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Spatial Concentration of Wave-Fields:
Towards Spatial Information Content in
Arbitrary Multipath Scattering

Rodney A. Kennedy and Thushara D. Abhayapala

Abstract—The fundamental limitation of using a spatial chan- source
nel as an information bearing resource is considered. Such theo- : :
retical foundations are largely absent in the development of wire-
less communication systems which unduly focus on implementa-
tion and as a consequence there are a number of misconceptions
and mal-implementations of communication systems which em-
ploy the MIMO principle. The notion of essential dimensionality
of spatial systems is examined in detail for the case of a spherical
region in three dimensional space in a nearfield scattering environ-
ment as a pointer to a more general theory nearing completion. A
non-trivial but tight analogy is drawn with the classical work on
time-frequency concentration and the dimensionality of essentially
time- and band-limited signals by Slepian, Landau and Pollack.

Index Terms—Essential dimension of space, space-time commu-
nication limits, time-frequency concentration.
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I. INTRODUCTION source Au+Kku=0in IB%‘QS’

A central result in information theory relates to timefig. 1: Source-field and Wave-field Geometry: The region of interest is the
frequency concentration and the essential dimensionality iofer Iba” Oftradti)lusgt B%. An%/ %Ource fO;th% V\Illav?-fiecguti ggmbﬁlized b}t/hthe
time-frequency signals governed by the Fourier Transform {15947 o4er b, afe auic an outer bl f s, shoun w
3]. When constrained in both time and frequency there is a
limit to the degree of concentration, as measure by fraction-
out-of-band, of energy simultaneously possible in the two dite regard the Fourier Transform as playingecessaryole in
mains (FOBE). This is a form of uncertainty principle wherany uncertainty principle (RMS, FOBE, or otherwise). Uncer-
the criterion for time-frequency concentration significantly diftainty principles and essential dimensionality results are a nat-
fers from the classical Heisenberg formulation which expressgigl consequences of broad classes of operator equations where
signal concentration in terms of root mean square deviatithe operator is either self-adjoint, normal or unitary (and possi-
(RMS). This paper deals with a generalization where one chly more general types of operators) [4].
investigate, for the first time, the fundamental limits to the use Wireless communications involves the exploitation of space
of free-space as an information bearing resource a central ctthachieve communication. The extent to which this is funda-
cept for wireless communication. The work has an impact énentally possible is constrained by the wave equation in free
the theoretical limits of MIMO systems using multiple antennagpace. That is, the degree to which data, in an abstract sense,
by revealing a number of misconceptions related to the imp®an be borne on information bearing wave-fields in space is lim-
tance of the number of antennas — for example, the depdied by the essential dimensionality of such wave-fields — a
dence of capacity of multi-antenna systems being attributedaoncept which is developed in this paper and extends earlier
the number of antennas will be seen to be an artifact of implork [5, 6]. The results for establishing the essential dimen-
mentation (strictly an infinitely dispersed sparse antenna arr&gnality of space have strong analogies with the seminal work
and not fundamentally relate to the theoretical limit of such sygn essential dimensionality of time-frequency signals [1-3]. In
tems. The latter can be developed using the ideas in this pagbis work we develop the results for narrowband and in this re-

The notion of the essential dimension, despite the manrgard frequency plays no role nor does the Fourier Transform.
in which the results were originally presented, does not cru-
cially hinge on the Fourier Transform — it is a misconception I1. WAVES IN BALLS AND BLOBS
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neering, The Australian National University, Canberra ACT 0200, Australia, e- € homogeneous Helmholiz equation describingaae-
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wave equation, is given by with induced norm

Au(z) + K u(x) = 0, 1) ||f\|§% £ /BB |f ()| do(a), (5)

whereA is the Laplacian, and is the wave number given by

the real positive constarit = 27/X with A the wavelength. where the volume element is given by

Equation (1) holds in any region of space, a subs&%fthat

excludes any sourcesThe formulation explicitly caters for dv(x) £ r*sin 6 d¢ db dr, (6)
nearfield sources by choosing the region as small as necessary.

In this work we first consider regions which are closed ballghd where(r, 0, ¢) = z are spherical coordinates. In coor-

that is, spheres and their interiors: dinate free terms, we can uge| for »r andz £ x/|z| for
direction (6, ¢). Similarly, on theunit sphere S?, we use the
B 2 {zeR: |z| < T} (2) notation
for various radiiT’ where| - | denotes euclidean distance. The ds(Z) £ sinf de db, (7)

unit sphere is, following convention, denotéd £ {z ¢
R3: |z| = 1}. Later in the paper, balls are generalized to blolte denote a surface element. Finally, we also use the identity
(to be defined) and a more abstract and general theory is devel-
oped. dv(a) £ r? dr ds(@), (8
The complete Helmholtz equation takes the form
which combines (6) and (7).
Au(x) + ku(x) = f(z), (3) The solutions to (1) that form a strict linear subspace of

. _ _ _ L?(B?) is a separable Hilbert Space and denoted
where, in our terminologyf (x) is thesource-field The broad

interest in this work is to determine the relationship between Gs £ {ue L*(B): Au+ k*u = 0}. 9)

the wave-fieldu(x) and the source-field(x) as governed by

(3) that leads to the homogeneous equation (1) being satisfyiggih L2(B?) and its subspacg; have inner product (4.

in some user prescribed “region of interest” which is a subset

of R3. In engineering terms, this region of interest is the spatial

domain where antennas are located and would almost withéut Complete Orthonormal Sequences

exception exclude any sources. However ;uch sources, carryingince G- is separable, there exist orthonormal sequences,
the_ signals to be deteqted, can be_ arbitrarily close to the regi ), }o2 4, which are complete ifis, that is, for allu € G,

of interest and hence in the nearfield. Therefore, the theory to

be developed is powerful enough to deal with nearfield, farfield, )
point and distributed sources. That is, any practical multipath U= Z <u, go]g>Bg Pps (10)
field. p=0

. . where convergence is in the mean (strong convergence in the
B. Hilbert Space Representation norm) and

We assume familiarity with separable Hilbert Spaces with
the associated concepts of complete orthonormal sequences, or- By & (U, ©p)gs (11)
thogonality, inner products, projection, Parseval relation, strong s

convergence, generalized Fourier representations which we yg€ the Fourier Coefficients. By completeness we have Parse-

without proof 7, 8]. val's Relation
All solutions to (1) for a given source-free region define a lin-

ear subspace of functions which follows from the linearity and ||u|\]233 = ||5||§2, (12)
homogeneity of (1). That is, ifi; (z) andus(x) are solutions s

to (1) in a region ther;u; () + &uq(x) is also a solution in

the same region, whetg, &, € C. We formalize and develop D. Normalized Modes as Orthonormal Sequences

this interpretation as follows. _ In this paper, we make use of a special complete orthonormal
We begin with the complex separable H;)Ibert Space Ofgco@équence, based on the solution to (1) by separation of variables
plex valued square integrable functionsB?), defined inBj spherical coordinates, see [9]. This sequence is built from

for some radiuss’ (which later will be identified with any radius e modes, which form elementary solutions to (1), and take
that excludes all sources), equipped with inner product the form

(£,9)my = /B f@)g(@) dv(@), (4a) upt (@) £ 0" (Kl ) V" (@) (13)

S pm p2m —_—— . IThe actual space is actually more restricted than indicated as we require
= / / / f(r,0,0)g(r,0,¢)r“sinfdodfdr, (4b) the wave-field to be sufficiently differentiable for the Helmholtz equation to be
0J0J0 well-defined.
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where the indices are = 0,1,2,... andm = —n,...,n.2 which is a monotonically increasing positive function which
Herejn(k|az|) is the spherical Bessel function of integer ordecan be expressed in closed form and grows fik&2k2) for
n, Y"(x) =Y, ™(0, ¢) are the spherical harmonics largeT. Define the shorthand
2 1(n— ! 4 2
v (0, 0) 2 | EELO =MD it o gy eime (14 EDIDY (20a)
47 (n + |m|)‘ m,m  n=0m=—n

N n ) n
which are orthonormal on the unit sph&fewith respecttothe > =Y > and Y 2 Y > . (20b)
inner prOdUCt m,n<N n=0m=-n m,n>N n=N+1m=-n

Using (18), anyu € G5 has the orthonormal expansion

(f,9)s2 & / f(@)g() ds(@), (15a
s u(@) =Y Bl o (@) (21a)

T p2T
z//(m¢M@@mwmw, (15b)
0J0

.
-SmEET e

and P (-) are the associated Legendre functions. #roe 0,
these orthogonal functions reduce to the Legendre Polynomials

denoted?, (-) with Fourier coefficients

The modes, (13), have a “poly_-orthogonality”_ mea_ning that fCis Iy <u(m), @nm;s(fc»[gs (22a)
they areorthogonal for any spherically symmetric regien a .
property that is analogous to the multiple orthogonality of the _ (=4)" / u(®)j (k|$|)YT@ dv(z) (22b)
Prolate Spheroidal Wave Functions used in the time-frequency [T (S)]/2 B, " "

dimensionality case [1]. This follows mathematically from the i ] ,
orthonormality of the spherical harmonics and physically froffnich satisfy Parseval's Relation (12). Some examples of (21)
the modes, (13), being obtained through separation of variabl¥d! Now be given.

That is, the poly-orthogonality can be expressed through
E. Examples

m = =~ P~ . 2 : i )
/ u (||, &) (||, @) ds(@) = [jn (K|2])] Ompdng. (16) EXAMPLE (PLANE WAVES). Using the Jacobi-Anger Expan
52 sion [9, p.32] we have

This implies orthogonality with respect to a wide selection of kg . _ o
inner products defined di? not just (4). With(u;", ub) denot- ¢ = Z i"(2n + 1) jn (Kla]) Po (2 - 9) (23a)
ing a general inner product, (16) implies n=0
= am Y i (Kl2|) Y7 (@)Y, (D) (23b)
(u ) = / h(lz)u (2], &) al (2], @) do(x)  (17a) mon
ROO where we have used the Addition Formula for the Spherical
= / h(r) [jn(kr)fr? dr SpmpOng (17b) Harmonics [9, p.27] to go fron§23a)to (23b). The left hand
0 side is a plane wave with direction of propagatigrand is a
basic solution tq1) in Gs. That is, for the plane wave, we have

where the only condition oh(|x|) is that it is non-negative and the Fourier Coefficients

has appropriate support to yield a valid inner product.

Itis a simple matter to normalize the modes (13) to any spher- = 4n[T,(9)]V2 Y™ (g) (24)
ically symmetric region. Hence fd@?, normalization with re- ’ ’
spect to inner product (4), yields which depend only on direction of propagatign

" jn (k|| Y™ (Z)
(o ()2 72 dr) /2

Based on the the dgnommator in (18) and because of its impor-g(z; 4/) £ 4—hf)1) (klz — y|)
tance later, we define 4

the Helmholtz equation, a point source gt is given by [9,
p-5]

} EXAMPLE (POINT SOURCES. The fundamental solution to
(18)

{SOZ%S(m)}m,n < {

eik‘mfy‘

— 25
ey TPy @

T Wherehg)(-) is the ordem spherical Hankel function [10, 11].
In(T) = / [ (k7)) 7 dr (19) ' Inthe spherical coordinate system the fundamental solution has
0 an expansion, called the addition theorem for the fundamental
21t is clear that the indicesn andn can be put into a bijection with the solution, valid f0|’|$| < |y| [9, p.62]
countable index set, as in (10). Hence the modes, (13), are analogous to the

@p in (10) apart from an absence of normalization. Further, in defining the — . (1) M\ Vm
m%des we have included the rogue facitbrwhich is standard to align with CD(:B, y) ik Z‘J" <k‘w‘>h” (k‘\y|)Yn (w) Yn (y)’ (26)

some key but esoteric identities. m,n
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from which we glean fofz| < S < |y| the wave-fieldand the natural projection is the direct trunca-
) _— _ tion of the wave-field (not necessarily one from a homogeneous
s = (=i)" k[T (S) 2R (klyl) Y (9).- (27)  Helmholtz Equation). That is, we have a projectidf,, that

_ _ o takes a function ofR?® and sets it to zero outsidg’ .
An arbitrary field can be modelled by a distribution (superpo- ‘

sition) of point sources. An arbitrary field which is source-fre@EFINITION 3 (WAVE-FIELD TRUNCATION). The truncation
in B3 can be modelled by the superposition of point sourcéeratorHy: L*(R?) — L*(B}) is defined by

located inR3\B?.
w(z) whenz € B2,

. (30)
0 otherwise

(Hpw)(z) = {

F. Orthogonal Projections

In the time-frequency case in the FOBE context, two proxg gych this projection is parameterized by the radiug ater

jection operators play a key role: time-limiting and bandgze will show why these projections are crucial.
limiting [3]. For spatial systems the analogous operators are
more subtle. We define these analogous operators. Later, we

will give a fuller justification and generalization. [ll. FINITE DIMENSIONAL APPROXIMATIONS

‘Consider a functiom € L*(B3). In general such a function  As a necessary precursor to finding the essential dimension-
will not COI’I‘eSpond to a valid WaVe'ﬂeld, that IS, it will V|O|atea|ity of wavefields in space, we need to deve'op the appropri_
(1). Valid 30|Ut'095 o (1) inBZ belong togs which is a lin-  ate but standard notion of a finite dimensional approximation
ear subspace af*(B;). Hence we can define an orthogonajy what is an infinite dimensional object. Clearly not all finite

projection operator to map to this subspace. dimensional approximations are equal and the most important
DEFINITION 1 (WAVE-FIELD — HELMHOLTZ PROJECTOR. Sense inwhich we choose to distinguish them will be the mini-
The Helmholtz Projectofis : L2(B?) — Gs is defined by mization the error (between the approximation and the original
function), using the appropriate norm, given that the dimension
w— u = Gew (28a) s fixed. The essential dimensionality means that beyond some
m m well-defined threshold in dimension, the best finite dimensional
Gsw = Z<w7 ‘pn;s>mag Pn;s: (28b) approximation achieves a high relative precisitaiependent of

the function to be approximated
We now wish to consider the effectiveness of replacing the

which projectsw € L?(B3) to a solutionu = Gsw to the _ ; - .
proJ (B:) g generic expansion (10) by a finite number of terms in the form

homogeneous Helmholtz EquatioriBip.

Since everyu € G is a fixed point undetys, that isGsu = u(x) ~ Z Ypiop () (31)
u, then Gy is idempotent,G2 = Gs. By the Hilbert Space peP

Projection Theorem(:sw is the bestL2-approximation inGs

tow € L*(B?). whereP is a finite index set whose cardinality?| < oo, is the

The Helmholtz Projector can be utilized in interesting wayslimension of the desired representatigp,are coefficients to
Consider the situation where a wave-field is measured in the determined, anflp, },c p is a finite, incomplete, orthonor-
presence of independent gaussian noise. Consequently, maset.
does not have a valid wave-field, in the sense defined aboveExamination of (31) reveals that there are three components
due to the noise. In this case the Helmholtz Projector can wich impact on obtaining the best approximation: (i) optimal
used to generate the best valid wave-field matching the mel@termination of the orthonormal sgp,, () },c p, (ii) optimal
surements, in a minimum mean square error sense. choice of index setP, with a well defined ordering, and (iii)

Although not immediately apparent the Helmholtz Projectooptimal determination of the coefficients for an expliaite)

G5, has an equivalent interpretation but expressed in terms(bfving chosen the orthonormal set and the index set). Clearly
the source-fieldf (x) domain. It is a truncation that removeghe metric to determine the degree of approximation should be
sources from the bal?: the induced norm (5). The third consideration leads to a stan-
dard problem with known solution which ig, = (u, ¢;)gz,

the Fourier Coefficients [7]. Bringing these facts together leads
to the consideration of thgP|-dimension approximation that
minimizes

DEFINITION 2  (SOURCEFIELD  TRUNCATION
“THE MuMMmY” PROJECTOR. The Mummy projector
Gs: L*(R3) — L*(R3\B?) is defined by

~ B flx) WhenweR3\B?S’, u — U 3 3 32
(Gsf)ie) = {0 otherwise (29) () Ig; ,%mswp(m)HBs (32)

As such this projection is parameterized by the radfus through the choice ofp,(x)}cp.
Clearly this operator is idempoteti® = G5 and self-adjoint ~ Determination of the best approximation (32) of a given di-
(as all orthogonal projections must be). mension to represent a wavefiel¢r) in a regionB?, is non-

We seek yet another projection to fully furnish the analogyivial and resolved in the theoretical developments of the next
with the time-frequency case. The complementary domainfew sections.
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IV. SPATIAL CONCENTRATION OFWAVE-FIELDS where the3;, are given by (22) and further satisfys||7. = 1
A. Problem Statement by the imposed unit energy conditigr||?, = 1 in (33b) us-
ing (12). In the calculation above we *have used the poly-

Now we pose the following problem which is intimately re .
lated to the problem of finding the best finite dimensional reg_rth_ogonallty propt_arty, (16) anq (17), of (13), and the orthonor-
ality of the spherical harmonics (14) and (15).

resentation of a wave-field in a ball but it is also of independe e
Note that in principle we could have used any complete or-

interest. : :
_ thonormal sequence to represent Gs but in our calculation
SPATIAL CONCENTRATION PROBLEM 1. Determine wave- the choice Of{%n;s m.m» from (21), shows it is optimal in the

field w € Gs — the closed subspace ib*(B2) satisfying sense of explicitly finding solutions to (33) as will be revealed
Au + k*u = 0 in B — which has the greatest concentrashortly. That is, we can solve (33) because we happen to ex-
tion of energy inB}, whereR < S. Thatis, find thew € G5 ploit the preferred orthonormal representation; or we could say
which achieves that we are guided by physical intuition or insight to obtain the
fB;’“(m)’2 dv(z) fB%‘u(x)f dv(z) preferred prthonormal representation as was done in [5]. This
sup —= 5 = sup 5 (33a) c!early points to the nee_d for a more advanced deduqtlve prin-
w0 [os \u(:c)] dv(x)  u#0 HUHBg ciple to determine solutions to the Spatial Concentration Prob-
ueds lem 1 or its generalizations particularly when we have less sym-
or equivalently metries in the formulation. This generalization and theory is the
) subject of Section VII. In the mean time we will borrow termi-
sup / lu(@)|” dv(w). (33b) nology from the more general material.
|\u||§%:1 B Define the positive real “eigenvalues”, which have an energy
ueOs ratio interpretation,
In plain English, we are want to determine which member(s)
of the class of wave-fields generated by sources outside radius n Tn(R) foR [jn (k7)) 72 drr
S, of unit energy in the regiohz| < S, have the maximum (R, S) = AG) ST, S 5
concentration of energy in the inner bad| < RwhereR < S. " Jo Un(kr)I? r2 dr
This is a nontrivial problem as there is no constraint[ on WthSr n = 0,1,2,..., whereupon we observe maximizing (36)
the sources of the wave-field may be positioned witkiyB>. CONCems 6n’ly7opti1mizing the choice ofas follows
We can use the two projections from section |I-F to recast
Spatial Concentration Problem 1 in a more abstract and com-
pact form:

(36)

n = argmax A\, (R, S) (37)

SPATIAL CONCENTRATION PROBLEM 2. Determine the solu- with no constraint onn other thanm| < 7 (with all choices
tion(s) and value of: being equal). Hence the Spatial Concentration Problem 1 has a
HHRGst%g ||HRU||12533 continuum of solutions defined for thein (37) by

S 5 S (34)
Tl

u#0 n n

u€Gs (@) 2 S o (x), where Y [pm P=1 (38)
We will have more to say of the generalization of this formula- m=—7n m=—n

tion in section VII.

sup

—— 5% = sup
w0 [|Gswllg,

which is a2n+1 dimensional unit sphere, a subset of the infinite
B. Spatial Concentration Problem Solution dimensional unit sphergs||2, = 1. The non-uniqueness is
We now solve Spatial Concentration Problem 1. Singa €XPected because of the symmetries of the sphere. _
(33) is in G then we can use representation (21) to determine,From properties of the spherical Bessel functions on the in-
without approximationthe total energy in thénner R-radius tervais(0, &2 and[0, S whereR < 5, one can show [10, 11]

ball
M(R,S) > M(R,S) > X(R,S)>--->0 (39)
2
lullgs 2 [ [u(z)|” dv(x) (35a) , _ _
R B3, and, therefore, the complete solution to (37yis= 0, with
2 m = 0. Hence the most spatially concentrated wave-field, u
m m p y p
= /BS ’Z n;s ‘Pn;s("c)‘ dv(x) (350) 04 phase factor, is given by
_ m 3P m jo (k|x|) sin k|z|
=Y e [ ens@dda@ dve) (350 0 (z)= . 40
e — g B;} S 900.,3( ) /74/”_[‘.7-0(5)]1/2 ]{3|.’B| ( )
Ry . 2.2
=Y \om, 2 Jo Ln(kr)]"r? dr (35d) Which has energy\, within B3 compared with unit energy
o TIn(S) within B2. This solution has the character of an isotropic field
2 Tn(R) which may be generated by uniformly distributed sources in all
=>|8m] 7.05) (35€) directions ¢ steradians) with perfect phase alignment (ideal

m,n " constructive interference at the origin).
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C. Optimum Eigenfunction Expansion We begin withuy (x), the optimal approximation given by
The ordering of the eigenvalues in (39) induces an orderik@3)- Using the poly-orthogonality, (16), in analogy with the

of the orthonormal functions. Given any functienc G, then arguments used in (35), we have

we may write

2 A "
2, 2 / lu(e) — un(@)|’ do(z (44a)
U= <u, ‘Pg;s>¢8;s + ' (41) B%
2
whereu’ € G is orthogonal tag). ., and we have the direct / | > Brsen(@)] du(z)  (44b)
sumg, = span{y).. } & G'. Then replacingj; in the Spatial Br mn>N
Concentration Problem 1 wnﬁg” leads to a solution associ- B Z g 2Jn(R) (440)
ated with\{, the next largest eigenvalue aftgr, that can be o "L T.(8)
expressed as a continuum of functions parametrized by points =N .
on a 3 dimensional sphere 3 In(R) S | 2
= gl (44d)
n>N jn(S) m=-—n

1 1
2 57 g ot (x), where Y |gn'=1 (42)

m=—1 m=—1

Since||ul[gs = 1 we have|3s||* = 1 and hence

which has energy\; within B3 compared with unit energy i E”: | ‘2_ | implies E”: | ’2< )
n;s| T n;s| = +-

within B2. And so on working through the eigenvalues in order (45)
from largest to smallest. n=0m=-n memn

We note that it is preferable to take into consideration th&s we end up with the simple but effective bound:
multiplicity of the eignvalues when selecting the size of any
finite dimensional approximation. In the above, it is natural w(R)
to choose the dimensions &s4,9, 16, .... This corresponds H UNHJB?’ Z . (S) Z An(R, 5) (462)
to truncating according te. < N and using the full avail- v >N
able range form (|m| < n for all n < N). Hence we have Z fo n (k)2 72 dr (46b)
determined the best,, .y 1 = (IV + 1)? dimensional ap- B = 0 2r2dr

proximation in the induced norm, in the form of (31) where
|P| = (N +1)% Hence the bound on the approximation is a function onlg of
THEOREM1. The bestN +1)2 dimensional approximation of S andN, independentf «(x). That there is a well-defined and
solutions toAu + k2u = 0 in B3 is given marked threshold as we increases a property that we can in-

s fer from the spherical Bessel functions following the bounding

Z gm_gm (43) arguments given in [5, 6].
n;S n; S
m,n<N

. . VI. OTHER RESULTS IN SPATIAL CONCENTRATION
where the orthonormal sequence is giver(1). That is, trun-

cation of the normalized modé48), in their natural order give A- Two Dimensional / Height Invariant Wave-Fields

the optimal approximations of degré&’ + 1) for B3. Results for the two dimensional problesannotbe straight-

forwardly deduced or inferred from the three dimensional case

so far considered. However, it is true that a similar general

approach can be followed. In this section we point out salient

features of the two dimensional case and present results without
V. ESSENTIAL DIMENSIONALITY OF WAVE-FIELDS proof.

We have seen how to construct a finite dimensional approx-There are two interpretations of the two dimensional case: 1)
imation to a wave-field, with unit energy i&?, that best cap- beginning with the two dimensional Helmholtz equation we can
tures the energy of that wavefield in an inner il Now we develop a theory in the two independent spatial variables and
show how the accuracy of the best approximation is affectethke no reference to a third independent spatial variable, this
as we vary the dimension by changing We will find that all is mathematically valid but strictly disconnected from physical
fields can be well-approximated ondeis chosen large enoughreality; and 2) the two dimensional case corresponds to a linear
and this choice is a function only of the radiiand R. Thatis, subspace of the three dimensional case where the sources and
there is an essential dimensionality that depends only on fiiedds are invariant along one spatial dimension, typically taken
geometry of the region of interest (determined by radit)s in the z direction, the “height”, as we assume here. This lat-
and the geometry of the sources which generate the wave-fisdd case is physically more relevant and corresponds to a form
(sources located outside radifiy. This property was derived of cylindrical symmetry where a fundamental solution is inter-
in [5,6] in a more restricted context (primarily requiring farfielcpreted as an infinite line source in thalirection. Such a line
sources), using different tools and only in the form of boundource generates cylindrical waves. However, one can argue
ing the essential dimensionality with uncertainty regarding ttgeich lines sources are only a mathematical idealization. For
tightness. this reason we express the results using the first interpretation

Here N subscript denotes the truncation depthiand not the
dimension which i§N + 1)2.
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so that the analogs @? andB? are disksB? andB?, respec-
tively.

The analog of Spatial Concentration Problem 1 has the most
spatially concentrated field, up to a constant complex factor,
given by

3 source

Jo(k|x|) (47) source

which is the Bessel function of order zero. This two dimen-
sional wave-field contains

[ Lo (k)2 dr

- 48
fos [Jo(kr)]2 rdr (48)

of the energy in the disk2 given unity energy ifB2. No other source

wave-field inB2 contains more energy (given unit energy in
B2). This conclusion, like the three dimensional case, holds  source A+ ku=0in S
irrespective of the values @t andS.

The orthornormal sequence which ylelds the best finite qil'g. 2: Source-field and Wave-field Geometry: The region of interest is the

mensional approximation is the normalization of modes inner blobR. Any source for the wave-field, symbolized by the irregular outer
blobs, are outside an outer blShshown with cutaway. That s, the source-field
. PR : b i
ann(k|$|)em¢(m)7 n=0,+1,+2,... (49) is non-zero only iR®\S andR < S.

where |z| is the radius and)(z) is the angle in polar coor-
dinates. The dimensionality of truncating the series:te<
|N|is 2N + 1. The essential dimensionality occurs whe
N = emR/X. That is the essential dimensionality is give
by 2erR/X + 1. Additional details on this case can be foun
in [5, 6] but in a narrower context.

This essential dimensionality therefore, holds for the heig
invariant wave-field case with respect to the infinite lengtfi .
cylinders of radiiS and R. That this essential dimensional-'cations. ) 3 i i
ity is very much less than the case of the finite spheres of ragiiVé can regard a region iR as a blob. Itis convenient to

S and R is a manifestation of the strong constraint placed dhink that the blob is topologically equivalent to a ball but this
the wave-field to be height invariant is not essential. To apply our results only requires sufficient

smoothness conditions on the interior and boundary of the re-

. _ _ gion without any necessity that the blob be simply connected.

B. One Dimensional / Planar Wave-Fields In the following, the respective bloh$, R c R3 generalize
The essential dimensionality of the one dimensionghe respective ballB?, B> c R* with R  S. Because balls

Helmholtz equation is two since for a given wavenumber capture the essence of blobs we can move rapidly through the

we can only have a one wave traveling left to right and ongncepts associated with blobs without undue elaboration and

wave traveling right to left. This represents a degenerate cas@lanation:

as the region of interest on the real number is irrelevant (pro-pefine the separable Hilbert Space

vided it is not of measure zero). [R? the one dimensional

Helmholtz equation arises from the consideration of two planar Gs & {u € LA(S): Au+ k*u = 0}. (50)

wave fronts whose directions of propagation are opposite.

Regions inR? are much richer in structure and the domains be-
ome much more tightly coupled into any problem formulation.
uch an increase in complexity when more than one indepen-

&Ient variable is involved has led to the study of boundary value

problems and integral equations [12,13]. We will use such the-

REY only to the extent of establishing the most important results

nd leave the obvious extensions and applications to other pub-

which has inner product

VIl. GENERAL THEORY OF SPATIAL CONCENTRATION
AND DIMENSION (frg)s = / f(x)g(x) dv(z), (51)
S

The preceding results for balls which have spherical symme-
try represent a special case of a more general result which wigh induced norm
now present based on the theory of positive (and self-adjoint)
operators in Hilbert Space. In the theory of time-frequency con- ||f||i e / ]f(:c)|2 dv(z). (52)
centration and essential dimensionality the domain and range of S
the Fourier Transform are the real lifkeand the regions under
investigation are either simple closed intervals or a set of dis-
joint closed intervals. In the wave-field case the domain aiBPATIAL CONCENTRATION PROBLEM 3. Determine wave-
range are in gener&? (or, as we have seen, perhaps the lowdield ©« € Gs — the closed subspace ih?(S) satisfying
dimensional Euclidean spa@ or the degenerate caseRf. Au + k*u = 0 in S — which has the greatest concentration

We now pose the Spatial Concentration Problem:



of energy inR whereR C S. That is, find thew € Gs which
achieves

(53)

sup
lulls=1
u€Gs

/R‘u(a:)’Q dv(z).

Australian Communication Theory Workshop Proceedings 2003

The theory, which is still being developed underpins the lim-
its placed on communication systems which purport to exploit
space. We finish with one example. In MIMO there has been
considerable fuss made over the linear increase in capacity of
MIMO with numbers of antennas. This is an artifact of impos-

ing independence which is valid if the antennas can be widely

This can be reformulated using operatdfs and H; which

separated in space. In the opposite extreme, our theory makes

are the straightforward generalizations of the source-field ain@lear that the capacity is not related to the number of anten-

wave-field truncation operators given in section Il€; and nas
Hp, respectively:

SPATIAL CONCENTRATION PROBLEM 4. Determine the solu-

tion(s) and value of: the

|| He Gsw)|2 || Hrul|3
SUp —————°> = sup ————. (54)
wro  [[Gsw||Z wzo |l
u€Gs
A closely related problem to (54) is (1]
H,Gsw|?
sup M = sup [|HzGswl|3 (55a) [
w#0 ||w||s Jw||=1
2 | HeGs | (55b) [

which is the square of the norm of the operattyGs [13].

Now given thatGs is idempotent, werep the suprem-
izer of (55) (if necessary considered as the limit) then, sinc
|Gswl|ls < JJw|s for all w, we would find thatGsw would
also be a supremizer. Heneé needs to be zero iR\S. Then,
|Gsw||% = ||w0|%, which shows that a solution to (55) is also
a solution to (54) (but not necessarily vice versa). Hence, the
solution to these classes of problem reduces to the study of the
eigenstructure of the relevant operator equations. The analy: f
can then proceed as for the time-frequency case. This will ke
studied in greater depth in a sequel. o]

(10]

(4]

B

(6]

VIIl. CONCLUSIONS

The theory developed in the paper determines the mayii]
mum concentration of energy that can be placed in an arbi-
trary shaped region of interest devoid of sources. Associatgg)
optimum finite dimensional approximations have been devel-
oped. For the case of ball shaped region (where the boundgﬁl
is a sphere) and where the sources are contained in the comple-
ment of a sphere closed form solutions to the problem have been
found. These results imply there is a fundamental and calcula-
ble limit to the amount of information that may be carried in a
region of space since there is an essential limit to the number of
orthonormal basis functions that can be used.

A strong analogy was shown to exist with the classical work
done on the time-frequency concentration which is tied with the
fundamental limits imposed by the uncertainty principle of the
Fourier Transform. In the spatial case, the complementary do-
mains are the source-field (distribution of sources which may
be nearfield, farfield, point or distributed) and the wave-field
it induces. These have the analogies of time and frequency in
the case of the Fourier Transform. Further, the analogy of the
Fourier Transform is the Helmholtz Equation which is the par-
tial differential equation corresponding to the time independent
wave equation.

but the region occupied by the antennas. The saturation of

performance improvement with number of antennas will come
when the essential dimensionality of the region is reached. In

presence of finite precision or noise there will be a griz-

zly fundamental limit to the information content that a spatial
region can bear.
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