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Korte inhoud (Abstract): 
 

Inspired by the collective foraging behavior of biological ants, several computational 
models (or ant colony optimization algorithms) are proposed which can be used to 
solve combinatorial optimization problems, such as the vehicle routing problem and 
sequential ordering problem, etc. In this article，a software framework is proposed 
based on which the software agents can be easily created and the dynamics of a 
swarm system such as the environment with changing pheromone distribution, the 
movement of agents, can be visualized.  
 
We implement the framework in C++ and apply the proposed methodology to 
visualizing a swarm system which is used to handle the classical Travelling Salesman 
Problem (TSP). 
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1. Introduction 

Social insects, such as ants, termites, bees and wasps exhibit a collective problem-solving 
ability. In particular, many ant species have trail-laying, trail-following behavior when 
foraging: individual ants deposit a chemical substance called pheromone as they return from 
a food source to their nest, and foragers follow such pheromone trails and reinforce those 
trails by dropping pheromones. This reinforcement process results in the selection of the 
shortest path from the nest to a food source. 
 
The fascinating behavior of ants has been inspiring researchers to study swarm algorithms or 
ant colony optimization (ACO) algorithms[6] which are computational models currently 
applied to applications, such as the Traveling Salesman Problem(TSP)[3,6], graph coloring 
problem[3], network routing problem[3] and a lot more. 
 
The emergent behavior or emergent intelligence, which is the consequence of the 
self-organization[2] and indirect communication between the ants, is also inspiring from the 
perspective of computer science, because of the possibility to simulate and potentially 
exploit this behavior to solve real world applications. Based on the understanding of 
ant-based algorithms we propose a software framework, which can be employed to imitate 
the collective behavior of the ants and visualize the dynamics of a swarm. The framework is 
implemented in the object-oriented programming language C++, and all the elements of the 
artificial swarm system are modeled in C++ classes, which implement the ant algorithm in 
different levels of abstraction. As the illustration of the software framework we create a 
software swarm for handling the symmetric Traveling Salesman Problem (TSP)[2, 3, 6]. For 
solving the Traveling Salesman Problem, a set of ants cooperate to find better solutions 
given a specific network. In the software, we use a graph to hold the traveling data, make 
(software) ants walking on the graph and visualize the intensity of pheromone on edges in 
time. 
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2. Theory 

In this part we will discuss the theory we use to design the software framework and C++ 
classes. As this project is based on ant algorithms, we will give a short presentation of the 
properties we have found central in the context of ant algorithms and in their inspiration, 
natural ants. And then we will focus on the ACO metaheuristic[3] that is a template for 
building ant-inspired algorithms. We then continue to show an exemplary application of the 
basic ant algorithm (Ant System) to solve the Traveling Salesman Problem. 

2.1 Collective behavior in social insects 

In order to better understand the mechanisms in artificial social insects one must understand 
the collective behavior in real social insects. In the following, we will give a short 
description of the primary mechanisms that are determining for the collective behavior of 
social insects during food foraging, since this is the primary inspiration for the ACO 
metaheuristic. This will facilitate a later discussion regarding the creation of artificial insects, 
and also regarding algorithmic problems in a virtual domain.  

2.1.1 Self-organization 

Self-organization is a set of dynamical mechanisms whereby structures appear at the global 
level of a system from interactions among its lower-level components[2]. The way the 
system is made up by many small and simple entities enables it to both adapt to changes in 
the environment and to keep on functioning even though one (or more) of the entities stops 
functioning (dies). Self-organization in the context of social insects depends on the following 
mechanisms: 
 

 Positive feedback: Positive feedback is simple 
behavioral “rules of thumb” that promote the 
creation of structures. Examples of positive 
feedback include recruitment and 
reinforcement[2]. For instance, depending on 
the quantity or desirability of the food source, 
stronger deposits of the pheromone are left as the ant proceeds towards its goal. 
Studies have shown that the ants follow the pheromone trail which exudes the 
strongest scent.  

 
 Negative feedback: Negative feedback is the mechanism that counteracts the effect of 

positive feedback. An often-used example of negative feedback is pheromone 
evaporation. 
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 Randomness in social insects: Self-organization strongly depends on randomness 
(random walks and errors in trail-following etc.). Randomness is referred to as a 
crucial factor for the discovery of new solutions[2]. 

2.1.2 Stigmergy 

Indirect communication occurs among insects when an individual insect modifies the 
environment and at a later time another insect responds to the new environment. In many ant 
species colonies, stigmergy refers to the deposition of pheromones by ants while they are 
moving. Other ants can then smell the deposited pheromones and have a natural tendency to 
follow the laid trail. 

2.2 Artificial ants 

Artificial ants are not intended to model real ants. They have abilities that cannot be 
attributed to real ants. The mechanisms in biological ants described earlier have artificial 
counterparts. In the following the term ant will refer to artificial ant. 

2.2.1 Self-organization 

In this section we describe how the different parts of self-organization in colonies of social 
insects can be modeled by artificial ants in order to achieve the same useful properties of 
self-organization that biological systems have. 
 

 Positive feedback: An artificial pheromone trail is associated with numerical information 
in ACO algorithms. In algorithms, artificial pheromone trails are deposited by ants 
in amounts proportionate to the quality of the solution. 

 
 Negative feedback: In ACO algorithms, pheromone levels are modified over time; 

typically the amount of pheromone is reduced to a percentage of the original 
amount.  

 
 Stochastic state transition rule: Every ant algorithm has a 

stochastic state transition rule. This rule is used to 
implement the probabilistic decision policy used to 
select the next state. 

2.2.2 Stigmergy 

The indirect communication mediated by modifications of environmental states which are 
only locally accessible by the communicating agents, is known as “artificial” stigmergy. In 
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ACO algorithms local pheromone trails are the only communication channels among the 
ants. 

2.3 The Ant Colony Optimization metaheuristic  

Inspired by the observations and study of ant colonies and ant colony behaviors a 
metaheuristic called Ant Colony Optimization (ACO)[3] is proposed for characterizing the 
common properties of a number of algorithms for discrete optimization problems. These 
algorithms are typically called ACO-algorithms or ant algorithms[3, 6]. A high-level 
description of the ACO metaheuristic reported in[3] in pseudo-code is as follows: 
 

 
 
 

procedure ACO_Meta_heuristic() 
while ( termination_criterion_not_satisfied )  

 schedule_activities 
ants_generation_and_activity(); 
pheromone_trail_update(); 
daemon_actions();{optional} 

 end schedule_activities 
end while 

end procedure 
 
procedure ants_generation_and_activity() 
  while ( available_resources ) 
 schedule_the_creation_of_a_new_ant();  

new_active_ant(); 
end while 

end procedure 
 
procedure new_active_ant() {ant lifecycle} 

initialize_ant(); 
M= update_ant_memory(); 

while (current state ≠ target state ) 
A = read_local_ant-routing_table(); 
P = compute_ transition_probabilities(A;M; problem constraints); 
next state = apply_ant_decision_policy(P; problem constraints); 
move_to_ next state(next_state); 
if (online_step-by-step_pheromone_update) 
 deposit_pheromone_on_the_visited_arc(); 

update_ant-routing_table(); 
end if 
M= update_internal_state(); 

end while 
if (online_delayed_pheromone_update) 

evaluate_solution(); 
deposit_pheromone_on_ all_visited_arcs(); 
update_ ant-routing_ table(); 

end if 
die(); 

end procedure 
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The above pseudo-code states that ACO algorithms construct solutions by constructing paths 
in a graph. Ant algorithms can be constructed by simply implementing the procedures 
defined in the pseudo-code to solve a specific problem. 

2.4 Ant Algorithms 

Since we implement an ACO algorithm called Ant System (AS)[3, 6] in our software, we 
will now discuss the AS. AS is the first ACO algorithm proposed and has been applied to the 
TSP problem. AS initially showed promising results, but did not scale well enough to be 
applicable on large graphs and was therefore not competitive with state-of-the-art algorithms 
for TSP. In spite of the limitations of the AS itself, most of ACO algorithms are inspired by 
it. In addition to the TSP problem, ant algorithms are applied to some of other application 
domains, such as quadratic assignment, job scheduling, vehicle routing and graph coloring 
problems[3], etc. 

2.4.1 Swarm Intelligence and Ant algorithms 

It is worth mentioning that ant algorithms belong to a larger field of algorithms called Swarm 
Intelligence algorithms. Swarm Intelligence (SI)[2] is the property of a system whereby the 
collective behaviors of (unsophisticated) agents interacting locally with their environment 
cause coherent functional global patterns to emerge. SI provides a basis with which it is 
possible to explore collective (or distributed) problem solving without centralized control or 
the provision of a global model. 

2.4.2 Traveling Salesman Problem 

The Traveling Salesman Problem (TSP) is a NP hard 
optimization problem and it is a standard test-bed for 
new algorithms. It is, therefore, natural that the first 
application of an ant colony algorithm was to a path 
optimization problem: the Traveling Salesman 
Problem[2]. 
 
The TSP problem can be stated as finding the minimal 
length of the walked path, a closed tour on a graph 
with each node representing a city. There are two 
kinds of TSP problems:  
 

 Symmetric traveling salesman problem (TSP): Given a set of n nodes and distances for 
each pair of nodes, find a roundtrip of minimal total length visiting each node 
exactly once. The distance from node i to node j is the same as from node j to node 
i. 
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 Asymmetric traveling salesman problem (ATSP): Similar to the TSP problem. But in 
this case, the distance from node i to node j and the distance from node j to node i 
may be different. 

 
In ACO algorithms ants are simple agents which construct tours by moving from city to city 
on the problem graph. The ants’ solution construction is guided by artificial pheromone trails 
and a priori available heuristic information. 

2.4.3 Ant System (AS) 

There were three different versions of the AS: 
 

 Ant-density and Ant-quantity: The pheromone update is done directly after a move from 
one city to another adjacent city. 

 
 Ant-cycle: The pheromone update is only done after all the ants have constructed the 

tours and the amount of pheromone deposited by each ant is set to be a function of 
the tour quality. 

 
In the following, we will just discuss the Ant-cycle algorithm. Ant-cycle performs much 
better then the other two variants, that’s also the algorithm we implement in our project as 
the default algorithm for solving the TSP problem. 

2.4.3.1 Stochastic state transition rule 

Probability that ant k goes from city i to city j: 
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i, j = edge between nodes i, j 
nij = 1/distance (i,j) 
α = weight for marking: determine the relative influence of the pheromone trail 
β = weight for node “neighbourhoodness”: influence of heuristic information 
allowedk= unvisited cities for ant k 

 
If α = 0, the closest cities are more likely to be selected (corresponds to classical stochastic 
greedy algorithm). 
 
If β = 0, only pheromone amplification is at work. This leads to rapid emergence of a 
stagnation situation with suboptimal generated tours. The ant chooses the edge to continue 
his path if the probability is higher than a random generated number. 

 9



 

2.4.3.2 Trail deposition and pheromone trail update 

After all ants have constructed their tours, the pheromone trails are updated. This is done by 
first lowering the pheromone strength on all arcs by a constant factor and then allowing each 
ant to add pheromone on the arcs it has visited: 
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0 < ρ < 1 is evaporation rate. It enables the algorithm to forget previously done bad decisions. 
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i =∆τ  If arc (i,j) is used by ant κ and 0 otherwise (L = length of ant’s tour) 

 
3. Software Design 

The task of our project is to present a design of a generic software framework capable of 
visualizing different kinds of swarm algorithms in different application contexts. To meet 
this requirement the framework should be designed in a way so that it can be extended easily 
for simulating various swarm algorithms.  
 
We use the object-oriented programming language C++ to implement the framework. All 
elements of a swarm system are modeled using C++ classes, which is defined based on 
different levels of abstraction so that the code can be reused as much as possible when future 
features will be added. For testing purpose, we simulate the basic ant algorithm (Ant System 
(AS)) in the traveling salesman setting. 

3.1 Three-layered Framework  

For enhancing the extendability of the software framework, we propose a three-layered 
design: the Model, the Application and the View layers. Inspired by the ACO metaheuristic 
the Model layer implements the base logic of ant algorithms. On the contrary, the 
Application layer implements application-oriented operations. That is, the generic part of the 
ant algorithms is modeled in the Model layer while concrete solutions to the real word 
applications (e.g. TSP problems) are implemented in the Application layer. Because 
algorithm visualization is also an important part of the functionality we need to implement 
for this project, we design the View layer for the visualization purpose. 
 

 The Model layer: Common properties of ant algorithms as indicated by the 
pseudo-coded ACO metaheuristic are implemented in this layer. All classes 
belonging to this layer model the base logic of ant algorithms, such as 
UpdatePheromoneTrail, DepositPheromone, MoveToNextState, 
ScheduleActivities, etc. Most classes in this layer are supposed to be abstract 
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classes as they represent ant algorithms at a high level of abstraction. These classes, 
such as CAgent, CAnt, CColony, CAntSystem, CEnvironment and CPheromone 
are designed as top-level classes in the hierarchical class framework, which can be 
inherited by various kinds of application-oriented classes. 

 
 The Application layer: The application layer contains classes which hold application 

specific information. These classes, such as CTSPAnt, CTSPAntSystem, are 
separated from the Model layer for their application-oriented characteristics. 
Inheriting from the corresponding classes in the Model layer, classes in this layer 
can be defined for different agent-based applications, e.g. implementing a class 
CRoutingAnt for simulating network routing approach, or a class CGraphColorAnt 
for handling Graph Coloring problem. 

 
 The View layer: Classes defined in the View layer implement the graphical user 

interface (GUI) and the visualization. In the current stage we have the class 
CGUIGraph for creating 2-D displays on the screen indicating the results of swarm 
actions. Encapsulating visualization functionalities into classes makes it easy to 
create multiple graphical views. We use CSwarmView class, which is inherited 
from the Microsoft Foundation Class (MFC) CView to handle user messages 
associated with the User-Interface Objects. We implement the text output function 
in the MFC class CMainframe. 

3.2 Class Design 

It is now time to present the class design. In the current stage we only implement those 
classes which are necessary for creating a graph-based simulation program in the context of 
TSP problem. But under the three-layered framework further extensions of the design can be 
easily conducted by adding new top-level classes for the Model layer, creating new 
inheriting classes for the Application layer or designing new classes offering more 
visualization functionalities. The following diagram created in UML with Rational Rose, 
shows all the important classes and their operations. We notice that according to their roles 
in a software swarm system these classes can be grouped into three categories: 
 

 Individuals(A): Classes belonging to this category model the individual agent which has 
limited memory and is capable of performing simple actions.  

 
 Environment(B): Classes in this category model the environment in which software 

agents work. A graph, a matrix or a set of cells are the possible working 
environment. 

 
 Swarm(C): Classes put in this category model the swarm, a collection of agents 

executing a schedule of actions.  

 11



 
 
In addition to the above three categories indicated by the following class diagram, we will 
discuss two extra categories:  
 
 View(D): Classes in this category implement graphical user interface and visualization. 

  
 Auxiliaries(E): Classes in this category facilitate problem-specific operations.  

 

CAntSystem

<<abstract>> FindOptimalSolution()
<<abstract>> InitAntSystem()
CAntSystem()
<<virtual>> ~CAntSystem()

CColony
m_numAgents : int
m_iteration : int

SetIteration()
GetNumberofAgent()
GetIteration()
GetSpace()
CColony()
<<virtual>> ~CColony()
<<abstract>> ScheduleActivities()
<<abstract>> UpdatePheromoneTrail()
<<virtual>> LoadAgents()
<<virtual>> RemoveAgents()

CAnt

CAnt()
<<virtual>> ~CAnt()
CalculateProduct()

CNode

CNode()
<<virtual>> ~CNode()

CEnvironment
m_hiPheromone : double
ENVIRONMENT_TYPE : const UINT
m_boundaryY : double
m_boundaryX : double

GetLocationNum()
GetTypeofEnvironment()
GetBoundaryY()
GetBoundaryX()
GetLocations()
<<abstract>> PheromoneEvaporation()
<<virtual>> GetHightestPheromone()
<<abstract>> GetDistance()
<<abstract>> GetPheromoneAt()
<<abstract>> SetPheromoneAt()
<<abstract>> AddPheromoneAt()
CEnvironment()
<<virtual>> ~CEnvironment()
SetBoundaryX()
SetBoundaryY()

#m_pSpace

CAgent
m_stepNum : UINT
m_randomProb : double

GetCurPosition()
GetSpace()
GetPheromone()
CAgent()
<<virtual>> ~CAgent()
<<virtual>> MoveToNextState()
<<abstract>> DepositPheromone()

#m_pSpace

CLocation
m_positionX : double
m_positionY : double
m_id : CString
m_index : UINT

CLocation()
<<virtual>> ~CLocation()
GetPositionY()
GetPositionX()
GetID()
GetIndex()
SetIndex()

#m_pCurPosition

CEdge
m_length : double

GetNodeConnectedF()
GetNodeConnectedT()
GetPheromone()
SetPheromone()
GetLength()
CEdge()
<<virtual>> ~CEdge()

#m_pFNode
#m_pTNode

CTSPAnt
m_tourLength : double
intTellerCities : int

GetCurNode()
CTSPAnt()
MoveToNextState()
GetNodesVisited()
GetTourLength()
DepositPheromone()
<<virtual>> ~CTSPAnt()
GetAntProductOnEdge()
GetAntProductOnEdge()
StoreTour()
RandomDistribute()
ChooseNextCity()

#m_pCurNode

#m_pHomeCity

CTSPAntSystem
_ProblemSolved : bool
_OneIterationStart : bool
m_bestTourLength : double

ResetAntSys()
SetGraph()
GetGraph()
StartAntSystem()
FindOptimalSolution()
GetBestTourNodes()
GetBestTourLength()
GetAgents()
CTSPAntSystem()
Step()
UpdatePheromoneTrail()
<<virtual>> ~CTSPAntSystem()
DisplayResult()
RemoveAgents()
LoadAgents()
ScheduleActivities()
InitAntSystem()

CGraph

ResetGraph()
AddPheromoneAt()
GetHightestPheromone()
PheromoneEvaporation()
GetPheromoneAt()
GetPheromoneAt()
GetDistance()
SetPheromoneAt()
GetDistance()
GetPheromoneAt()
SetPheromoneAt()
AddPheromoneAt()
GetEdges()
GetNodes()
CGraph()
<<virtual>> ~CGraph()
CreateLocations()
FindEdge()
FindEdge()
MaxCoordinate()

#m_pSpaceG #m_pSpaceG

CBA 
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3.2.1 Individuals 

There are three classes: CAgent, CAnt and CTSPAnt created for 
modeling an individual agent. CAgent and CAnt are both top-level 
classes designed for the Model layer while CTSPAnt for the 
Application layer. 

CAgent
m_stepNum : UINT
m_randomProb : double

GetCurPosition()
GetSpace()
GetPheromone()
CAgent()
<<virtual>> ~CAgent()
<<virtual>> MoveToNextState()
<<abstract>> DepositPheromone()

CAnt

CAnt()
<<virtual>> ~CAnt()
CalculateProduct()

CTSPAnt
m_tourLength : double
intTellerCities : int

GetCurNode()
CTSPAnt()
MoveToNextState()
GetNodesVisited()
GetTourLength()
DepositPheromone()
<<virtual>> ~CTSPAnt()
GetAntProductOnEdge()
GetAntProductOnEdge()
StoreTour()
RandomDistribute()
ChooseNextCity()

3.2.1.1 CAgent 

CAgent is an abstract class, which models the behaviour of an 
individual agent in a high level of abstraction. Operations are 
designed referring to the pseudo-coded Ant Colony Optimization 
(ACO) - metaheuristic presented in[3]. The basic logic of ant 
algorithms implemented in this class includes: 
 

 Hold dynamic information of the environment and 
agent’s current position. 

 
 Make a stochastic move to the next state. The concrete 

definition of the virtual operation MoveToNextState() 
should be given by subclasses which may implement 
different algorithms. 

 
 Drop pheromones in the environment. The abstract 

operation DepositPheromone() must be implemented by 
subclasses. 

3.2.1.2 CAnt  

CAnt is a subclass of CAgent. The mathematical implementation of the stochastic state 
transition rule (referring to section 2.4.1.2) that is often used by many ant algorithms is 
implemented in the CalculateProduct() operation.   

3.2.1.3 CTSPAnt 

CTSPAnt implements problem specific functionalities for solving the TSP problem using the 
Ant System (AS): 
 

 Initially, an ant is put on a randomly chosen city in a graph-based environment. The 
RandomDistribute() function gives a random initial home position (starting node), 
to which the ant returns afterwards. 
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 Implement the ant-cycle algorithm in the TSP context: choose the next city by 
taking the pheromone intensity, heuristic value and randomness into account 
(ChooseNextCity()); calculate the amount of the pheromone according to the quality 
of the route and increase the pheromone intensity on the edges the ant walked 
through (DepositPheromone()). 

 
 Remember visited cities (StoreTour()); calculate the length of the tour 

(GetTourLength()) and get information of all the nodes visited (GetNodesVisited()) 
for backtracking its path to drop the pheromone. 

3.2.2 Environment 

In the current design, there are six classes created for 
modeling the working environment of software agents: 
CEnvironment, CGraph, CLocation, CNode, CEdge and 
CPheromone. All the classes in this category belong to the 
Model layer because they don’t carry any 
application-specific information. 

3.2.2.1 CEnvironment 

CEnvironment is an abstract class, which represents the 
general concept of the environment, working space of a 
collection of agents with pheromone deposited in it. Basic 
properties associated with a swarm environment are 
defined in this class: 
 

 Work with a number of locations, which can be 
graphical nodes or cells in a grid, etc.  

 
 Hold information of space boundaries. 

 
 Calculate distances between locations, and 

manipulate pheromone intensity in the 
environment. The abstract operation GetDistance() 
and several abstract operations for pheromone 
handling such as SetPheromoneAt() and 
AddPheromoneAt()  must be implemented by 
subclasses. 

 

CEnvironment
m_hiPheromone : double
ENVIRONMENT_TYPE : const UINT
m_boundaryY : double
m_boundaryX : double

GetLocationNum()
GetTypeofEnvironment()
GetBoundaryY()
GetBoundaryX()
<<abstract>> PheromoneEvaporation()
<<virtual>> GetLocations()
<<virtual>> GetHightestPheromone()
<<abstract>> GetDistance()
<<abstract>> GetPheromoneAt()
<<abstract>> SetPheromoneAt()
<<abstract>> AddPheromoneAt()
CEnvironment()
<<virtual>> ~CEnvironment()
SetBoundaryX()
SetBoundaryY()

CGraph

AddPheromoneAt()
GetHightestPheromone()
PheromoneEvaporation()
GetPheromoneAt()
GetPheromoneAt()
GetDistance()
SetPheromoneAt()
GetEdges()
GetNodes()
CGraph()
<<virtual>> ~CGraph()
CreateLocations()
FindEdge()
MaxCoordinate()

CLocation
m_positionX : double
m_positionY : double
m_id : CString

CLocation()
<<virtual>> ~CLocation()
GetPositionY()
GetPositionX()
GetID()

CNode

CNode()
<<virtual>> ~CNode()

CPheromone
m_strenght : double

GetStrength()
SetStrength()
CPheromone()
<<virtual>> ~CPheromone()

CEdge
m_length : double

GetNodeConnectedF()
GetNodeConnectedT()
GetPheromone()
SetPheromone()
GetLength()
CEdge()
<<virtual>> ~CEdge()

#m_pFNode

#m_pTNode

#m_pPheromone
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3.2.2.2 CLocation  

CLocation is created for the common concept of a location, which is employed by the 
CEnvironment class. It is the super-class of classes which represent specific location 
structures e.g. a node or a cell.  

3.2.2.3 CGraph 

CGraph is a simple implementation of a graph. A graph is a collection of nodes and edges. 
For the TSP problem, the graph is a good representation of the environment. Nodes can be 
described as cities and routes between cities can be represented by edges. Main 
functionalities implemented in this class include: 
 

 Manipulate the pheromone intensity over edges (PheromoneEvaporation() and 
SetPheromoneAt(), etc.). 

 
 Hold coordinate information (MaxCooridinate()). 

 
 Calculate Euclidian distance between two nodes (GetDistance()). 

3.2.2.4 CEdge  

CEdge represents an undirected connection between two nodes. This class contains 
information about the length of the edge and the pheromone intensity over it.  

3.2.2.5 CNode  

CNode represents a vertex in a graph, which is a subclass of CLocation. 

3.2.2.6 CPheromone 

CPheromone is designed to keep the intensity information of a pheromone. As the 
pheromone is a substance in an environment we put it to the Environment category.  

3.2.3 Swarm 

Classes in this category are designed to model a swarm, a collection of agents executing a 
schedule of actions in a certain environment. Three classes are put in this category: CColony, 
CAntSystem and CTSPAntSystem. CColony and CAntSystem belong to the Model layer 
because they model the common properties of a swarm, while CTSPAntSystem belongs to 
the Application layer because it is TSP-specific. 
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3.2.3.1 CColony  

CColony is an abstract class, which defines operations 
based on the pseudo-coded Ant Colony Optimization (ACO) 
– metaheuristic. Functionalities implemented in this class, 
are applicable to all kinds of swarm systems: 
 

 Generate agents at the beginning of every cycle 
and remove agents at the end. Virtual operations 
LoadAgents() and RemoveAgents() should be 
implemented in subclasses because the 
implementation depends on what kind of agents we 
work with. 

 
 Schedule the main activities which agents will 

execute. The abstract operation ScheduleActivities() 
must be implemented by subclasses since the 
schedule of activities is algorithm dependent . 

 
 Update pheromone intensity through pheromone 

3.2.3.2 CAntSystem  

CAntSystem is an abstract class, which inherits from CColony class. Because discrete 

3.2.3.3 CTSPAntSystem  

CTSPAntSystem implements problem specific functionalities for solving the TSP problem 

 Create a swarm of ants (instances of CTSPAnt class) designed for handling the TSP 

 

deposition and evaporation. The abstract operation 
UpdatePheromoneTrail() must be implemented by 
subclasses because the pheromone update 
mechanism may be different for different ant 
algorithms. 

CColony
m_numAgents : int
m_iteration : int

SetIteration()
GetNumberofAgent()
GetIteration()
GetSpace()
CColony()
<<virtual>> ~CColony()
<<abstract>> ScheduleActivities()
<<abstract>> UpdatePheromoneTrail()
<<virtual>> LoadAgents()
<<virtual>> RemoveAgents()

CAntSystem

<<abstract>> FindOptimalSolution()
<<abstract>> InitAntSystem()
CAntSystem()
<<virtual>> ~CAntSystem()

CTSPAntSystem
_ProblemSolved : bool
_OneIterationStart : bool
m_bestTourLength : double

ResetAntSys()
SetGraph()
GetGraph()
StartAntSystem()
FindOptimalSolution()
GetBestTourNodes()
GetBestTourLength()
GetAgents()
CTSPAntSystem()
Step()
UpdatePheromoneTrail()
<<virtual>> ~CTSPAntSystem()
DisplayResult()
RemoveAgents()
LoadAgents()
ScheduleActivities()
InitAntSystem()

optimization is a major application field of ant algorithms, we define an abstract operation 
FindOptimalSolution() in this class, which must be implemented by inheriting classes using 
the application-specific optimality criterion. 

using the ant-cycle algorithm (AS): 
 

problem in a graph-based environment. 
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 Implement ant-cycle algorithm in the traveling context: keep track of the best tour, 
update the pheromone trails according to the result of ant activities and stop the 
operation when the number of iterations has been reached. 

3.2.4 View  

All the classes in this category belong to the 
View layer in the three-layered framework 
and are designed to implement the Graphical 
User Interface (GUI) and the visualization.  

CSwarmView
BOARD_WIDTH : int
BOARD_HEIGHT : int
m_bReadytoPaint : bool

CSwarmView()
GetDocument()
<<virtual>> OnDraw()
<<virtual>> PreCreateWindow()
<<virtual>> OnPreparePrinting()
<<virtual>> OnBeginPrinting()
<<virtual>> OnEndPrinting()
StartAntSystem()
<<virtual>> ~CSwarmView()
<<virtual, const>> AssertValid()
<<virtual, const>> Dump()
GetView2nd()
LoadRandomMap()
DrawAnts()
DisplayParameters()
LoadTSPData()
DrawEdges()
DrawEdges_GradedColor1()
DrawEdges_GradedColor2()
DrawEdges_GradedColor3()
DrawCities()
SimulateAntSys()
<<afx_msg>> OnEraseBkgnd()
<<afx_msg>> OnPaint()
<<afx_msg>> OnTimer()
<<afx_msg>> OnCreate()
<<afx_msg>> OnLoadTSPFile()
<<afx_msg>> OnLoadRandomMap()
<<afx_msg>> OnSize()
<<afx_msg>> OnAntsysStart()
<<afx_msg>> OnDestroy()
<<afx_msg>> OnAntsysStep()
<<afx_msg>> OnUpdateAntsysStep()
<<afx_msg>> OnUpdateAntsysStart()
<<afx_msg>> OnAntsysStop()
<<afx_msg>> OnAntsysReset()
<<afx_msg>> OnUpdateAntsysReset()
<<afx_msg>> OnAntsysConfig()
<<afx_msg>> OnUpdateAntsysConfig()

CGUIGraph

SetBoundaryY()
SetBoundaryX()
SetScreenHeight()
SetScreenWidth()
DrawNodes()
DrawEdges()
DrawEdges_GradedColor1()
DrawEdges_GradedColor2()
DrawEdges_GradedColor3()
CGUIGraph()
CGUIGraph()
<<virtual>> ~CGUIGraph()
ClearNodesScaled()
ScaledNodes_2D()
ScaledNodes_1D()

#m_pGUIGraph

CSwarmView2nd
BOARD_WIDTH : int
BOARD_HEIGHT : int

CSwarmView2nd()
CreateMap()
<<virtual>> OnDraw()
<<virtual>> ~CSwarmView2nd()
<<virtual, const>> AssertValid()
<<virtual, const>> Dump()
<<afx_msg>> OnPaint()
<<afx_msg>> OnEraseBkgnd()
<<afx_msg>> OnSize()
<<afx_msg>> OnSetFocus()

#m_pGUIGraph

CACOOption
m_alpha : UINT
m_beta : UINT
m_rho : double
m_nodeNum : UINT
m_antNum : UINT
m_iteration : UINT
m_initPheromone : double
m_qval : UINT

CACOOption()
<<virtual>> DoDataExchange()
ApplyChange()
<<virtual>> OnOK()
<<virtual>> OnCancel()
<<virtual>> OnInitDialog()

CRandomDlg
m_noCities : int

CRandomDlg()
<<virtual>> DoDataExchange()
<<virtual>> OnOK()
<<virtual>> OnCancel()

3.2.4.1 CGUIGraph 

CGUIGraph is designed to visualize the 
graph-based environment. Operations such 
as drawing nodes, edges on the screen and 
coloring the pheromone level over the edges 
are implemented. Encapsulating these 
graph-related visualization functionalities 
into one class makes it easy to create 
multiple displays. 

3.2.4.2 CSwarmView 

CSwarmView inherits from the Microsoft 
Foundation Class (MFC) CView. This class 
handles user messages associated with 
User-Interface Objects. In addition, it is 
associated with the display window in which 
the pheromone level of the environment is 
visualized using different gray levels. 

3.2.4.3 CSwarmView2nd 

CSwarmView2nd inherits from the MFC 
class CView. It is associated with the display 
window in which the best route in each cycle 
of the algorithm is highlighted.  
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3.2.4.4 CACOOption 

CACOOption is associated with the option dialog, containing the configuration settings for 
the Ant-cycle (AS) algorithm. Users can easily change the default value of parameters before 
starting the ant system. The result depends greatly on the settings, and some fine tuning is 
needed to have a good result for a particular problem. 

3.2.4.5 CRandomDlg 

CRandomDlg is associated with the random map dialog, which is used to ask for the number 
of nodes for creating a random TSP map. 

3.2.5 Auxiliaries 

In order to create a program in the object oriented programming 
style, we group relevant operations into one class. With their 
specific functionalities, classes in this category are used as 
auxiliary classes for creating the TSP simulation program.  

CACOConf igure
ANT_NUM : int
NODE_NUM : int
ALPHA : int
BETA : int
RHO : double
ENVIRONMENT_TYPE : int
ITERATION : int
QVAL : int
DIS_SPEED : int
MAX_PHEROMONE : double
INIT_PHEROMONE : double

CACOConf igure()

CMemDC
m_rect : CRect
m_bMemDC : BOOL

CMemDC()
~CMemDC()
operator->()
operator CMemDC*()

CTSPFileParser
m_strFileName : CString

GetFileName()
GetAntSy s()
CTSPFileParser()
<<v irtual>> ~CTSPFileParser()
CreateTSPAntSy s()
CreateGraph()
CalEdgeLength()
ParseFile()
CreateEdges()

CRandomTSP

GetAntSy s()
CRandomTSP()
<<v irtual>> ~CRandomTSP()
CreateTSPAntSy s()
CreateRandomNodes()
CalEdgeLength()
CreateEdges()
CreateGraph()

CUtils

Seed()
RandomProb()
RandomInteger()
CUtils()
<<v irtual>> ~CUtils()

3.2.5.1 CACOConfigure  

CACOConfigure is the class used to hold all the algorithm 
related data. This is, parameters associated with the chosen ant 
algorithm. Parameters will be updated when users adjust the 
setting by filling in new values in the parameter setting dialog.  

3.2.5.2 CMemDC 

We use a user-defined C++ class CMemDC developed by Keith 
Rule (http://www.codeproject.com/gdi/flickerfree.asp) for double 
buffering. This is a technique used in computer animation to 
avoid screen flicker, which was a major problem due to the fact 
that the screen is updated (repainted) several times each second. 
The technique used is to create an off-screen buffer to which the 
image is drawn. The final image is then copied to the screen.  

3.2.5.3 CTSPFileParser 

CTSPFileParser as indicated by its name is used to import a TSP 
instance from the TSPLIB benchmark library[7]. TSPLIB is a 
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library of sample instances for the TSP (and related problems) from various sources and of 
various types. Currently, we only make this class capable to parse TSP instances which have 
their EDGE_WEIGHT_TYPE as EUC_2D. That means position of cities is indicated by 2-D 
coordinates and the distance between two cities is calculated by using Euclidean norm.  

3.2.5.4 CRandomTSP 

CRandomTSP is used to create random TSP data. Working with the random map dialog, this 
class is used to asks users for the number of cities and create a TSP map with those cities 
randomly distributed on it. 

3.2.5.5 CUtils 

The nondeterministic nature of ants leads to their unpredictable tendency to move from the 
current state to the next state. Intuitively, we can bring randomness to the simulation 
program by means of randomly generated numbers. So the CUtils class is created as a 
random data generator.  

3.3 Visualization Approach 

As the major task of our project, visualizing the swarm 
algorithm should be implemented in the simulation 
program and important aspects to visualize are the 
structure of the environment, the pheromone distribution 
in the space and the solutions emerged in the software 
swarm. In this section we will discuss the class design 
from the visualization point of view.  
 
As described in section 3.1, Classes implementing 
visualization functionalities belong to the View layer. 
More specifically, those classes are CGUIGraph, 
CSwarmView and CSwarmView2nd. As indicated by the 
class diagram on the right, the classes mentioned above 
have to work with the class CTSPAntSystem and the 
class CGraph in order to get information about the 
dynamics of the swarm system and the environment in 
which the swarm system exists.  
 
CGUIGraph class is designed to produce 2-D displays on 
the screen. Only the information about the graph-based 
environment where the swarm exists is needed to create 
the display. For visualizing the graph-based environment 
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within a predefined display area, operations, such as DrawNodes(), DrawEdges, 
SetBoundaryX() and SetScreenWidth() are defined for this class. In addition, in order to give 
a graphical representation of the volatile property of pheromones, we define operations (e.g. 
DrawEdges_GradedColor1 ()) which visualize the environment in graded color indicating 
the relative intensity of pheromones over edges. If the pheromone intensity over an edge is 
high compared to other edges, the color used to draw this edge will have lower brightness 
(e.g. dark blue).  
  
CSwarmView is associated with the main display window. Swarms of ants are created in this 
class and the dynamic information about the evolvement of those swarms can be tracked by 
this class. There can be several swarms associated with it at the same time. Containing all the 
real-time data about a swarm or several swarms, CSwarmView assigns the visualization task 
with the environment related information to the instance of CGUIGraph class when 
visualization task is triggered.  
 
CSwarmView2nd is associated with the auxiliary display window. Having this class, we can 
create a simulation program with two display windows having different views of the swarm 
dynamics. The visualization task is also assigned to the instance of CGUIGraph class. 

3.4 Implementation 

In order to examine the three-layered design, we choose to simulation the most basic ant 
algorithm, Ant System (Ant-cycle) in the context of traveling salesman problem. C++ is 
chosen as the programming language to implement the framework. The program was 
developed and compiled using Visual C++ 6.0. Other object oriented programming 
languages such as Java are also possible programming languages. We choose to use the 
Microsoft Foundation Classes (MFC) application framework. The benefits of using MFC 
application framework are: 
 

 Application framework is small and fast.  
 

 The visual C++ tools reduce coding drudgery.  
 

 The framework is rich in features.  
 
Because the TSP problem is NP-hard, the simulation process can become very 
time-consuming as the number of cities increases. If the simulation program had only one 
thread, messages associated with the user interface objects (e.g. buttons and menu items) 
would be blocked when the main thread is occupied by the running algorithm. In 
consideration of this problem we assign the algorithm execution task to an auxiliary thread, 
and the rest of the functionalities: visualization and message response are handled in the 
main thread. Based on this design, user controls of the simulation program can be resumed 
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very fast (the response delay is hardly noticed.) just after the main thread hands over the 
computation task to the auxiliary thread. 

 
4. Application 

As the product of the ideas described in this paper, a simulation program is developed. The 
program allows the user to apply an ant algorithm (AS) to TSP problems which can be 
imported from the benchmark TSP library (http://www.math.princeton.edu/tsp/) or randomly 
created by users themselves. Furthermore, as an important functionality of this program the 
dynamics of the artificial swarm is visualized and the text information about the result of ant 
actions is provided. In order to create an application with a professional and user-friendly 
interface, we employ the Professional User Interface Suite Library[4], which enables us to 
easily create user-interface objects with Office 2003 look & feel. 

4.1 Overview 

To find your way between all the forms and buttons, we first present an overview of our 
program. It is a windows application, containing following components: 
 

 Dockable menu bar (2) and toolbar (3) for providing all the controls of the program 
 

 Title bar(1) and status bar (7) for providing the user with software related 
information  

 
 View of Pheromone Intensity (4) for displaying the environment in graded color 

indicating the pheromone intensity over edges  
 

 View of Current Tour (5) for highlighting the best route in the current iteration of 
the chosen algorithm 

 
 Dockable Text View (6) for providing text information on the solutions given by the 

chosen ant system. 
 

 21

http://www.math.princeton.edu/tsp/


 

4.2 Graphical User Interface (GUI) 

 Two choices are given to the user to build up a TSP 
working space. One is to import the TSP instances 
from the TSPLIB benchmark library. The other is to 
create random TSP data. Both kinds of data are 
scaled according to the size of the display window 
and then represented as nodes on the screen.  

 
 With the configuration setting dialog, the users can 

change parameters of the ant algorithm, which enables 
them to observe the behavior of the algorithm with 
different config. The settings for the ant algorithm are 
the number of ants, Alpha, Beta, the evaporation rate 
(Rho) and the number of iterations (the number of cycles 
the algorithm works). Sometimes, when the TSP 
problem is relatively simple, the simulation is conducted 
so fast that the time between two consecutive iterations 
is not long enough for the user to track the result. In 
order to handle this problem a slider is provided for 
controlling the execution speed of the algorithm.  
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 The available menu items are self explanatory. 
The Start menu is used to start the simulation. 
The Stop menu is used to stop the simulation. 
The Step menu is used to step through the 
simulation. The Reset menu resets the 
simulation: pheromones left in the 
environment are set to be the initial value; 
controls ever performed to change the 
execution speed of the algorithm are canceled.  

 
 A dockable toolbar is created as the 

shortcut to the menu items which may 
be frequently used. 

 
 

 A dockable text output window is created for providing 
algorithm related information: the parameter settings, the 
best route in every cycle of the algorithm, etc. 

 
 

 
 

 Selection of the application appearance is provided. For 
instance, users can choose to show or hide the text 
output window. 

4.3 TSP Simulation 

In this section we will see how the Ant System handles the TSP problem through the 
simulation program. Since our task was to create a framework to visualise the result, we are 
not responsible for the result itself. It could be noticed that the result is not guaranteed to be 
optimal by applying the Ant System.  

4.3.1 Berlin52: 20 ants 

We start with the TSP instance from the TSPLIB benchmark library 
(Berlin52). This TSP instance contains position information of 52 
Berlin cities. 20 ants are allowed to find the best path in 10 iterations. 
Alpha and Beta are set to be 2, the evaporation rate Rho is set to be 
0.7.  
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Iteration 1 (14,064)  Iteration 2 (10,196) 

Iteration 3 (9609) Iteration 4 (8924)  

Iteration 5 (8668) Iteration 6 (8516) 
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Iteration 7 (8799) Iteration 8 (9068) 

Iteration 9 (9325) Iteration 10 (9550) 
 
We notice that the result is not so good. The best route in the last iteration is about 9550 long. 
But the best route an ant walked through is at a certain moment 8516 long but this path is 
gone after a while. 

4.3.2 Berlin52: 50 ants 

This time we drop 50 ants on the same map of Berlin. We also 
change the constant QVALUE used in the algorithm for 
pheromone strength calculation from 100 to 80. Having more 
ants work on the same problem, we observe that within 6 
iterations, the best path ever found is 7805 long compared to 
8516 in the previous simulation.  
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Iteration 1 (12,000) Iteration 2 (9625) 

Iteration 3 (8566) Iteration 4 (7872) 

Iteration 5 (8128) Iteration 6 (7805) 
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5. Conclusion 

The main purpose of our project is to design a software framework which is suitable for 
visualizing swarm algorithms. For visualizing swarm algorithms, we should design a 
framework which can first of all model those algorithms. After a thorough study of different 
swarm algorithms, we propose a framework which is made resilient to different simulation 
purposes. The most important characteristic of the framework is its three-layered structure 
which can represent swarm algorithms in different levels of abstraction.  
 
Modeling is a central part of all the activities that lead up to the deployment of a good 
software. Based on our framework design, we implement it in the object oriented 
programming language C++. Elements in a swarm system, such as the environment, the 
pheromone, and the agent are modeled using C++ classes. For illustration purpose, we 
implement an ant algorithm – Ant System (AS) in the context of the TSP problem. Because 
of the extendability of the framework other swarm algorithms can also be easily 
implemented under the layered framework.  
 
In order to ensure an easy implementation of the visualization, we propose a class design 
which encapsulates visualization functionalities associated with different environment 
representations (e.g. graph, matrix or 3-D space) in different classes. In the current stage, we 
implement a class (CGUIGraph) for visualizing a 2-D graph-based environment. In addition, 
we employ a Microsoft Foundation Classes (MFC) extension library Prof-UIS that enables 
us to deliver current application with a professional and user-friendly interface. 
 
Based on the software design we develop a simulation program, by which the behavior of 
software ants in the TSP working space is simulated. Easy controls are provided through user 
interface objects. The structure of the environment, the changing distribution of pheromones 
and the solutions given by the swarm are visualized over time to provide indicative 
information on the performance of the ant algorithm.  
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