between actual and approximate fields of raditys» = 1 are
shown in Fig.4. Simulated actual fields had frdl= 4 to 50
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Fig. 3. Minimum N required for different error thresholds as
given by theoretical bounds (13) and (14), for increasing values of
radiusR/\.

4. PLANE WAVE SYNTHESIS

We have shown in (8) that an arbitrary wave field in a given re-
gion can be represented by a finite number of terms, regardless of
the complexity of the scattering environment. We now show that
such a field can also be closely approximated by an appropriate
combination of plane waves.

Once the coefficients:,, in (8) are determined for the field
of interest, one can use (4) to define a set of plane waves pro-
ducing the samey,’s over the critical indicegn| < N . Let

a=la_N,  ,an, - ,an]| anda = [a1, -+ ,ap, - ,ap]’.
We define the diagonal matri® = diag[i™,--- ", - ,i7"]
and the Vandermonde matrix
N1 et N etNop
V=| e e~ Pp e~ mop (15)
e—i}\f¢1 e—i}w;,, e—u'v(ﬁp
Then we can rewrite (4) in matrix form as
Oa =Va. (16)

plane wave components. The error appears to converge, regardlesas each of thep,'s are distinct, it is known tha” is non-singular.

of P at aroundVN = 10.

Remarks

1. Field complexity or dimensionality2N + 1), increases
linearly with R/ .

Thus, given specifiex, V' and © we can always solve (16) for
a. Therefore, at mosP = 2N + 1 plane waves from arbitrary
directions can synthesize an arbitrary field over a regjiefi < R
wheneverN =~ (we)R/\.

2. The actual number of terms required to represent an arbi- Remarks

trary field to high accuracy is relatively small. The addition

of just a few terms can give orders of magnitude improve-

ment in the relative error.
3. Anywauve field, including a a diffuse field, consisting of any

number of actual wave components may be represented by

relatively few parameters.

1. There are an infinite number of plane wave combinations
which can represent a given field(x; k). The choice of
directions{¢, } is arbitrary.

2. By choosingg, = 2pn/P, V in (15) becomes a scaled
discrete Fourier transform matrix and the plane waye
can be computed using the FFT from the weights



TERRORRY
AR WN R P
leR=R=R=R>0 ik

15

Fig. 4. Average error between actual and approximate fields, as
in (2) and (8) for up toP = 50 plane waves an&v < 15 for
R/X=1.

3. The result is not restricted to plane waves, any superpo-
sition of sources can be used, such as a superposition of
nearfield point sources, etc. Thatisy + 1 distinct sources
generically generate a set of distinct and linearly indepen-
denta’s which form a basis.

Wave field synthesis reduces to a problem in linear algebra
implying that2NV 4 1 sources are necessary, in general.

5. CONCLUSIONS

We have defined and determined the dimensionality of a wave
field as a measure of field complexity. The dimensionality in-
creases only linearly with the radius of the field. For example,
we have shown that an arbitrary narrowband wave field can be
reproduced as accurately as desired by a limited number of appro-
priately weighted plane waves of arbitrary direction.

The existence of small dimensional parameterizations of arbi-
trary narrowband multipath fields indicate that even a diffuse field
can be synthesized by relatively few discrete multipath terms.

All results have been extended to the three-dimensional and
broadband cases and will be reported separately.

A. BOUNDEDNESS OF |an |

Consider the magnitudes of the, coefficients for a superposition
of a possibly infinite number of plane waves indexedgbwith
amplitudesz,,. From (4)

o] < ] S ayite im0 E) 17)
p

< Z‘aﬂ
p

The RHS of (17) is an upper bound on the field strength at any
point being the sum of the amplitudes of the plane waves con-

(13]

stituting the given wave field. On physical grounds we assume the[14]

field is bounded at all points in space which implles, a,| < B.
Without loss of generality we takB = 1, amounting to a normal-
ization such that the field strength is is bounded by unity. Hence
lom| < 1Vn.

(10]

(11]

(12]

(15]

B. UPPER BOUND ON.J,. ()

From [11, p.192] we have, for > —1/2

2\ [T s 2\n—1/2
0= s (6)f, e

z\n [T 2\n—1/2
S\/Er(nlJrl/z) (E) [1 =22y as)

whereI'() is the Gamma function. From [15, eqn. 15.24], the
integral in (18) is given by/7 I'(n + 1/2)/T'(n + 1). QED
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