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Spatial Concentration of Wave-Fields:
Towards Spatial Information Content in

Arbitrary Multipath Scattering
Rodney A. Kennedy and Thushara D. Abhayapala

Abstract—The fundamental limitation of using a spatial chan-
nel as an information bearing resource is considered. Such theo-
retical foundations are largely absent in the development of wire-
less communication systems which unduly focus on implementa-
tion and as a consequence there are a number of misconceptions
and mal-implementations of communication systems which em-
ploy the MIMO principle. The notion of essential dimensionality
of spatial systems is examined in detail for the case of a spherical
region in three dimensional space in a nearfield scattering environ-
ment as a pointer to a more general theory nearing completion. A
non-trivial but tight analogy is drawn with the classical work on
time-frequency concentration and the dimensionality of essentially
time- and band-limited signals by Slepian, Landau and Pollack.

Index Terms—Essential dimension of space, space-time commu-
nication limits, time-frequency concentration.

I. I NTRODUCTION

A central result in information theory relates to time-
frequency concentration and the essential dimensionality of
time-frequency signals governed by the Fourier Transform [1–
3]. When constrained in both time and frequency there is a
limit to the degree of concentration, as measure by fraction-
out-of-band, of energy simultaneously possible in the two do-
mains (FOBE). This is a form of uncertainty principle where
the criterion for time-frequency concentration significantly dif-
fers from the classical Heisenberg formulation which expresses
signal concentration in terms of root mean square deviation
(RMS). This paper deals with a generalization where one can
investigate, for the first time, the fundamental limits to the use
of free-space as an information bearing resource a central con-
cept for wireless communication. The work has an impact on
the theoretical limits of MIMO systems using multiple antennas
by revealing a number of misconceptions related to the impor-
tance of the number of antennas — for example, the depen-
dence of capacity of multi-antenna systems being attributed to
the number of antennas will be seen to be an artifact of imple-
mentation (strictly an infinitely dispersed sparse antenna array)
and not fundamentally relate to the theoretical limit of such sys-
tems. The latter can be developed using the ideas in this paper.

The notion of the essential dimension, despite the manner
in which the results were originally presented, does not cru-
cially hinge on the Fourier Transform — it is a misconception
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Fig. 1: Source-field and Wave-field Geometry: The region of interest is the
inner ball of radiusR, B3

R. Any source for the wave-field, symbolized by the
irregular outer blobs, are outside an outer ball of radiusS, B3

S , shown with
cutaway. That is, the source-field is non-zero only inR3\B3

S andR < S.

to regard the Fourier Transform as playing anecessaryrole in
any uncertainty principle (RMS, FOBE, or otherwise). Uncer-
tainty principles and essential dimensionality results are a nat-
ural consequences of broad classes of operator equations where
the operator is either self-adjoint, normal or unitary (and possi-
bly more general types of operators) [4].

Wireless communications involves the exploitation of space
to achieve communication. The extent to which this is funda-
mentally possible is constrained by the wave equation in free
space. That is, the degree to which data, in an abstract sense,
can be borne on information bearing wave-fields in space is lim-
ited by the essential dimensionality of such wave-fields — a
concept which is developed in this paper and extends earlier
work [5, 6]. The results for establishing the essential dimen-
sionality of space have strong analogies with the seminal work
on essential dimensionality of time-frequency signals [1–3]. In
this work we develop the results for narrowband and in this re-
gard frequency plays no role nor does the Fourier Transform.

II. WAVES IN BALLS AND BLOBS

A. Homogeneous Helmholtz Equation

The homogeneous Helmholtz equation describing awave-
field u(x) in spacex ∈ R3, also referred to as the reduced
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wave equation, is given by

4u(x) + k2u(x) = 0, (1)

where4 is the Laplacian, andk is the wave number given by
the real positive constantk = 2π/λ with λ the wavelength.
Equation (1) holds in any region of space, a subset ofR3, that
excludes any sources. The formulation explicitly caters for
nearfield sources by choosing the region as small as necessary.
In this work we first consider regions which are closed balls,
that is, spheres and their interiors:

B3
T ,

{
x ∈ R3 : |x| ≤ T

}
. (2)

for various radiiT where| · | denotes euclidean distance. The
unit sphere is, following convention, denotedS2 ,

{
x ∈

R3 : |x| = 1
}

. Later in the paper, balls are generalized to blobs
(to be defined) and a more abstract and general theory is devel-
oped.

The complete Helmholtz equation takes the form

4u(x) + k2u(x) = f(x), (3)

where, in our terminology,f(x) is thesource-field. The broad
interest in this work is to determine the relationship between
the wave-fieldu(x) and the source-fieldf(x) as governed by
(3) that leads to the homogeneous equation (1) being satisfying
in some user prescribed “region of interest” which is a subset
of R3. In engineering terms, this region of interest is the spatial
domain where antennas are located and would almost without
exception exclude any sources. However such sources, carrying
the signals to be detected, can be arbitrarily close to the region
of interest and hence in the nearfield. Therefore, the theory to
be developed is powerful enough to deal with nearfield, farfield,
point and distributed sources. That is, any practical multipath
field.

B. Hilbert Space Representation

We assume familiarity with separable Hilbert Spaces with
the associated concepts of complete orthonormal sequences, or-
thogonality, inner products, projection, Parseval relation, strong
convergence, generalized Fourier representations which we use
without proof [7,8].

All solutions to (1) for a given source-free region define a lin-
ear subspace of functions which follows from the linearity and
homogeneity of (1). That is, ifu1(x) andu2(x) are solutions
to (1) in a region thenξ1u1(x) + ξ2u2(x) is also a solution in
the same region, whereξ1, ξ2 ∈ C. We formalize and develop
this interpretation as follows.

We begin with the complex separable Hilbert Space of com-
plex valued square integrable functions,L2(B3

S), defined inB3
S

for some radiusS (which later will be identified with any radius
that excludes all sources), equipped with inner product

〈f, g〉B3
S

,
∫

B3
S

f(x)g(x) dv(x), (4a)

≡
∫ S

0

∫ π

0

∫ 2π

0

f(r, θ, φ) g(r, θ, φ) r2 sin θ dφ dθ dr, (4b)

with induced norm

‖f‖2B3
S

,
∫

B3
S

∣∣f(x)
∣∣2 dv(x), (5)

where the volume element is given by

dv(x) , r2 sin θ dφ dθ dr, (6)

and where(r, θ, φ) ≡ x are spherical coordinates. In coor-
dinate free terms, we can use|x| for r and x̂ , x/|x| for
direction(θ, φ). Similarly, on theunit sphere,S2, we use the
notation

ds(x̂) , sin θ dφ dθ, (7)

to denote a surface element. Finally, we also use the identity

dv(x) , r2 dr ds(x̂), (8)

which combines (6) and (7).
The solutions to (1) that form a strict linear subspace of

L2(B3
S) is a separable Hilbert Space and denoted

GS ,
{
u ∈ L2(B3

S) : 4u + k2u = 0
}
. (9)

BothL2(B3
S) and its subspaceGS have inner product (4).1

C. Complete Orthonormal Sequences

SinceGS is separable, there exist orthonormal sequences,
{ϕp}∞p=0, which are complete inGS, that is, for allu ∈ GS

u =
∞∑

p=0

〈
u, ϕp

〉
B3

S

ϕp, (10)

where convergence is in the mean (strong convergence in the
norm) and

βp ,
〈
u, ϕp

〉
B3

S

(11)

are the Fourier Coefficients. By completeness we have Parse-
val’s Relation

‖u‖2B3
S

= ‖β‖2`2 . (12)

D. Normalized Modes as Orthonormal Sequences

In this paper, we make use of a special complete orthonormal
sequence, based on the solution to (1) by separation of variables
in spherical coordinates, see [9]. This sequence is built from
the modes, which form elementary solutions to (1), and take
the form

um
n (x) , injn

(
k|x|

)
Y m

n (x̂) (13)

1The actual space is actually more restricted than indicated as we require
the wave-field to be sufficiently differentiable for the Helmholtz equation to be
well-defined.
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where the indices aren = 0, 1, 2, . . . andm = −n, . . . , n.2

Herejn

(
k|x|

)
is the spherical Bessel function of integer order

n, Y m
n (x̂) ≡ Y m

n (θ, φ) are the spherical harmonics

Y m
n (θ, φ) ,

√
2n + 1

4π

(n− |m|)!
(n + |m|)!

P |m|
n (cos θ) eimφ, (14)

which are orthonormal on the unit sphereS2 with respect to the
inner product

〈f, g〉S2 ,
∫

S2
f(x̂)g(x̂) ds(x̂), (15a)

≡
∫ π

0

∫ 2π

0

f(θ, φ) g(θ, φ) sin θ dφ dθ, (15b)

andPm
n (·) are the associated Legendre functions. Form = 0,

these orthogonal functions reduce to the Legendre Polynomials
denotedPn(·).

The modes, (13), have a “poly-orthogonality” meaning that
they areorthogonal for any spherically symmetric region— a
property that is analogous to the multiple orthogonality of the
Prolate Spheroidal Wave Functions used in the time-frequency
dimensionality case [1]. This follows mathematically from the
orthonormality of the spherical harmonics and physically from
the modes, (13), being obtained through separation of variables.
That is, the poly-orthogonality can be expressed through∫

S2
um

n

(
|x|, x̂

)
up

q

(
|x|, x̂

)
ds(x̂) =

[
jn

(
k|x|

)]2
δmpδnq. (16)

This implies orthogonality with respect to a wide selection of
inner products defined onB3

S not just (4). With〈um
n , up

q〉 denot-
ing a general inner product, (16) implies

〈um
n , up

q〉 =
∫

R3
h(|x|)um

n

(
|x|, x̂

)
up

q

(
|x|, x̂

)
dv(x) (17a)

=
∫ ∞

0

h(r)
[
jn(kr)

]2
r2 dr δmpδnq (17b)

where the only condition onh(|x|) is that it is non-negative and
has appropriate support to yield a valid inner product.

It is a simple matter to normalize the modes (13) to any spher-
ically symmetric region. Hence forB3

S, normalization with re-
spect to inner product (4), yields

{
ϕm

n;S(x)
}

m,n
,

{
injn

(
k|x|

)
Y m

n (x̂)(∫ S

0
[jn(kr)]2 r2 dr

)1/2

}
m,n

. (18)

Based on the the denominator in (18) and because of its impor-
tance later, we define

Jn(T ) ,
∫ T

0

[jn(kr)]2 r2 dr (19)

2It is clear that the indicesm and n can be put into a bijection with the
countable index setp, as in (10). Hence the modes, (13), are analogous to the
ϕp in (10) apart from an absence of normalization. Further, in defining the
modes we have included the rogue factorin which is standard to align with
some key but esoteric identities.

which is a monotonically increasing positive function which
can be expressed in closed form and grows likeT/(2k2) for
largeT . Define the shorthand∑

m,n

,
∞∑

n=0

n∑
m=−n

(20a)

∑
m,n≤N

≡
N∑

n=0

n∑
m=−n

and
∑

m,n>N

,
∞∑

n=N+1

n∑
m=−n

. (20b)

Using (18), anyu ∈ GS has the orthonormal expansion

u(x) =
∑
m,n

βm
n;S ϕm

n;S(x) (21a)

=
∑
m,n

βm
n;S

injn

(
k|x|

)
Y m

n (x̂)
[Jn(S)]1/2

(21b)

with Fourier coefficients

βm
n;S ,

〈
u(x), ϕm

n;S(x)
〉

B3
S

(22a)

=
(−i)n

[Jn(S)]1/2

∫
B3

S

u(x)jn

(
k|x|

)
Y m

n (x̂) dv(x) (22b)

which satisfy Parseval’s Relation (12). Some examples of (21)
will now be given.

E. Examples

EXAMPLE (PLANE WAVES). Using the Jacobi-Anger Expan-
sion [9, p.32] we have

eikx·ŷ =
∞∑

n=0

in(2n + 1)jn

(
k|x|

)
Pn(x̂ · ŷ) (23a)

= 4π
∑
m,n

injn

(
k|x|

)
Y m

n (x̂)Y m
n (ŷ) (23b)

where we have used the Addition Formula for the Spherical
Harmonics [9, p.27] to go from(23a) to (23b). The left hand
side is a plane wave with direction of propagationŷ and is a
basic solution to(1) in GS. That is, for the plane wave, we have
the Fourier Coefficients

βm
n;S = 4π[Jn(S)]1/2 Y m

n (ŷ) (24)

which depend only on direction of propagationŷ.

EXAMPLE (POINT SOURCES). The fundamental solution to
the Helmholtz equation, a point source aty, is given by [9,
p.5]

Φ(x,y) ,
ik

4π
h

(1)
0

(
k|x− y|

)
≡ eik|x−y|

4π|x− y|
, x 6= y (25)

whereh
(1)
n (·) is the ordern spherical Hankel function [10,11].

In the spherical coordinate system the fundamental solution has
an expansion, called the addition theorem for the fundamental
solution, valid for|x| < |y| [9, p.62]

Φ(x,y) = ik
∑
m,n

jn

(
k|x|

)
h(1)

n

(
k|y|

)
Y m

n (x̂) Y m
n (ŷ), (26)
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from which we glean for|x| ≤ S < |y|

βm
n;S = (−i)n−1k[Jn(S)]1/2h(1)

n

(
k|y|

)
Y m

n (ŷ). (27)

An arbitrary field can be modelled by a distribution (superpo-
sition) of point sources. An arbitrary field which is source-free
in B3

S can be modelled by the superposition of point sources
located inR3\B3

S.

F. Orthogonal Projections

In the time-frequency case in the FOBE context, two pro-
jection operators play a key role: time-limiting and band-
limiting [3]. For spatial systems the analogous operators are
more subtle. We define these analogous operators. Later, we
will give a fuller justification and generalization.

Consider a functionw ∈ L2(B3
S). In general such a function

will not correspond to a valid wave-field, that is, it will violate
(1). Valid solutions to (1) inB3

S belong toGS which is a lin-
ear subspace ofL2(B3

S). Hence we can define an orthogonal
projection operator to map to this subspace.

DEFINITION 1 (WAVE-FIELD – HELMHOLTZ PROJECTOR).
The Helmholtz ProjectorGS : L2(B3

S) → GS is defined by

w 7→ u = GSw (28a)

GSw =
∑
n,m

〈
w,ϕm

n;S

〉
B3

S

ϕm
n;S, (28b)

which projectsw ∈ L2(B3
S) to a solutionu = GSw to the

homogeneous Helmholtz Equation inB3
S.

Since everyu ∈ GS is a fixed point underGS, that isGSu =
u, thenGS is idempotent,G2

S = GS. By the Hilbert Space
Projection Theorem,GSw is the bestL2-approximation inGS

to w ∈ L2(B3
S).

The Helmholtz Projector can be utilized in interesting ways.
Consider the situation where a wave-field is measured in the
presence of independent gaussian noise. Consequently, one
does not have a valid wave-field, in the sense defined above,
due to the noise. In this case the Helmholtz Projector can be
used to generate the best valid wave-field matching the mea-
surements, in a minimum mean square error sense.

Although not immediately apparent the Helmholtz Projector,
GS, has an equivalent interpretation but expressed in terms of
the source-fieldf(x) domain. It is a truncation that removes
sources from the ballB3

S:

DEFINITION 2 (SOURCE-FIELD TRUNCATION –
“ THE MUMMY ” PROJECTOR). The Mummy projector
G̃S : L2(R3) → L2(R3\B3

S) is defined by

(G̃Sf)(x) =

{
f(x) whenx ∈ R3\B3

S,

0 otherwise.
(29)

As such this projection is parameterized by the radiusS.
Clearly this operator is idempotent̃G2

S = G̃S and self-adjoint
(as all orthogonal projections must be).

We seek yet another projection to fully furnish the analogy
with the time-frequency case. The complementary domain is

the wave-fieldand the natural projection is the direct trunca-
tion of the wave-field (not necessarily one from a homogeneous
Helmholtz Equation). That is, we have a projection,HR, that
takes a function onR3 and sets it to zero outsideB3

R.

DEFINITION 3 (WAVE-FIELD TRUNCATION). The truncation
operatorHR : L2(R3) → L2(B3

R) is defined by

(HRw)(x) =

{
w(x) whenx ∈ B3

R,

0 otherwise.
(30)

As such this projection is parameterized by the radiusR. Later
we will show why these projections are crucial.

III. F INITE DIMENSIONAL APPROXIMATIONS

As a necessary precursor to finding the essential dimension-
ality of wavefields in space, we need to develop the appropri-
ate but standard notion of a finite dimensional approximation
to what is an infinite dimensional object. Clearly not all finite
dimensional approximations are equal and the most important
sense in which we choose to distinguish them will be the mini-
mization the error (between the approximation and the original
function), using the appropriate norm, given that the dimension
is fixed. The essential dimensionality means that beyond some
well-defined threshold in dimension, the best finite dimensional
approximation achieves a high relative precisionindependent of
the function to be approximated.

We now wish to consider the effectiveness of replacing the
generic expansion (10) by a finite number of terms in the form

u(x) ≈
∑
p∈P

γpϕp(x) (31)

whereP is a finite index set whose cardinality,|P | < ∞, is the
dimension of the desired representation,γp are coefficients to
be determined, and{ϕp}p∈P is a finite, incomplete, orthonor-
mal set.

Examination of (31) reveals that there are three components
which impact on obtaining the best approximation: (i) optimal
determination of the orthonormal set{ϕp(x)}p∈P , (ii) optimal
choice of index set,P , with a well defined ordering, and (iii)
optimal determination of the coefficients for an explicitu(x)
(having chosen the orthonormal set and the index set). Clearly
the metric to determine the degree of approximation should be
the induced norm (5). The third consideration leads to a stan-
dard problem with known solution which isγp = 〈u, ϕp〉B3

S
,

the Fourier Coefficients [7]. Bringing these facts together leads
to the consideration of the|P |-dimension approximation that
minimizes ∥∥u(x)−

∑
p∈P

〈u, ϕp〉B3
S
ϕp(x)

∥∥
B3

S

(32)

through the choice of{ϕp(x)}p∈P .
Determination of the best approximation (32) of a given di-

mension to represent a wavefieldu(x) in a regionB3
R, is non-

trivial and resolved in the theoretical developments of the next
few sections.
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IV. SPATIAL CONCENTRATION OFWAVE-FIELDS

A. Problem Statement

Now we pose the following problem which is intimately re-
lated to the problem of finding the best finite dimensional rep-
resentation of a wave-field in a ball but it is also of independent
interest.

SPATIAL CONCENTRATION PROBLEM 1. Determine wave-
field u ∈ GS — the closed subspace inL2(B3

S) satisfying
4u + k2u = 0 in B3

S — which has the greatest concentra-
tion of energy inB3

R whereR < S. That is, find theu ∈ GS

which achieves

sup
u 6=0
u∈GS

∫
B3

R

∣∣u(x)
∣∣2 dv(x)∫

B3
S

∣∣u(x)
∣∣2 dv(x)

≡ sup
u 6=0
u∈GS

∫
B3

R

∣∣u(x)
∣∣2 dv(x)

‖u‖2B3
S

(33a)

or equivalently

sup
‖u‖2B3

S
=1

u∈GS

∫
B3

R

∣∣u(x)
∣∣2 dv(x). (33b)

In plain English, we are want to determine which member(s)
of the class of wave-fields generated by sources outside radius
S, of unit energy in the region|x| ≤ S, have the maximum
concentration of energy in the inner ball|x| ≤ R whereR < S.
This is a nontrivial problem as there is no constraint on where
the sources of the wave-field may be positioned withinR3\B3

S.
We can use the two projections from section II-F to recast

Spatial Concentration Problem 1 in a more abstract and com-
pact form:

SPATIAL CONCENTRATION PROBLEM 2. Determine the solu-
tion(s) and value of:

sup
w 6=0

‖HRGSw‖2B3
S

‖GSw‖2B3
S

≡ sup
u 6=0
u∈GS

‖HRu‖2B3
S

‖u‖2B3
S

(34)

We will have more to say of the generalization of this formula-
tion in section VII.

B. Spatial Concentration Problem Solution

We now solve Spatial Concentration Problem 1. Sinceu in
(33) is inGS then we can use representation (21) to determine,
without approximation, the total energy in theinner R-radius
ball

‖u‖2B3
R

,
∫

B3
R

∣∣u(x)
∣∣2 dv(x) (35a)

=
∫

B3
R

∣∣∣∑
m,n

βm
n;S ϕm

n;S(x)
∣∣∣2 dv(x) (35b)

=
∑
m,n

∑
p,q

βm
n;Sβp

q;S

∫
B3

R

ϕm
n;S(x)ϕp

q;S(x) dv(x) (35c)

=
∑
m,n

∣∣βm
n;S

∣∣2 ∫ R

0
[jn(kr)]2r2 dr

Jn(S)
(35d)

=
∑
m,n

∣∣βm
n;S

∣∣2Jn(R)
Jn(S)

(35e)

where theβm
n;S are given by (22) and further satisfy‖β‖2`2 = 1

by the imposed unit energy condition‖u‖2B3
S

= 1 in (33b) us-
ing (12). In the calculation above we have used the poly-
orthogonality property, (16) and (17), of (13), and the orthonor-
mality of the spherical harmonics (14) and (15).

Note that in principle we could have used any complete or-
thonormal sequence to representu ∈ GS but in our calculation
the choice of{ϕm

n;S}m,n, from (21), shows it is optimal in the
sense of explicitly finding solutions to (33) as will be revealed
shortly. That is, we can solve (33) because we happen to ex-
ploit the preferred orthonormal representation; or we could say
that we are guided by physical intuition or insight to obtain the
preferred orthonormal representation as was done in [6]. This
clearly points to the need for a more advanced deductive prin-
ciple to determine solutions to the Spatial Concentration Prob-
lem 1 or its generalizations particularly when we have less sym-
metries in the formulation. This generalization and theory is the
subject of Section VII. In the mean time we will borrow termi-
nology from the more general material.

Define the positive real “eigenvalues”, which have an energy
ratio interpretation,

λn(R,S) ,
Jn(R)
Jn(S)

≡
∫ R

0
[jn(kr)]2 r2 dr∫ S

0
[jn(kr)]2 r2 dr

(36)

for n = 0, 1, 2, . . . , whereupon we observe maximizing (36)
concerns only optimizing the choice ofn as follows

ñ = arg max
n

λn(R,S) (37)

with no constraint onm other than|m| ≤ ñ (with all choices
being equal). Hence the Spatial Concentration Problem 1 has a
continuum of solutions defined for thẽn in (37) by

ũ(x) ,
ñ∑

m=−ñ

βm
ñ;S ϕm

ñ;S(x), where
ñ∑

m=−ñ

∣∣βm
ñ;S

∣∣2= 1 (38)

which is a2ñ+1 dimensional unit sphere, a subset of the infinite
dimensional unit sphere‖β‖2`2 = 1. The non-uniqueness is
expected because of the symmetries of the sphere.

From properties of the spherical Bessel functions on the in-
tervals[0, R] and[0, S] whereR < S, one can show [10,11]

λ0(R,S) > λ1(R,S) > λ2(R,S) > · · · > 0 (39)

and, therefore, the complete solution to (37) isñ = 0, with
m = 0. Hence the most spatially concentrated wave-field, up
to a phase factor, is given by

ϕ0
0;S(x) =

j0
(
k|x|

)
√

4π[J0(S)]1/2
∝ sin k|x|

k|x|
(40)

which has energyλ0 within B3
R compared with unit energy

within B3
S. This solution has the character of an isotropic field

which may be generated by uniformly distributed sources in all
directions (4π steradians) with perfect phase alignment (ideal
constructive interference at the origin).
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C. Optimum Eigenfunction Expansion

The ordering of the eigenvalues in (39) induces an ordering
of the orthonormal functions. Given any functionu ∈ GS then
we may write

u = 〈u, ϕ0
0;S〉ϕ0

0;S + u′ (41)

whereu′ ∈ G(1)
S is orthogonal toϕ0

0;S, and we have the direct
sumGS = span{ϕ0

0;S} ⊕ G
(1)
S . Then replacingGS in the Spatial

Concentration Problem 1 withG(1)
S leads to a solution associ-

ated withλ1, the next largest eigenvalue afterλ1, that can be
expressed as a continuum of functions parametrized by points
on a 3 dimensional sphere

u(x) ,
1∑

m=−1

βm
1;S ϕm

1;S(x), where
1∑

m=−1

∣∣βm
1;S

∣∣2= 1 (42)

which has energyλ1 within B3
R compared with unit energy

within B3
S. And so on working through the eigenvalues in order

from largest to smallest.
We note that it is preferable to take into consideration the

multiplicity of the eignvalues when selecting the size of any
finite dimensional approximation. In the above, it is natural
to choose the dimensions as1, 4, 9, 16, . . . . This corresponds
to truncating according ton ≤ N and using the full avail-
able range form (|m| ≤ n for all n ≤ N ). Hence we have
determined the best

∑
m,n≤N 1 = (N + 1)2 dimensional ap-

proximation in the induced norm, in the form of (31) where
|P | = (N + 1)2:

THEOREM1. The best(N +1)2 dimensional approximation of
solutions to4u + k2u = 0 in B3

S is given

uN (x) ,
∑

m,n≤N

βm
n;S ϕm

n;S(x), (43)

where the orthonormal sequence is given by(18). That is, trun-
cation of the normalized modes,(18), in their natural order give
the optimal approximations of degree(N + 1)2 for B3

S.

HereN subscript denotes the truncation depth inn and not the
dimension which is(N + 1)2.

V. ESSENTIAL DIMENSIONALITY OF WAVE-FIELDS

We have seen how to construct a finite dimensional approx-
imation to a wave-field, with unit energy inB3

S, that best cap-
tures the energy of that wavefield in an inner ballB3

R. Now we
show how the accuracy of the best approximation is affected
as we vary the dimension by changingN . We will find that all
fields can be well-approximated onceN is chosen large enough
and this choice is a function only of the radiiS andR. That is,
there is an essential dimensionality that depends only on the
geometry of the region of interest (determined by radiusR)
and the geometry of the sources which generate the wave-field
(sources located outside radiusS). This property was derived
in [5,6] in a more restricted context (primarily requiring farfield
sources), using different tools and only in the form of bound-
ing the essential dimensionality with uncertainty regarding the
tightness.

We begin withuN (x), the optimal approximation given by
(43). Using the poly-orthogonality, (16), in analogy with the
arguments used in (35), we have∥∥u− uN

∥∥2

B3
R

,
∫

B3
R

∣∣u(x)− uN (x)
∣∣2 dv(x) (44a)

=
∫

B3
R

∣∣ ∑
m,n>N

βm
n;S ϕm

n;S(x)
∣∣2 dv(x) (44b)

=
∑

m,n>N

∣∣βm
n;S

∣∣2Jn(R)
Jn(S)

(44c)

=
∑
n>N

Jn(R)
Jn(S)

n∑
m=−n

∣∣βm
n;S

∣∣2. (44d)

Since‖u‖B3
S

= 1 we have‖βS‖2 = 1 and hence

∞∑
n=0

n∑
m=−n

∣∣βm
n;S

∣∣2= 1 implies
n∑

m=−n

∣∣βm
n;S

∣∣2≤ 1. (45)

So we end up with the simple but effective bound:

∥∥u− uN

∥∥2

B3
R

≤
∑
n>N

Jn(R)
Jn(S)

≡
∑
n>N

λn(R,S) (46a)

=
∑
n>N

∫ R

0
[jn(kr)]2 r2 dr∫ S

0
[jn(kr)]2 r2 dr

. (46b)

Hence the bound on the approximation is a function only ofR,
S andN , independentof u(x). That there is a well-defined and
marked threshold as we increaseN is a property that we can in-
fer from the spherical Bessel functions following the bounding
arguments given in [5,6].

VI. OTHER RESULTS IN SPATIAL CONCENTRATION

A. Two Dimensional / Height Invariant Wave-Fields

Results for the two dimensional problemcannotbe straight-
forwardly deduced or inferred from the three dimensional case
so far considered. However, it is true that a similar general
approach can be followed. In this section we point out salient
features of the two dimensional case and present results without
proof.

There are two interpretations of the two dimensional case: 1)
beginning with the two dimensional Helmholtz equation we can
develop a theory in the two independent spatial variables and
make no reference to a third independent spatial variable, this
is mathematically valid but strictly disconnected from physical
reality; and 2) the two dimensional case corresponds to a linear
subspace of the three dimensional case where the sources and
fields are invariant along one spatial dimension, typically taken
in the z direction, the “height”, as we assume here. This lat-
ter case is physically more relevant and corresponds to a form
of cylindrical symmetry where a fundamental solution is inter-
preted as an infinite line source in thez direction. Such a line
source generates cylindrical waves. However, one can argue
such lines sources are only a mathematical idealization. For
this reason we express the results using the first interpretation
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so that the analogs ofB3
S andB3

R are disksB2
S andB2

R, respec-
tively.

The analog of Spatial Concentration Problem 1 has the most
spatially concentrated field, up to a constant complex factor,
given by

J0(k|x|) (47)

which is the Bessel function of order zero. This two dimen-
sional wave-field contains∫ R

0
[J0(kr)]2 r dr∫ S

0
[J0(kr)]2 r dr

(48)

of the energy in the diskB2
R given unity energy inB2

S. No other
wave-field inB2

R contains more energy (given unit energy in
B2

S). This conclusion, like the three dimensional case, holds
irrespective of the values ofR andS.

The orthornormal sequence which yields the best finite di-
mensional approximation is the normalization of modes

inJn

(
k|x|

)
einφ(x̂), n = 0,±1,±2, . . . (49)

where |x| is the radius andφ(x̂) is the angle in polar coor-
dinates. The dimensionality of truncating the series ton <
|N | is 2N + 1. The essential dimensionality occurs when
N = eπR/λ. That is the essential dimensionality is given
by 2eπR/λ + 1. Additional details on this case can be found
in [5,6] but in a narrower context.

This essential dimensionality therefore, holds for the height
invariant wave-field case with respect to the infinite length
cylinders of radiiS and R. That this essential dimensional-
ity is very much less than the case of the finite spheres of radii
S andR is a manifestation of the strong constraint placed on
the wave-field to be height invariant.

B. One Dimensional / Planar Wave-Fields

The essential dimensionality of the one dimensional
Helmholtz equation is two since for a given wavenumberk,
we can only have a one wave traveling left to right and one
wave traveling right to left. This represents a degenerate case
as the region of interest on the real number is irrelevant (pro-
vided it is not of measure zero). InR3 the one dimensional
Helmholtz equation arises from the consideration of two planar
wave fronts whose directions of propagation are opposite.

VII. G ENERAL THEORY OFSPATIAL CONCENTRATION

AND DIMENSION

The preceding results for balls which have spherical symme-
try represent a special case of a more general result which we
now present based on the theory of positive (and self-adjoint)
operators in Hilbert Space. In the theory of time-frequency con-
centration and essential dimensionality the domain and range of
the Fourier Transform are the real lineR and the regions under
investigation are either simple closed intervals or a set of dis-
joint closed intervals. In the wave-field case the domain and
range are in generalR3 (or, as we have seen, perhaps the lower
dimensional Euclidean spaceR2 or the degenerate case ofR).

R3

source

source

source

source

source

S ����:
RH

HHH
HHY

4u + k2u = 0 in S

Fig. 2: Source-field and Wave-field Geometry: The region of interest is the
inner blobR. Any source for the wave-field, symbolized by the irregular outer
blobs, are outside an outer blobS, shown with cutaway. That is, the source-field
is non-zero only inR3\S andR < S.

Regions inR3 are much richer in structure and the domains be-
come much more tightly coupled into any problem formulation.
Such an increase in complexity when more than one indepen-
dent variable is involved has led to the study of boundary value
problems and integral equations [12,13]. We will use such the-
ory only to the extent of establishing the most important results
and leave the obvious extensions and applications to other pub-
lications.

We can regard a region inR3 as a blob. It is convenient to
think that the blob is topologically equivalent to a ball but this
is not essential. To apply our results only requires sufficient
smoothness conditions on the interior and boundary of the re-
gion without any necessity that the blob be simply connected.
In the following, the respective blobsS,R ⊂ R3 generalize
the respective ballsB3

S, B3
R ⊂ R3 with R ⊂ S. Because balls

capture the essence of blobs we can move rapidly through the
concepts associated with blobs without undue elaboration and
explanation:

Define the separable Hilbert Space

GS ,
{
u ∈ L2(S) : 4u + k2u = 0

}
. (50)

which has inner product

〈f, g〉S ,
∫
S

f(x)g(x) dv(x), (51)

with induced norm

‖f‖2S ,
∫
S

∣∣f(x)
∣∣2 dv(x). (52)

We now pose the Spatial Concentration Problem:

SPATIAL CONCENTRATION PROBLEM 3. Determine wave-
field u ∈ GS — the closed subspace inL2(S) satisfying
4u + k2u = 0 in S — which has the greatest concentration
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of energy inR whereR ⊂ S. That is, find theu ∈ GS which
achieves

sup
‖u‖S=1
u∈GS

∫
R

∣∣u(x)
∣∣2 dv(x). (53)

This can be reformulated using operatorsGS and HR which
are the straightforward generalizations of the source-field and
wave-field truncation operators given in section II-F,GS and
HR, respectively:

SPATIAL CONCENTRATION PROBLEM 4. Determine the solu-
tion(s) and value of:

sup
w 6=0

‖HRGSw‖2S
‖GSw‖2S

≡ sup
u 6=0
u∈GS

‖HRu‖2S
‖u‖2S

. (54)

A closely related problem to (54) is

sup
w 6=0

‖HRGSw‖2S
‖w‖2S

= sup
‖w‖=1

‖HRGSw‖2S (55a)

, ‖HRGS‖2 (55b)

which is the square of the norm of the operatorHRGS [13].
Now given thatGS is idempotent, werew̆ the suprem-

izer of (55) (if necessary considered as the limit) then, since
‖GSw‖S ≤ ‖w‖S for all w, we would find thatGSw̆ would
also be a supremizer. Hence,w̆ needs to be zero inR\S. Then,
‖GSw̆‖2S = ‖w̆‖2S , which shows that a solution to (55) is also
a solution to (54) (but not necessarily vice versa). Hence, the
solution to these classes of problem reduces to the study of the
eigenstructure of the relevant operator equations. The analysis
can then proceed as for the time-frequency case. This will be
studied in greater depth in a sequel.

VIII. C ONCLUSIONS

The theory developed in the paper determines the maxi-
mum concentration of energy that can be placed in an arbi-
trary shaped region of interest devoid of sources. Associated
optimum finite dimensional approximations have been devel-
oped. For the case of ball shaped region (where the boundary
is a sphere) and where the sources are contained in the comple-
ment of a sphere closed form solutions to the problem have been
found. These results imply there is a fundamental and calcula-
ble limit to the amount of information that may be carried in a
region of space since there is an essential limit to the number of
orthonormal basis functions that can be used.

A strong analogy was shown to exist with the classical work
done on the time-frequency concentration which is tied with the
fundamental limits imposed by the uncertainty principle of the
Fourier Transform. In the spatial case, the complementary do-
mains are the source-field (distribution of sources which may
be nearfield, farfield, point or distributed) and the wave-field
it induces. These have the analogies of time and frequency in
the case of the Fourier Transform. Further, the analogy of the
Fourier Transform is the Helmholtz Equation which is the par-
tial differential equation corresponding to the time independent
wave equation.

The theory, which is still being developed underpins the lim-
its placed on communication systems which purport to exploit
space. We finish with one example. In MIMO there has been
considerable fuss made over the linear increase in capacity of
MIMO with numbers of antennas. This is an artifact of impos-
ing independence which is valid if the antennas can be widely
separated in space. In the opposite extreme, our theory makes
it clear that the capacity is not related to the number of anten-
nas but the region occupied by the antennas. The saturation of
performance improvement with number of antennas will come
when the essential dimensionality of the region is reached. In
the presence of finite precision or noise there will be a griz-
zly fundamental limit to the information content that a spatial
region can bear.
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