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Introduction



Conditional Random Fields (CRFs)

• Ubiquitous in computer vision

• segmentation stereo matching
optical flow image restoration
image completion object detection/localization
...

• and beyond

• medical imaging, computer graphics, digital 
communications, physics…

• Really powerful formulation



Conditional Random Fields (CRFs)

• Extensive research for more than 20 years

• Key task: inference/optimization for CRFs/MRFs

• Lots of progress

• Graph-cut based algorithms

• Message-passing methods

• LP relaxations

• Dual Decomposition

• ….

• Many state-of-the-art methods:



MAP inference for CRFs/MRFs

• Hypergraph

– Nodes 

– Hyperedges/cliques

• High-order MRF energy minimization problem

high-order potential
(one per clique)

unary potential
(one per node)

hyperedges

nodes



CRF training

• But how do we choose the CRF potentials?

• Through training

• Parameterize potentials by w

• Use training data to learn correct w 

• Characteristic example of structured output 
learning [Taskar], [Tsochantaridis, Joachims]

:f Z X

can contain any 
kind of data

CRF variables 
(structured object)

how to determine f ?



CRF training

• Stereo matching:

• Z: left, right image

• X: disparity map

Z X

f :

argf  parameterized 
by w



CRF training

• Denoising:

• Z: noisy input image

• X: denoised output image

Z X

f :

argf  parameterized 
by w



CRF training

• Object detection:

• Z: input image

• X: position of object parts

Z X

f :

argf  parameterized 
by w



CRF training

• Equally, if not more, important than MAP inference

• Better optimize correct energy 
(even approximately)

• Than optimize wrong energy exactly

• Becomes even more important as we move 
towards:

• complex models

• high-order potentials

• lots of parameters

• lots of training data



Contributions of this work
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CRF Training via Dual Decomposition

• A very efficient max-margin learning framework for 
general CRFs

• Key issue: how to properly exploit CRF structure 
during learning?

• Existing max-margin methods: 

• use MAP inference of an equally complex CRF as 
subroutine

• have to call subroutine many times during learning

• Suboptimal

• computational efficiency ???
• accuracy ???
• theoretical properties ???
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CRF Training via Dual Decomposition

• Reduces training of complex CRF to parallel training of a 

series of easy-to-handle slave CRFs

• Handles arbitrary pairwise or higher-order CRFs

• Uses very efficient projected subgradient learning scheme

• Allows hierarchy of structured prediction learning 

algorithms of increasing accuracy

• Extremely flexible and adaptable

• Easily adjusted to fully exploit additional structure in any 
class of CRFs (no matter if they contain very high order 
cliques)



Dual Decomposition for CRF 
MAP Inference (brief review)



MRF Optimization via Dual 
Decomposition

• Very general framework for MAP inference [Komodakis
et al. ICCV07, PAMI11]

• Master = coordinator (has global view)
Slaves = subproblems (have only local view)



MRF Optimization via Dual 
Decomposition

• Very general framework for MAP inference [Komodakis
et al. ICCV07, PAMI11]

• Master = (MAP-MRF on hypergraph G)

=  min



MRF Optimization via Dual 
Decomposition

• Very general framework for MAP inference [Komodakis
et al. ICCV07, PAMI11]

• Set of slaves =
(MRFs on sub-hypergraphs Gi whose union covers G)

• Many other choices possible as well



MRF Optimization via Dual 
Decomposition

• Very general framework for MAP inference [Komodakis
et al. ICCV07, PAMI11]

• Optimization proceeds in an iterative fashion via
master-slave coordination



MRF Optimization via Dual Decomposition

convex dual relaxation 

Set of slave MRFs 

For each choice of slaves, master solves (possibly different) 
dual relaxation
• Sum of slave energies = lower bound on MRF optimum
• Dual relaxation = maximum such bound



MRF Optimization via Dual Decomposition

convex dual relaxation 

Set of slave MRFs 

Choosing more difficult slaves  tighter lower bounds
tighter dual relaxations






CRF Training via Dual 
Decomposition
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• Input:
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• (training set of K samples)

• Feature vectors:             ,

• Constraints:

= dissimilarity function, ( )



Max-margin Learning via Dual 
Decomposition

• Input:

• k-th sample: CRF on 

• (training set of K samples)

• Feature vectors:             ,

• Constraints:

= dissimilarity function, ( )



Max-margin Learning via Dual 
Decomposition

• Regularized hinge loss functional:



Max-margin Learning via Dual 
Decomposition

• Regularized hinge loss functional:



Max-margin Learning via Dual 
Decomposition

• Regularized hinge loss functional:



Max-margin Learning via Dual 
Decomposition

• Regularized hinge loss functional:

Learning objective intractable due to this term 

Problem



Max-margin Learning via Dual 
Decomposition

• Regularized hinge loss functional:

Solution: approximate it with dual relaxation from 
decomposition 



Max-margin Learning via Dual 
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Max-margin Learning via Dual 
Decomposition

• Regularized hinge loss functional:

now

before

Training of complex CRF was decomposed to 
parallel training of easy-to-handle slave CRFs !!!



Max-margin Learning via Dual 
Decomposition

• Global optimum via projected subgradient learning algorithm:

• Input:

• Hypergraphs:

• Training samples:

• Feature vectors:
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x



Max-margin Learning via Dual 
Decomposition

• Incremental subgradient version:

• Further improves computational efficiency

• Same optimality guarantees & theoretical 
properties

• Same as before but considers subset of slaves per 
iteration

• Subset chosen

• deterministically or 

• randomly (stochastic subgradient)



Max-margin Learning via Dual 
Decomposition

• Resulting learning scheme:

 Slave problems freely chosen by the user

 Easily adaptable to further exploit special structure of 
any class of CRFs

 Very efficient and very flexible

 Requires from the user only to provide an optimizer 

for the slave MRFs



Choice of decompositions

= true loss (intractable)

= loss from decomposition

•

(hierarchy of learning algorithms)

•

(upper bound property)



• denotes following decomposition: 

– One slave per clique 
– Corresponding sub-hypergraph :

,

• Resulting slaves often easy (or even trivial) to solve even 
if global problem is complex and NP-hard 

– leads to widely applicable learning algorithm

• Corresponding dual relaxation is an LP

– Generalizes well known LP relaxation for pairwise
MRFs (at the core of most state-of-the-art methods)

Choice of decompositions



• But we can do better if CRFs have special structure…

Choice of decompositions

• Structure means:

• More efficient optimizer for slaves (speed)

• Optimizer that handles more complex slaves 
(accuracy)

(Almost all known examples fall in one of above two cases)

• We adapt decomposition to problem at hand to exploit its 
structure 



• But we can do better if CRFs have special structure…

• E.g., pattern-based high-order potentials (for a clique c) 

[Komodakis & Paragios CVPR09] 

• We only assume:

– Set is sparse

– It holds

– No other restriction

subset of (its vectors called patterns)

Choice of decompositions



Experimental results



Image denoising

• Piecewise constant images

• Potentials:

• Goal: learn pairwise potential 

Z X

 k

p p p pu x x z     ,k

pq p q p qh x x V x x 



Image denoising



Stereo matching

• Potentials:

• Goal: learn function f (.) for gradient-modulated Potts model 

     k left right

p p pu x I p I p x  

   , ( )k left

pq p q p qh x x f I p x x    



Stereo matching

“Venus” disparity using  f (.) as estimated at 
different iterations of learning algorithm

• Potentials:

• Goal: learn function f (.) for gradient-modulated Potts model 

     k left right

p p pu x I p I p x  

   , ( )k left

pq p q p qh x x f I p x x    



Stereo matching

Sawtooth
4.9%

Poster 
3.7%

Bull
2.8%

• Potentials:

• Goal: learn function f (.) for gradient-modulated Potts model 
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Stereo matching

• Potentials:

• Goal: learn function f (.) for gradient-modulated Potts model 

     k left right

p p pu x I p I p x  

   , ( )k left

pq p q p qh x x f I p x x    



High-order Pn Potts model

Cost for optimizing slave CRF: O(|L|) 

• 100 training samples

• 50x50 grid

• clique size 3x3

• 5 labels (|L|=5)

[Kohli et al. CVPR07]

Goal: learn high order CRF with potentials given by

Fast training



Clustering

• Goal: distance learning for clustering [ICCV’11]

• In this case cliques are of very high order: contain 
all variables

• Novel discriminative formulation

• Significant extension: dual decomposition for 
training high-order CRFs with latent variables

• On top of that, there exist unobserved (latent) 
variables during training


