Fast Training of Pairwise or Higher-order CRFs

Nikos Komodakis (University of Crete)

Introduction

Conditional Random Fields (CRFs)

- Ubiquitous in computer vision
 - segmentation
 optical flow
 image completion

stereo matching image restoration object detection/localization

...

- and beyond
 - medical imaging, computer graphics, digital communications, physics...
- Really powerful formulation

Conditional Random Fields (CRFs)

- Key task: inference/optimization for CRFs/MRFs
- Extensive research for more than 20 years
- Lots of progress
- Many state-of-the-art methods:
 - Graph-cut based algorithms
 - Message-passing methods
 - LP relaxations
 - Dual Decomposition
 -

MAP inference for CRFs/MRFs

- Hypergraph $G = (\mathcal{V}, \mathcal{C})$
 - Nodes $\mathcal V$
 - Hyperedges/cliques ${\cal C}$

High-order MRF energy minimization problem

$$\begin{aligned} \mathrm{MRF}_G(\mathbf{U},\mathbf{H}) &\equiv \min_{\mathbf{x}} \sum_{q \in \mathcal{V}} U_q(x_q) + \sum_{c \in \mathcal{C}} H_c(\mathbf{x}_c) \\ &\text{unary potential} &\text{high-order potential} \\ &\text{(one per node)} &\text{(one per clique)} \end{aligned}$$

- But how do we choose the CRF potentials?
- Through training
 - Parameterize potentials by w
 - Use training data to <u>learn</u> correct w
- Characteristic example of structured output learning [Taskar], [Tsochantaridis, Joachims]

$$f: Z \to X \qquad \text{how to determine } f:$$
 can contain any
$$\text{CRF variables} \\ \text{kind of data} \qquad \text{(structured object)}$$

- Stereo matching:
 - Z: left, right image
 - X: disparity map

$$f = \underset{\mathbf{x}}{\operatorname{argmin}} \operatorname{MRF}_{G}(\mathbf{x}; \mathbf{u}, \mathbf{h})$$
 parameterized by \mathbf{w}

- Denoising:
 - Z: noisy input image
 - X: denoised output image

- Object detection:
 - Z: input image
 - X: position of object parts

- Equally, if not more, important than MAP inference
 - Better optimize correct energy (even approximately)
 - Than optimize wrong energy exactly
- Becomes even more important as we move towards:
 - complex models
 - high-order potentials
 - lots of parameters
 - lots of training data

Contributions of this work

A very efficient max-margin learning framework for general CRFs

- A very efficient max-margin learning framework for general CRFs
- Key issue: how to properly exploit CRF structure during learning?

- A very efficient max-margin learning framework for general CRFs
- Key issue: how to properly exploit CRF structure during learning?
 - Existing max-margin methods:
 - use MAP inference of an equally complex CRF as subroutine
 - have to call subroutine many times during learning

- A very efficient max-margin learning framework for general CRFs
- Key issue: how to properly exploit CRF structure during learning?
 - Existing max-margin methods:
 - use IVIAP inference of an equally complex CRF as subroutine
 - have to call subroutine many times during learning
 - Suboptimal

- A very efficient max-margin learning framework for general CRFs
- Key issue: how to properly exploit CRF structure during learning?
 - Existing max-margin methods:
 - use NiAP inference of an equally complex CRF as subroutine
 - have to call subroutine many times during learning
 - Suboptimal
 - computational efficiency ???
 - accuracy ???
 - theoretical properties ???

 Reduces training of complex CRF to parallel training of a series of easy-to-handle slave CRFs

- Reduces training of complex CRF to parallel training of a series of easy-to-handle slave CRFs
- Handles arbitrary pairwise or higher-order CRFs

- Reduces training of complex CRF to parallel training of a series of easy-to-handle slave CRFs
- Handles arbitrary pairwise or higher-order CRFs
- Uses very efficient projected subgradient learning scheme

- Reduces training of complex CRF to parallel training of a series of easy-to-handle slave CRFs
- Handles arbitrary pairwise or higher-order CRFs
- Uses very efficient projected subgradient learning scheme
- Allows hierarchy of structured prediction learning algorithms of increasing accuracy

- Reduces training of complex CRF to parallel training of a series of easy-to-handle slave CRFs
- Handles arbitrary pairwise or higher-order CRFs
- Uses very efficient projected subgradient learning scheme
- Allows hierarchy of structured prediction learning algorithms of increasing accuracy
- Extremely flexible and adaptable
 - Easily adjusted to fully exploit additional structure in any class of CRFs (no matter if they contain very high order cliques)

Dual Decomposition for CRF MAP Inference (brief review)

Very general framework for MAP inference [Komodakis et al. ICCV07, PAMI11]

Master = coordinator (has global view)
 Slaves = subproblems (have only local view)

Very general framework for MAP inference [Komodakis et al. ICCV07, PAMI11]

• Master = $MRF_G(\mathbf{u}, \mathbf{h}) \leftarrow (MAP-MRF \text{ on hypergraph } G)$

= min
$$MRF_G(\mathbf{x}; \mathbf{u}, \mathbf{h}) := \sum_{p \in \mathcal{V}} u_p(x_p) + \sum_{c \in \mathcal{C}} h_c(\mathbf{x}_c)$$

Very general framework for MAP inference [Komodakis et al. ICCV07, PAMI11]

- Set of slaves = $\{MRF_{G_i}(\boldsymbol{\theta}^i, \mathbf{h})\}$ (MRFs on sub-hypergraphs G_i whose union covers G)
- Many other choices possible as well

Very general framework for MAP inference [Komodakis et al. ICCV07, PAMI11]

 Optimization proceeds in an iterative fashion via master-slave coordination

Set of slave MRFs $\{\mathrm{MRF}_{G_i}(oldsymbol{ heta}^i,\mathbf{h})\}$

convex dual relaxation

$$\mathrm{DUAL}_{\{G_i\}}(\mathbf{u}, \mathbf{h}) = \max_{\{\boldsymbol{\theta}^i\}} \sum_{i} \mathrm{MRF}_{G_i}(\boldsymbol{\theta}^i, \mathbf{h})$$
s.t.
$$\sum_{i \in \mathcal{I}_p} \theta_p^i(\cdot) = u_p(\cdot)$$

For each choice of slaves, master solves (possibly different) dual relaxation

- Sum of slave energies = lower bound on MRF optimum
- Dual relaxation = maximum such bound

Set of slave MRFs $\{\mathrm{MRF}_{G_i}(oldsymbol{ heta}^i,\mathbf{h})\}$

convex dual relaxation

$$\mathrm{DUAL}_{\{G_i\}}(\mathbf{u}, \mathbf{h}) = \max_{\{\boldsymbol{\theta}^i\}} \sum_{i} \mathrm{MRF}_{G_i}(\boldsymbol{\theta}^i, \mathbf{h})$$
s.t.
$$\sum_{i \in \mathcal{I}_p} \theta_p^i(\cdot) = u_p(\cdot)$$

Choosing more difficult slaves \Rightarrow tighter lower bounds \Rightarrow tighter dual relaxations

Input:

- $\{\bar{\mathbf{z}}^k, \bar{\mathbf{x}}^k\}_{k=1}^K$ (training set of K samples)
- k-th sample: CRF on $G^k = (\mathcal{V}^k, \mathcal{C}^k)$
- Feature vectors: $g_p(\cdot, \cdot)$, $g_c(\cdot, \cdot)$

$$u_p^k(x_p) = \mathbf{w}^T g_p(x_p, \overline{\mathbf{z}}^k), \ h_c^k(\mathbf{x}_c) = \mathbf{w}^T g_c(\mathbf{x}_c, \overline{\mathbf{z}}^k)$$

Constraints:

$$\mathrm{MRF}_{G^k}(\bar{\mathbf{x}}^k;\mathbf{u}^k,\mathbf{h}^k) \leq \mathrm{MRF}_{G^k}(\mathbf{x};\mathbf{u}^k,\mathbf{h}^k) - \Delta(\mathbf{x},\bar{\mathbf{x}}^k)$$

 $\Delta(\mathbf{x},\mathbf{x}') = \text{dissimilarity function, } (\Delta(\mathbf{x},\mathbf{x})=0)$

Input:

- $\{\bar{\mathbf{z}}^k, \bar{\mathbf{x}}^k\}_{k=1}^K$ (training set of K samples)
- k-th sample: CRF on $G^k = (\mathcal{V}^k, \mathcal{C}^k)$
- Feature vectors: $g_p(\cdot, \cdot)$, $g_c(\cdot, \cdot)$

$$u_p^k(x_p) = \mathbf{w}^T g_p(x_p, \overline{\mathbf{z}}^k), \ \ h_c^k(\mathbf{x}_c) = \mathbf{w}^T g_c(\mathbf{x}_c, \overline{\mathbf{z}}^k)$$

Constraints:

$$\mathrm{MRF}_{G^k}(\bar{\mathbf{x}}^k; \mathbf{u}^k, \mathbf{h}^k) \leq \mathrm{MRF}_{G^k}(\mathbf{x}; \mathbf{u}^k, \mathbf{h}^k) - \Delta(\mathbf{x}, \bar{\mathbf{x}}^k) + \xi_k$$

 $\Delta(\mathbf{x}, \mathbf{x}') = \text{dissimilarity function, } (\Delta(\mathbf{x}, \mathbf{x}) = 0)$

Regularized hinge loss functional:

$$\min_{\mathbf{w}} \mu R(\mathbf{w}) + \sum_{k=1}^{K} \xi_k$$

$$\xi_k = \operatorname{MRF}_{G^k}(\bar{\mathbf{x}}^k; \mathbf{u}^k, \mathbf{h}^k) - \min_{\mathbf{x}} \left(\operatorname{MRF}_{G^k}(\mathbf{x}; \mathbf{u}^k, \mathbf{h}^k) - \Delta(\mathbf{x}, \bar{\mathbf{x}}^k) \right)$$

$$\Delta(\mathbf{x}, \bar{\mathbf{x}}^k) = \sum_{p \in \mathcal{V}^k} \delta_p(x_p, \bar{x}_p^k) + \sum_{c \in \mathcal{C}^k} \delta_c(\mathbf{x}_c, \bar{\mathbf{x}}_c^k)$$
$$\bar{u}_p^k(\cdot) = u_p^k(\cdot) - \delta_p(\cdot, \bar{x}_p^k)$$
$$\bar{h}_c^k(\cdot) = h_c^k(\cdot) - \delta_c(\cdot, \bar{\mathbf{x}}_c^k)$$

Regularized hinge loss functional:

$$\min_{\mathbf{w}} \mu R(\mathbf{w}) + \sum_{k=1}^{K} \xi_k$$

$$\xi_k \longrightarrow \begin{bmatrix} L_{G^k}(\bar{\mathbf{x}}^k, \bar{\mathbf{u}}^k, \bar{\mathbf{h}}^k; \mathbf{w}) \equiv \\ \equiv \mathrm{MRF}_{G^k}(\bar{\mathbf{x}}^k; \bar{\mathbf{u}}^k, \bar{\mathbf{h}}^k) - \min_{\mathbf{x}} \mathrm{MRF}_{G^k}(\mathbf{x}; \bar{\mathbf{u}}^k, \bar{\mathbf{h}}^k) \end{bmatrix}$$

$$\Delta(\mathbf{x}, \bar{\mathbf{x}}^k) = \sum_{p \in \mathcal{V}^k} \delta_p(x_p, \bar{x}_p^k) + \sum_{c \in \mathcal{C}^k} \delta_c(\mathbf{x}_c, \bar{\mathbf{x}}_c^k)$$
$$\bar{u}_p^k(\cdot) = u_p^k(\cdot) - \delta_p(\cdot, \bar{x}_p^k)$$
$$\bar{h}_c^k(\cdot) = h_c^k(\cdot) - \delta_c(\cdot, \bar{\mathbf{x}}_c^k)$$

Regularized hinge loss functional:

$$\min_{\mathbf{w}} \mu R(\mathbf{w}) + \sum_{k=1}^{K} L_{G^k}(\bar{\mathbf{x}}^k, \bar{\mathbf{u}}^k, \bar{\mathbf{h}}^k; \mathbf{w})$$

$$L_{G^k}(\bar{\mathbf{x}}^k, \bar{\mathbf{u}}^k, \bar{\mathbf{h}}^k; \mathbf{w}) \equiv$$

$$\equiv \mathrm{MRF}_{G^k}(\bar{\mathbf{x}}^k; \bar{\mathbf{u}}^k, \bar{\mathbf{h}}^k) - \min_{\mathbf{x}} \mathrm{MRF}_{G^k}(\mathbf{x}; \bar{\mathbf{u}}^k, \bar{\mathbf{h}}^k)$$

Regularized hinge loss functional:

$$\min_{\mathbf{w}} \mu R(\mathbf{w}) + \sum_{k=1}^{K} L_{G^k}(\bar{\mathbf{x}}^k, \bar{\mathbf{u}}^k, \bar{\mathbf{h}}^k; \mathbf{w})$$

$$L_{G^k}(\bar{\mathbf{x}}^k, \bar{\mathbf{u}}^k, \bar{\mathbf{h}}^k; \mathbf{w}) \equiv \\ \equiv \mathrm{MRF}_{G^k}(\bar{\mathbf{x}}^k; \bar{\mathbf{u}}^k, \bar{\mathbf{h}}^k) - (\min_{\mathbf{x}} \mathrm{MRF}_{G^k}(\mathbf{x}; \bar{\mathbf{u}}^k, \bar{\mathbf{h}}^k))$$

Problem

Learning objective intractable due to this term

Regularized hinge loss functional:

$$\min_{\mathbf{w}} \mu R(\mathbf{w}) + \sum_{k=1}^{K} L_{G^k}(\bar{\mathbf{x}}^k, \bar{\mathbf{u}}^k, \bar{\mathbf{h}}^k; \mathbf{w})$$

$$L_{G^k}(\bar{\mathbf{x}}^k, \bar{\mathbf{u}}^k, \bar{\mathbf{h}}^k; \mathbf{w}) \equiv$$

$$\equiv \mathrm{MRF}_{G^k}(\bar{\mathbf{x}}^k; \bar{\mathbf{u}}^k, \bar{\mathbf{h}}^k) - \min_{\mathbf{x}} \mathrm{MRF}_{G^k}(\mathbf{x}; \bar{\mathbf{u}}^k, \bar{\mathbf{h}}^k)$$

Solution: approximate it with dual relaxation from decomposition $\{G_i^k = (\mathcal{V}_i^k, \mathcal{C}_i^k)\}$

$$\min_{\mathbf{x}} \mathrm{MRF}_{G^k}(\mathbf{x}; \bar{\mathbf{u}}^k, \bar{\mathbf{h}}^k) \approx \mathrm{DUAL}_{\{G_i^k\}}(\bar{\mathbf{u}}^k, \bar{\mathbf{h}}^k)$$

$$\min_{\mathbf{x}} \mathrm{MRF}_{G^k}(\mathbf{x}; \bar{\mathbf{u}}^k, \bar{\mathbf{h}}^k) \approx \mathrm{DUAL}_{\{G_i^k\}}(\bar{\mathbf{u}}^k, \bar{\mathbf{h}}^k)$$

$$\mathrm{DUAL}_{\{G_i\}}(\mathbf{u}, \mathbf{h}) = \max_{\{\theta^i\}} \sum_{i} \mathrm{MRF}_{G_i}(\theta^i, \mathbf{h})$$

$$\mathrm{s.t.} \sum_{i \in \mathcal{I}_p} \theta_p^i(\cdot) = u_p(\cdot)$$

Regularized hinge loss functional:

$$\min_{\mathbf{w}, \{\boldsymbol{\theta}^{(i,k)}\}} \mu R(\mathbf{w}) + \sum_{k} \sum_{i} L_{G_{i}^{k}}(\bar{\mathbf{x}}^{k}, \boldsymbol{\theta}^{(i,k)}, \bar{\mathbf{h}}^{k}; \mathbf{w})$$
s.t.
$$\sum_{i \in \mathcal{I}_{p}^{k}} \theta_{p}^{(i,k)}(\cdot) = \bar{u}_{p}^{k}(\cdot) .$$

now

Regularized hinge loss functional:

$$\min_{\mathbf{w},\{\boldsymbol{\theta}^{(i,k)}\}} \mu R(\mathbf{w}) + \sum_{k} \sum_{i} L_{G_{i}^{k}}(\bar{\mathbf{x}}^{k}, \boldsymbol{\theta}^{(i,k)}, \bar{\mathbf{h}}^{k}; \mathbf{w})$$
s.t.
$$\sum_{i \in \mathcal{I}_{p}^{k}} \theta_{p}^{(i,k)}(\cdot) = \bar{u}_{p}^{k}(\cdot) .$$

now

$$\min_{\mathbf{w}} \mu R(\mathbf{w}) + \sum_{k=1}^{K} L_{G^k}(\bar{\mathbf{x}}^k, \bar{\mathbf{u}}^k, \bar{\mathbf{h}}^k; \mathbf{w})$$

Regularized hinge loss functional:

$$\min_{\mathbf{w},\{\boldsymbol{\theta}^{(i,k)}\}} \mu R(\mathbf{w}) + \sum_{k} \sum_{i} L_{G_{i}^{k}}(\bar{\mathbf{x}}^{k}, \boldsymbol{\theta}^{(i,k)}, \bar{\mathbf{h}}^{k}; \mathbf{w})$$
s.t.
$$\sum_{i \in \mathcal{I}_{p}^{k}} \theta_{p}^{(i,k)}(\cdot) = \bar{u}_{p}^{k}(\cdot) .$$

now

$$\min_{\mathbf{w}} \mu R(\mathbf{w}) + \sum_{k=1}^{K} L_{G^k}(\bar{\mathbf{x}}^k, \bar{\mathbf{u}}^k, \bar{\mathbf{h}}^k; \mathbf{w})$$

Training of complex CRF was decomposed to parallel training of easy-to-handle slave CRFs !!!

- Global optimum via projected subgradient learning algorithm:
 - Input:
 - Training samples: $\{\bar{\mathbf{z}}^k, \bar{\mathbf{x}}^k\}_{k=1}^K$
 - Hypergraphs: $\{G^k = (\mathcal{V}^k, \mathcal{C}^k)\}_{k=1}^K$
 - Feature vectors: $\{g_p(\cdot,\cdot)\}, \{g_c(\cdot,\cdot)\}$

$$\forall k, \text{ choose decomposition } \{G_i^k = (\mathcal{V}_i^k, \mathcal{C}_i^k)\} \text{ of hypergraph } G^k \\ \forall k, i, \text{ initialize } \boldsymbol{\theta}^{(i,k)} \text{ so as to satisfy } \sum\nolimits_{i \in \mathcal{I}_p^k} \theta_p^{(i,k)}(\cdot) = \bar{u}_p^k(\cdot)$$

```
\forall k, choose decomposition \{G_i^k = (\mathcal{V}_i^k, \mathcal{C}_i^k)\} of hypergraph G^k \forall k, i, initialize \boldsymbol{\theta}^{(i,k)} so as to satisfy \sum_{i \in \mathcal{I}_p^k} \theta_p^{(i,k)}(\cdot) = \bar{u}_p^k(\cdot) repeat
```

```
orall k, choose decomposition \{G_i^k = (\mathcal{V}_i^k, \mathcal{C}_i^k)\} of hypergraph G^k \forall k, i, initialize \pmb{\theta}^{(i,k)} so as to satisfy \sum_{i \in \mathcal{I}_p^k} \theta_p^{(i,k)}(\cdot) = \bar{u}_p^k(\cdot) repeat // optimize slave MRFs \forall k, i, compute minimizer \mathbf{\hat{x}}^{(i,k)} of slave \mathrm{MRF}_{G_i^k}(\pmb{\theta}^{(i,k)}, \mathbf{\hat{h}}^k)
```

$$\forall k, \text{ choose decomposition } \{G_i^k = (\mathcal{V}_i^k, \mathcal{C}_i^k)\} \text{ of hypergraph } G^k \\ \forall k, i, \text{ initialize } \boldsymbol{\theta}^{(i,k)} \text{ so as to satisfy } \sum_{i \in \mathcal{I}_p^k} \boldsymbol{\theta}_p^{(i,k)}(\cdot) = \bar{u}_p^k(\cdot) \\ \textbf{repeat} \\ \textit{// optimize slave MRFs} \\ \forall k, i, \text{ compute minimizer } \hat{\mathbf{x}}^{(i,k)} \text{ of slave } \mathrm{MRF}_{G_i^k}(\boldsymbol{\theta}^{(i,k)}, \hat{\mathbf{h}}^k) \\ \textit{// update } \mathbf{w} \\ \mathbf{w} \leftarrow \mathbf{w} - \alpha_t \cdot (d\mathbf{w}) \longleftarrow \text{ fully specified from } \left\{\hat{\boldsymbol{x}}^{(i,k)}\right\} \\ \textit{// update } \boldsymbol{\theta}^{(i,k)} \\ \boldsymbol{\theta}^{(i,k)}(\cdot) += \alpha_t \cdot \left(\left[\hat{x}_p^{(i,k)} = \cdot\right] - \frac{\sum_{j \in \mathcal{I}_p^k} \left[\hat{x}_p^{(j,k)} = \cdot\right]}{\mathcal{I}_p^k}\right) \\ \textbf{until convergence} \\ \end{pmatrix}$$

- Incremental subgradient version:
 - Same as before but considers subset of slaves per iteration
 - Subset chosen
 - deterministically or
 - randomly (stochastic subgradient)
 - Further improves computational efficiency
 - Same optimality guarantees & theoretical properties

- Resulting learning scheme:
 - ✓ Very efficient and very flexible
 - ✓ Requires from the user only to provide an optimizer for the slave MRFs
 - ✓ Slave problems freely chosen by the user
 - ✓ Easily adaptable to further exploit special structure of any class of CRFs

$$\mathcal{F}_0$$
 = true loss (intractable)
$$\mathcal{F}_{\{G_i^k\}} = \text{loss from decomposition}\,\{G_i^k\}$$

- $\mathcal{F}_0 \leq \mathcal{F}_{\{G_i^k\}}$ (upper bound property)
- $\{G_i^k\} < \{\tilde{G}_j^k\} \implies \mathcal{F}_0 \leq \mathcal{F}_{\{\tilde{G}_j^k\}} < \mathcal{F}_{\{G_i^k\}}$ (hierarchy of learning algorithms)

- $G_{\text{single}}^k = \{G_c^k\}$ denotes following decomposition:
 - One slave per clique $\,c\in\mathcal{C}\,$
 - Corresponding sub-hypergraph $G_c^k=(\mathcal{V}_c^k,\mathcal{C}_c^k)$ $\mathcal{V}_c^k=\{p|p\in c\}$, $\mathcal{C}_c^k=\{c\}$
- Resulting slaves often easy (or even trivial) to solve even if global problem is complex and NP-hard
 - leads to widely applicable learning algorithm
- Corresponding dual relaxation is an LP
 - Generalizes well known LP relaxation for pairwise
 MRFs (at the core of most state-of-the-art methods)

- But we can do better if CRFs have special structure...
- Structure means:
 - More efficient optimizer for slaves (speed)
 - Optimizer that handles more complex slaves (accuracy)

(Almost all known examples fall in one of above two cases)

We adapt decomposition to problem at hand to exploit its structure

- But we can do better if CRFs have special structure...
- E.g., pattern-based high-order potentials (for a clique c) [Komodakis & Paragios CVPR09]

$$H_c(\mathbf{x}) = \begin{cases} \psi_c(\mathbf{x}) & \text{if } \mathbf{x} \in \mathcal{P} \\ \psi_c^{\text{max}} & \text{otherwise} \end{cases}$$

 ${\mathcal P}$ subset of ${\mathcal L}^{|c|}$ (its vectors called **patterns**)

- We only assume:
 - Set ${\mathcal P}$ is sparse
 - It holds $\psi_c(\mathbf{x}) \leq \psi_c^{\max}, \ \forall \mathbf{x} \in \mathcal{P}$
 - No other restriction

Experimental results

Image denoising

Piecewise constant images

- Potentials: $u_p^k(x_p) = |x_p z_p|$ $h_{pq}^k(x_p, x_q) = V(|x_p x_q|)$
- ullet Goal: learn pairwise potential $V(\cdot)$

Image denoising

• Potentials:
$$u_p^k(x_p) = \left| I^{left}(p) - I^{right}(p - x_p) \right|$$

 $h_{pq}^k(x_p, x_q) = f(\left| \nabla I^{left}(p) \right|) \left[x_p \neq x_q \right]$

• Potentials: $u_p^k(x_p) = \left| I^{left}(p) - I^{right}(p - x_p) \right|$ $h_{pq}^k(x_p, x_q) = f(\left| \nabla I^{left}(p) \right|) \left[x_p \neq x_q \right]$

"Venus" disparity using $f(\cdot)$ as estimated at different iterations of learning algorithm

• Potentials:
$$u_p^k(x_p) = \left| I^{left}(p) - I^{right}(p - x_p) \right|$$

 $h_{pq}^k(x_p, x_q) = f(\left| \nabla I^{left}(p) \right|) \left| x_p \neq x_q \right|$

Sawtooth 4.9%

Poster 3.7%

Bull 2.8%

• Potentials:
$$u_p^k(x_p) = \left| I^{left}(p) - I^{right}(p - x_p) \right|$$

$$h_{pq}^k(x_p, x_q) = f\left(\left| \nabla I^{left}(p) \right| \right) \left[x_p \neq x_q \right]$$

High-order Pn Potts model

Goal: learn high order CRF with potentials given by

$$h_c(\mathbf{x}) = egin{cases} eta_l^c & ext{if } x_p = l, \ orall p \in c \ eta_{\max}^c & ext{otherwise} \end{cases}$$
 [Kohli et al. CVPR07] $eta_l^c = \mathbf{w}_l \cdot z_l^c$

Cost for optimizing slave CRF: $O(|L|) \Rightarrow$ Fast training

- 100 training samples
- 50x50 grid
- clique size 3x3
- 5 labels (|L|=5)

Clustering

- Goal: distance learning for clustering [ICCV'11]
 - Novel discriminative formulation
 - In this case cliques are of very high order: contain all variables
 - On top of that, there exist unobserved (latent) variables during training
 - Significant extension: dual decomposition for training high-order CRFs with latent variables