
Efficient Extraction and Representation of Spatial Information from Video Data

Hajar Sadeghi Sokeh, Stephen Gould and Jochen Renz
Research School of Computer Science

The Australian National University
Canberra, ACT 0200

{hajar.sadeghi,stephen.gould,jochen.renz}@anu.edu.au

Abstract
Vast amounts of video data are available on the web
and are being generated daily using surveillance
cameras or other sources. Being able to efficiently
analyse and process this data is essential for a num-
ber of different applications. We want to be able
to efficiently detect activities in these videos or be
able to extract and store essential information con-
tained in these videos for future use and easy search
and access. Cohn et al. (2012) proposed a compre-
hensive representation of spatial features that can
be efficiently extracted from video and used for
these purposes. In this paper, we present a mod-
ified version of this approach that is equally effi-
cient and allows us to extract spatial information
with much higher accuracy than previously possi-
ble. We present efficient algorithms both for ex-
tracting and storing spatial information from video,
as well as for processing this information in order
to obtain useful spatial features. We evaluate our
approach and demonstrate that the extracted spatial
information is considerably more accurate than that
obtained from existing approaches.

1 Introduction
The majority of data available on the web is video data. New
video data is continuously being generated in mind-blowing
amounts, for example, from surveillance cameras, webcams,
and user uploaded videos on websites such as YouTube. Au-
tomatically analysing and processing this video data is a ma-
jor challenge. Several important tasks are to automatically
detect and classify activities in videos, or to detect essential
features and to represent them in a compact way. This allows
us to achieve fast indexing and search of videos, frame by
frame, as well as meaningful input for machine learning tools
or other future processing of the relevant information.

Some of the most useful information that can be extracted
from video are the changing spatial properties of objects in
video and their changing relationships with other objects.
These changing properties and relationships are often char-
acteristic of particular activities. It is then possible to express
rules in terms of these changes or to learn activities based on
similar change patterns [Sridhar et al., 2011a].

The actual location and size of objects in video depends
on a number of factors, such as the position and angle of the
camera or its internal parameters (e.g., zoom). Therefore, it is
not very useful to represent spatial properties of objects and
their relationship with other objects in exact numerical form,
for example exact coordinates, exact pixel size of objects, ex-
act pixel distance between objects, or exact angles. Instead, it
is more useful to look at qualitative relationships between ob-
jects, such as topology, relative size, qualitative direction, or
qualitative distance, and how these qualitative relationships
change over time.

In the area of qualitative spatial representation and rea-
soning (QSR) [Cohn and Renz, 2008], these qualitative re-
lationships are formalized and analyzed. Typically, each as-
pect of space, such as topology, distance, direction, etc., are
represented using an individual qualitative calculus. Instead
of extracting each of these aspects separately, Cohn et al.
[2012] developed a comprehensive representation of spatial
information, called CORE-9, that integrates all the impor-
tant aspects. What makes CORE-9 an ideal representation
for video processing is the fact that it relies purely on ob-
taining minimal bounding boxes of the objects in each video
frame. This is a standard task in computer vision that can
be done very efficiently and relatively accurately using object
tracking methods [Leal-Taixe, 2012] or from the output of a
sliding-window object detector [Viola and Jones, 2004].

Cohn et al. showed that all the important aspects of space
and the corresponding spatial calculi (such as RCC-8 [Ran-
dell et al., 1992] or STAR [Renz and Mitra, 2004]) can be
obtained easily from the CORE-9 representation. They also
showed that their representation is useful for learning activi-
ties from tagged videos and subsequently detecting these ac-
tivities in untagged videos.

Now while CORE-9 is a very comprehensive representa-
tion that can be efficiently extracted from video data, the main
problem is that using axis-aligned bounding boxes to repre-
sent objects is very inaccurate. For example, objects that are
relatively close to each other typically have bounding boxes
that overlap, while the objects themselves do not overlap.
In this paper we propose a modification of CORE-9 that is
equally easy to obtain, but that considerably increases the ac-
curacy of the spatial information we extract. An increased
accuracy will consequently lead to better activity detection,
which our empirical evaluation confirms.



The paper is structured as follows. In the next section, we
review prior work in this area. We analyse the performance of
CORE-9 with respect to different aspects of space and its in-
ability to identify certain changes over time. In Section 3 we
present and formalize our new approach. In Section 4 we de-
velop algorithms that allow us to efficiently extract the differ-
ent aspects of space from our new formalism and investigate
how this differs from what we get from CORE-9. In Sections
5 and 6 we evaluate the performance of our approach on real
video data with respect to the accuracy of detecting spatial
features and learning activities. We then discuss our results
and possible future work.

2 Knowledge Representation Formalisms for
Video Understanding

There is an increasing interest in involving knowledge
representation methods in the area of video analysis
and understanding [Sridhar et al., 2011b]. Morariu and
Davis [2011] used logic to encode knowledge about spatio-
temporal structure to automatically analyse video and detect
activities. Spatio-temporal relations were also used by
Sridhar et al. [2011a] as a relational graph to describe video
activities and understand the video. Sridhar et al. [2010] used
unsupervised learning with spatial relations to recognize
multiple actions happening together.

One of the most recent approaches is CORE-9 [Cohn et
al., 2012] which extracts comprehensive spatial information
using minimal bounding rectangles/boxes (MBBs) parallel
to the video frame for all tracked objects. For every pair of
tracked objects a and b, CORE-9 takes the corresponding
MBBs A and B and the coordinates of two diagonally
opposite corners of each MBB. Extrapolating from these
four corners (x1, y1), . . . , (x4, y4) in the x- and y-direction
forms a 3 × 3 grid consisting of nine cores (see Figure 3b).
Each of these cores can be contained in A, in B, in both
or in none, which gives a total of 169 different assignments
of the nine cores, called states. We can also compare the
relative size of the nine cores and the relative size of intervals
formed from the four points x1, . . . , x4 and the four points
y1, . . . , y4. These relative sizes of intervals allow us to
obtain qualitative information about the relative distance of
MBBs, both externally and internally. We can also easily
express changes over time of these elements. Cohn et al.
demonstrated that a number of different aspects of space and
their changes can be obtained from the initial four corner
points. So the only thing that needs to be extracted from a
video frame are these corner points, which can be done very
efficiently.

3 CORE-9 with Different Angles
The problem with CORE-9 is that the relations between
MBBs do not accurately reflect the actual relations between
the objects, which is well known. This restricts the acquired
information for different aspects of space like topology, size
and distance. For example, the objects in Figure 3b are clearly
disjoint, while their MBBs overlap.

Our aim in this paper is to increase the accuracy of the
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Figure 1: Using MBBs of different angles gives us a better
approximation of region shapes. The convex hull is the limit.

spatial information we can easily extract while keeping the
representation simple and comprehensive at the same time.
The proposed idea in this paper is to use minimal bounding
boxes at different angles, not just ones that are parallel to the
video frame. If we look at the regions from more than one
direction, there is the possibility of getting more information
about the regions (see Figure 4). Stereo vision uses a similar
approach, where two different views of a scene give us more
information than just using one view.1

For each new angle, we can use the same CORE-9 repre-
sentation, but with respect to a particular angle α. We write
COREα-9 to indicate which angle we are using to represent
our bounding boxes and assume that α = 0 corresponds to the
original CORE-9. We call this representation AngledCORE-9
or MultiAngledCORE-9 and write it as CORE9

α1,...,αk
.

The question now is what is the best angle to use, or if us-
ing multiple angles how many and which angles to use? It is
clear that when using an infinite number of different angles to
represent the regions, the intersection of the bounding boxes
will give the convex hull of the object (see Figure 1).

While the convex hull can obviously be obtained more
easily than using an infinite number of bounding boxes, it
clearly demonstrates the limit of using multiple angles. The
more angles we use, the more accurate information we get,
but also the higher the computational cost. This cost is even
higher if we use the real shape of the object—we might get
more accurate representations, but it would require us to iden-
tify and store the shape of the convex hull or the real boundary
of objects. Our aim is, therefore, to use the smallest number
of angles that give us a good accuracy and can still be effi-
ciently extracted and represented. In the following we anal-
yse different possible angles to use.

3.1 Identifying Good Angles
Each region has one or more tight bounding boxes that fits
it best, i.e., that contains the least amount of “white space”
not belonging to the region. Identifying one of these bound-
ing boxes requires us to test and compare a potentially large
number of different MBBs with different angles. We need to
be able to determine angles quickly, so we approximate the
tightest bounding box using Principle Component Analysis
(PCA) [Pearson, 1901] commonly used in image processing.

PCA is one of the simplest and most robust ways of finding
the direction of maximum variance of a set of points. Figure 2
shows application of PCA for finding the direction which the
object is spread along. In our approach we apply PCA to the

1In the case of stereo vision a 3D scene is projected onto two dif-
ferent 2D planes. In our case a 2D object is projected onto different
1D axes.



(a) original frame (b) the direction by PCA

Figure 2: The tightest bounding box of object by PCA

set of boundary pixels of an object making it very fast. For ex-
ample, for a big object like the one shown in Figure 2, it takes
only 42 µs to find the eigenvector (the direction of maximum
variance) of the boundary pixels. We denote the angle with
the most variance for a region a as αa. This gives us two can-
didates for good angles for COREα-9, one from each object.

Spatial aspects such as topology or distance require us
to separate objects as much as possible. The angle that sep-
arates two rectangles most seems like another useful angle.
Again, we would have to test a potentially large number of
angles to find the best one. Instead, we use a well-known ma-
chine learning method that is typically used to find the best
hyperplane that separates two or more clusters. The so-called
Maximum Margin (MM) technique, which is the principle be-
hind support vector machine classification [Cortes and Vap-
nik, 1995], seems closely related to what we need. This tech-
nique tries to make the gap between two regions as big as
possible and then the linear separator of these regions can be
used as an angle to apply CORE-9. The boundary points of
regions are enough for MM technique to find the best linear
separator.

The identified angle is particularly useful when two re-
gions are very close but still separate. In many of these cases,
CORE-9 would not be able to detect that two regions are dis-
connected, but as Figure 3 shows, the angle found by MM is
successful. We performed a number of tests that showed MM
finds good angles against other directions (see Section 6).

After finding good directions, we rotate the set of boundary
pixels about each of these directions and try to find the spatial
information between regions.

4 Individual Aspects
In this section, we analyse how multiple angles can be used
to obtain more accurate spatial information. Specifically, we
show that we can extract more accurate topology, size, dis-
tance and direction information between two objects in video
than what is possible with standard CORE-9.

For each α, COREα-9 allows us to infer an approxima-
tion of the actual spatial relation between two objects a and
b. Cohn et al. [2012] showed how we can get topological
relations, size, distance and direction relations, and changes
of these relations over time from CORE-9. It is clear that
their method works for any fixed angle α. If we take multiple
angles, then we could possible get multiple different approx-
imations of the real spatial relations between two objects a
and b.

We say that Aα and Bα are the bounding boxes of objects
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Figure 3: Using MM to find the best linear separator between
two regions. (a) the separator found by MM technique, (b)
the bounding boxes used in CORE-9, (c) the bounding boxes
of objects along the direction found by the MM technique

a and b when using angle α. The spatial relations between
Aα and Bα are denoted as θα for topology, σα for size, δα
for direction, and ∆α for distance. If we have multiple an-
gles α1, . . . , αk, then the union of the different spatial rela-
tions we might obtain for rectangles with these angles (but
for the same objects a, b in the same video frame) is denoted
as θ = {θα1

, . . . , θαk
} and the same for σ, δ, and ∆.

4.1 Topology
The topological relations we use are mainly RCC-8 rela-
tions [Randell et al., 1992]. RCC-8 consists of the eight ba-
sic relations DC (disconnected), EC (externally connected),
PO (partial overlapped), EQ (equal), TPP (tangential proper
part), NTPP (non-tangential proper part), and their converse
relations TPPi and NTPPi. These relations are jointly exhaus-
tive and pairwise disjoint, i.e., between any two objects ex-
actly one of these eight relations holds. If it is not sure which
one holds, we can express this as a union of possible basic
relations. This gives us 28 = 256 possible RCC-8 relations.
Which relation holds between two rectangles Aα and Bα can
be computed as given in [Cohn et al., 2012]. How good an
approximation this relation is to the actual RCC-8 relation
between a and b largely depends on overlaps of parts of rect-
angles that are not part of the actual region. By finding tighter
bounding boxes, we should be able to get a better approxima-
tion.

In the following, we develop an algorithm that allows us to
integrate different RCC-8 relations between rectangles with
different angles α. Figure 4 shows an example of how inte-
grating the topological relations of rectangles with different
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Figure 4: AngledCORE-9 and extracted topology, size and
distance using three different angles

angles allows us to obtain a better approximation of the real
topological relation between a and b. We analysed all pos-
sible combination of bounding boxes and their topological
relations θ. The number of possible states with two regions is
given by

(
p+r−1
r

)
, where p = 8 (8 basic RCC-8 relations) and

r is the number of angles. For three different angles, there is
a total of 120 different possible combinations. Enumerating
all combinations as a table is too big to include in this paper,
but the combinations can be encoded efficiently by an algo-
rithm that allows us to compute the possible RCC-8 relations
between two objects given different angles (see Algorithm 1).

One interesting point about using CORE-9 with multiple
angles is that sometimes the topological relation we obtain is
different from those of each individual angle. For example,
in lines 17–18 of the algorithm, we start with the RCC-8 rela-
tions NTPP, NTPP and EQ, but the actual RCC-8 relation can
only be PO or TPP. This is a clear indication that combining
more angles gives us considerably more accurate information
than using only one angle.

If two regions are in relation EC, there exists a support-
ing hyperplane which can be pictured as a straight line in 2-
dimensional space. Having relation EC in two different an-
gles means we have two intersecting supporting hyperplanes
and the two regions can be placed only on two opposite spaces
created by these two lines. In this case, these two regions can
be DC or EC in reality. The only possible point where they
can meet each other is the crossing point of two hyperplanes.
So, if the third angle also results in EC (Algorithm 1, lines 4–
5), the corresponding hyperplane can only passes through the
same intersection point and because both regions should be
tangent to this hyperplane when EC holds, both regions must
be externally connected in reality.

As another example, suppose in two angles we have EC
and EQ as topological relations (Algorithm 1, lines 4–5). EQ
needs to have at least one boundary point of each object on
each side of the bounding boxes. On the other hand, EC needs
to have regions in two different spaces created by the corre-
sponding hyperplane. If we have both EC and EQ, the only
possible situation is when the EC hyperplane is crossing two
opposite corners of the EQ regions’ bounding box. Then two
regions should be tangent in both corners. Thus, the real topo-
logical relation between these two regions must be EC.

Some of the relations in RCC-8 are symmetric, like PO,
EQ, EC and DC. Therefore, many combinations have the
same result. For example the output for NTPP, NTPP, EQ
and for NTPPi, NTPPi, EQ is the same.

Algorithm 1 Integrating RCC-8 relations for MBBs with
three different angles

1: if DC ∈ θ then
2: topology = {DC}
3: else if EC ∈ θ then
4: if (θ = {EC}) ∨ (EQ ∈ θ) then
5: topology = {EC}
6: else
7: topology = {EC,DC}
8: end if
9: else if θ = {NTPPi} then

10: topology = {EC,DC,PO, TPPi,NTPPi}
11: else if θ = {NTPP} then
12: topology = {EC,DC,PO, TPP,NTPP}
13: else if (θ = {TPPi}) ∨ (θ = {TPPi,NTPPi}) then
14: topology = {EC,DC,PO, TPPi}
15: else if (θ = {TPP}) ∨ (θ = {TPP,NTPP}) then
16: topology = {EC,DC,PO, TPP}
17: else if (EQ ∈ θ) ∧ (θ ∩ {TPP,NTPP} 6= ∅) then
18: topology = {PO, TPP}
19: else if (EQ ∈ θ) ∧ (θ ∩ {TPPi,NTPPi} 6= ∅) then
20: topology = {PO, TPPi}
21: else if θ = {EQ} then
22: topology = {PO, TPP,EQ}
23: else if (θ \ {TPP,NTPP} = {PO}) ∨ (θ \
{TPPi,NTPPi} = {PO}) then

24: topology = {EC,DC,PO}
25: else
26: topology = {PO}
27: end if

4.2 Size and Distance

Other aspects of space that are very interesting for video anal-
ysis, are size and distance. Changing size allows us to infer if
objects are moving closer or away from the camera, but also
if objects are changing shape, for example, if a car door opens
(see Figure 5).

Relative size and distance is important for determining the
changing interaction between two entities. Similar to topol-
ogy, we can also obtain a better approximation of the actual
size and distance relationships of objects by considering mul-
tiple angles as compared to only one angle. Each MBB
must be larger than the object, so the smallest MBB (in terms
of length times width) we obtain is obviously the best ap-
proximation of size. The more angles we use, the higher the
chance of finding the tightest and smallest MBB.

When comparing the relative size of two objects a and b,
we can compare the smallest bounding box we get for a with
the smallest bounding box we get for b independent of their
respective angles.

For external distances between objects, but also for the in-
ternal distances (for example how much are two objects over-
lapping, or how far away from the opposite edge is an object
contained in another object), the maximum distance over all
angles is most important. By changing angles, it is always
possible to bring to MBBs closer to each other, but there is a
unique maximal distance.



(a) No changes when using horizontal rectangles

(b) Changes when using the angled rectangles

Figure 5: Difference between standard and angled MBBs

4.3 Direction
While direction is a very important spatial concept, direction
is essentially a ternary relation where the direction between
two objects is relative to a reference direction. This can
be a global direction, relative to an observer, or relative to
the inherent direction of one of the objects. For standard
CORE-9, we use a global direction which is fixed by the
video frame. For multi-angled CORE-9 we deliberately give
up this global reference direction. Therefore, the directions
we can specify now are with respect to the angle α that is
used for a particular representation COREα-9. Obviously
this does not allow us to obtain any meaningful integration
of information as it does for the other spatial relations, but
we obtain something that could be equally valuable: relative
direction information.

Relative direction is defined with respect to the inherent
orientation of an observer. As described in Section 3.1,
we compute the spread of each object and extract an an-
gle from this that we can use for AngledCORE-9. If an
object moves or rotates over time, then its spread changes
accordingly. There are many objects where the spread
corresponds to its inherent direction, e.g. the car in Figure 2.
Therefore, the angle we obtain from the spread could be
regarded as the angle that defines relative directions for
this object. If we always use the spread of each object as
an angle α for AngledCORE-9, than we can track how the
relative direction of other objects change with respect to
our reference object over time. So we can keep track of
relative direction over time, despite changing objects and
changing angles. This seems much more useful than tracking
changes of absolute direction, as we do for standard CORE-9.

5 Action Classification
To compare the efficiency of AngledCORE-9 against CORE-
9, we conduct experiments on action recognition. We extract
spatial information between objects in the video. Then we use
them as input features to an unsupervised clustering method.

One unsupervised probabilistic model for topic modeling is
Latent Dirichlet Allocation (LDA) [Blei et al., 2003] which
is useful for automatically clustering collections of discrete
data. This learning algorithm which was first presented for
text to group words into topics, recently has been used in the
computer vision field, like action recognition [Carlos et al.,
2008], classification [Fei-Fei and Perona, 2005] and image

(a) Topology by CORE-9: TPP,
by CORE9

αMM
: DC

(b) Topology by CORE-9: NTPP,
by CORE9

αMM
: EC

Figure 6: Difference between CORE-9 and Angled CORE-9
in finding the topological relation between two objects.

segmentation [Sokeh and Gould, 2012].
Briefly, we treat each video as a document and the whole

dataset as the corpus. Video frames containing two inter-
acting objects get treated as a single word for that docu-
ment (video). We generally use four spatial features in-
cluding topology, size, distance and direction. So for
frame t of video v which includes two interacting objects
a and b, we will have four-dimensional words like Wvt =
[θ(a, b), σ(a, b), δ(a, b),∆(a, b)]. The quantization is done
by k-means algorithm to discretise these four-dimensional
values for each word. Associated with each video, there is
a latent variable zk which represents its cluster. Our goal is
then to cluster similar activities together.

6 Experimental Results
To evaluate the proposed method for extracting various
spatio-temporal aspects of activities, we ran experiments on
short video sequences of five different actions including ap-
proach, carry, catch, collide and drop. Experiments were car-
ried out using 50 videos from the Mind’s Eye video dataset.2
We sampled every 10th frame in the videos and manually la-
beled the objects in the scene.

First we evaluated the accuracy of AngledCORE-9 method
for computing topology. Specifically, we were interested in
determining whether two objects are very close or touch-
ing. We compared AngledCORE-9 using the MM method,
CORE9

αMM
, for calculating bounding box angle with stan-

dard CORE-9 (using axis-aligned bounding boxes). We chose
15 different frames that included two close or overlapping ob-
jects. CORE9

αMM
correctly determined the correct topology

87% of the time compared with 47% for CORE-9.
This experiment demonstrates that the MM method pro-

vides a significantly better direction for determining topolog-
ical relationships. The reason can be understood by examin-
ing Figure 6, which shows two different scenarios involving
the same two objects. In the first scenario (Figure 6a) the
two objects are close but not touching, whereas in the sec-
ond scenario (Figure 6b) they are actually touching. Only
CORE9

αMM
is able to correctly distinguish between the two

scenarios.
Next we experimented with clustering activities based on

the four spatial features described above. We extracted three
angled bounding boxes for AngledCORE-9 using the PCA
and MM methods applied to the boundary pixels of each ob-
ject. We then used an implementation of LDA with Gibbs

2Videos available from http://www.visint.org.



Sampling [Phan and Nguyen, 2007] to cluster the videos into
K different topics. In our experiments we set the number of
topics K to 5 (and set the LDA parameters α and β to 10 and
0.01, respectively).

We evaluate the quality of topics found by LDA for each
video. Table 1 shows the results of clustering videos by topic.
Here we also compute the purity of each topic, which mea-
sures the fraction of the majority occurring action within a
cluster to the total size of the cluster.

Table 1: Clustering results.
topic 1 topic 2 topic 3 topic 4 topic 5

approach 0 2 0 2 6
carry 8 1 1 0 0
catch 1 2 6 0 1
collide 1 5 1 0 3
drop 2 0 1 7 0
purity 0.8 0.5 0.6 0.7 0.6

To evaluate classification accuracy we assign a unique ac-
tion label to each topic. Here we use as the label the majority
occurring action within the cluster. We compute precision
and recall and also F1-measure as their combination for
each class. Recall is defined as the fraction of the majority
occurring action within a cluster to the whole number of
the same label in the clustering result. Results are shown
in Table 2 using the spatial features extracted extracted by
AngledCORE-9 (CORE9

αMM ,αa,αb
).

Table 2: Quantitative evaluation for action classification.
action Precision Recall F1-measure
approach 0.60 0.60 0.60
carry 0.80 0.67 0.73
catch 0.60 0.67 0.63
collide 0.50 0.50 0.50
drop 0.70 0.78 0.74

Figure 7 represents a comparison between action classifica-
tion results with different angular directions: CORE-9 which
uses the axis-aligned, CORE9

0,αMM
using only two directions

of horizontal and the one found by MM, CORE9
0,αa,αb

using
the frame direction and two PCA directions for objects a and
b, and finally our method, CORE9

αMM ,αa,αb
, using the direc-

tion found by MM and the PCA directions for two objects.
Regarding the comparison, in most cases the MM tech-

nique improves the clustering results over both axis-aligned
and PCA directions. The action carry, however, achieves
better results with PCA directions. This shows that for the
action carry size and direction, which are better captured by
the PCA directions than the MM direction, is more important
than topology alone. Adding the MM direction further im-
proves results even for this action. Another interesting result
is the action drop. Here the objects’ MBBs are mostly axis-
aligned so the original CORE-9 performs quite well. In all
cases, however, our CORE9

αMM ,αa,αb
performs the best due

to the combination of extracted spatial information.
The results show that the directions used in our method
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Figure 7: Quantitative comparison between CORE-9,
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0,αMM
, CORE9

0,αa,αb
and CORE9

αMM ,αa,αb
for video

classification on five different actions.

work better than other combinations. The MM technique
helps to find the topological relation more precisely, so the
results for our algorithm and CORE9

0,αMM
are better than the

two other methods. In comparison to CORE-9 in most cases
CORE9

0,αa,αb
classifies the actions more precisely, because

the spread direction of objects gives the tightest bounding box
which leads to a more accurate measure of size of objects.

7 Conclusion and Future Work
A good representation for modeling the behaviour of inter-
acting objects over space and time is essential for automatic
analysis and discovery of activities in videos. We focus on
a qualitative representation that captures spatio-temporal
aspects such as topology, size, distance and direction. By
considering these as feature descriptors machine learning
algorithms can by used to cluster or classify activities.

In this work, we proposed a new accurate model built on
CORE-9 for extracting the aspects of space over time. We
relaxed CORE-9 to allow arbitrary angles and thus obtain
tighter bounding boxes around objects participating in activ-
ities. We chose three different directions to apply CORE-9
and showed the benefit of these directions. Specifically, the
MM direction allows for better modeling of the topological
relations, and the PCA directions provide better size and
direction information. We used features derived from our
AngledCORE-9 representation to describe video sequences,
and quantitatively evaluated our model for action clustering
against standard CORE-9.

One interesting trajectory for future work is to extend
our representation to 3D space. By making use of current
2.5D imaging technologies, such as the Kinect sensor, we
should be able to obtain an even better understanding of the
relationship between objects. Here, in addition to points,
lines and areas as the basic geometric entities, we would
include the volume and depth making our representation
significantly richer. Another interesting direction for future
work is in applying our AngledCORE-9 model to noisy
data obtained from object detectors or tracking algorithms.
Such an approach would require an additional element in the
spatio-temporal reasoning to deal with uncertainty.
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