

Visualizing Swarm Algorithms

Maarten VANKERKOM
Jin YU
Eindverhandeling aangeboden tot het behalen van
de graad van gediplomeerde in de aanvullende
studies Master in Artificial Intelligence

2003-2004

Promotor: Prof. Dr. Tom Holvoet

Readers: ir. Koenraad Mertens

Prof. Dr. ir. G. Janssens

Faculteit Toegepaste Wetenschappen K.U.Leuven
Master in Artificial Intelligence Academiejaar 2003-2004

Naam en voornaam studenten: Vankerkom Maarten
 Yu Jin

Titel:

Visualizing Swarm Algorithms

Korte inhoud (Abstract):

Inspired by the collective foraging behavior of biological ants, several computational
models (or ant colony optimization algorithms) are proposed which can be used to
solve combinatorial optimization problems, such as the vehicle routing problem and
sequential ordering problem, etc. In this article，a software framework is proposed
based on which the software agents can be easily created and the dynamics of a
swarm system such as the environment with changing pheromone distribution, the
movement of agents, can be visualized.

We implement the framework in C++ and apply the proposed methodology to
visualizing a swarm system which is used to handle the classical Travelling Salesman
Problem (TSP).

Eindverhandeling aangeboden tot het behalen van de graad van gediplomeerde in de
aanvullende studies Master in Artificial Intelligence

Promotor: Tom Holvoet
Begeleider: ir. Koenraad Mertens

 2

Table of Contents

1. Introduction ... 4
2. Theory .. 5

2.1 Collective behavior in social insects... 5
2.1.1 Self-organization .. 5
2.1.2 Stigmergy ... 6

2.2 Artificial ants .. 6
2.2.1 Self-organization .. 6
2.2.2 Stigmergy ... 6

2.3 The Ant Colony Optimization metaheuristic.. 7
2.4 Ant Algorithms ... 8

2.4.1 Swarm Intelligence and Ant algorithms... 8
2.4.2 Traveling Salesman Problem ... 8
2.4.3 Ant System (AS) .. 9

3. Software Design ... 10
3.1 Three-layered Framework... 10
3.2 Class Design ... 11

3.2.1 Individuals.. 13
3.2.2 Environment ... 14
3.2.3 Swarm... 15
3.2.4 View ... 17
3.2.5 Auxiliaries .. 18

3.3 Visualization Approach .. 19
3.4 Implementation ... 20

4. Application ... 21
4.1 Overview... 21
4.2 Graphical User Interface (GUI) .. 22
4.3 TSP Simulation... 23

4.3.1 Berlin52: 20 ants .. 23
4.3.2 Berlin52: 50 ants .. 25

5. Conclusion.. 27
References ... 28

 3

1. Introduction

Social insects, such as ants, termites, bees and wasps exhibit a collective problem-solving
ability. In particular, many ant species have trail-laying, trail-following behavior when
foraging: individual ants deposit a chemical substance called pheromone as they return from
a food source to their nest, and foragers follow such pheromone trails and reinforce those
trails by dropping pheromones. This reinforcement process results in the selection of the
shortest path from the nest to a food source.

The fascinating behavior of ants has been inspiring researchers to study swarm algorithms or
ant colony optimization (ACO) algorithms[6] which are computational models currently
applied to applications, such as the Traveling Salesman Problem(TSP)[3,6], graph coloring
problem[3], network routing problem[3] and a lot more.

The emergent behavior or emergent intelligence, which is the consequence of the
self-organization[2] and indirect communication between the ants, is also inspiring from the
perspective of computer science, because of the possibility to simulate and potentially
exploit this behavior to solve real world applications. Based on the understanding of
ant-based algorithms we propose a software framework, which can be employed to imitate
the collective behavior of the ants and visualize the dynamics of a swarm. The framework is
implemented in the object-oriented programming language C++, and all the elements of the
artificial swarm system are modeled in C++ classes, which implement the ant algorithm in
different levels of abstraction. As the illustration of the software framework we create a
software swarm for handling the symmetric Traveling Salesman Problem (TSP)[2, 3, 6]. For
solving the Traveling Salesman Problem, a set of ants cooperate to find better solutions
given a specific network. In the software, we use a graph to hold the traveling data, make
(software) ants walking on the graph and visualize the intensity of pheromone on edges in
time.

 4

2. Theory

In this part we will discuss the theory we use to design the software framework and C++
classes. As this project is based on ant algorithms, we will give a short presentation of the
properties we have found central in the context of ant algorithms and in their inspiration,
natural ants. And then we will focus on the ACO metaheuristic[3] that is a template for
building ant-inspired algorithms. We then continue to show an exemplary application of the
basic ant algorithm (Ant System) to solve the Traveling Salesman Problem.

2.1 Collective behavior in social insects

In order to better understand the mechanisms in artificial social insects one must understand
the collective behavior in real social insects. In the following, we will give a short
description of the primary mechanisms that are determining for the collective behavior of
social insects during food foraging, since this is the primary inspiration for the ACO
metaheuristic. This will facilitate a later discussion regarding the creation of artificial insects,
and also regarding algorithmic problems in a virtual domain.

2.1.1 Self-organization

Self-organization is a set of dynamical mechanisms whereby structures appear at the global
level of a system from interactions among its lower-level components[2]. The way the
system is made up by many small and simple entities enables it to both adapt to changes in
the environment and to keep on functioning even though one (or more) of the entities stops
functioning (dies). Self-organization in the context of social insects depends on the following
mechanisms:

 Positive feedback: Positive feedback is simple
behavioral “rules of thumb” that promote the
creation of structures. Examples of positive
feedback include recruitment and
reinforcement[2]. For instance, depending on
the quantity or desirability of the food source,
stronger deposits of the pheromone are left as the ant proceeds towards its goal.
Studies have shown that the ants follow the pheromone trail which exudes the
strongest scent.

 Negative feedback: Negative feedback is the mechanism that counteracts the effect of

positive feedback. An often-used example of negative feedback is pheromone
evaporation.

 5

 Randomness in social insects: Self-organization strongly depends on randomness
(random walks and errors in trail-following etc.). Randomness is referred to as a
crucial factor for the discovery of new solutions[2].

2.1.2 Stigmergy

Indirect communication occurs among insects when an individual insect modifies the
environment and at a later time another insect responds to the new environment. In many ant
species colonies, stigmergy refers to the deposition of pheromones by ants while they are
moving. Other ants can then smell the deposited pheromones and have a natural tendency to
follow the laid trail.

2.2 Artificial ants

Artificial ants are not intended to model real ants. They have abilities that cannot be
attributed to real ants. The mechanisms in biological ants described earlier have artificial
counterparts. In the following the term ant will refer to artificial ant.

2.2.1 Self-organization

In this section we describe how the different parts of self-organization in colonies of social
insects can be modeled by artificial ants in order to achieve the same useful properties of
self-organization that biological systems have.

 Positive feedback: An artificial pheromone trail is associated with numerical information
in ACO algorithms. In algorithms, artificial pheromone trails are deposited by ants
in amounts proportionate to the quality of the solution.

 Negative feedback: In ACO algorithms, pheromone levels are modified over time;

typically the amount of pheromone is reduced to a percentage of the original
amount.

 Stochastic state transition rule: Every ant algorithm has a

stochastic state transition rule. This rule is used to
implement the probabilistic decision policy used to
select the next state.

2.2.2 Stigmergy

The indirect communication mediated by modifications of environmental states which are
only locally accessible by the communicating agents, is known as “artificial” stigmergy. In

 6

ACO algorithms local pheromone trails are the only communication channels among the
ants.

2.3 The Ant Colony Optimization metaheuristic

Inspired by the observations and study of ant colonies and ant colony behaviors a
metaheuristic called Ant Colony Optimization (ACO)[3] is proposed for characterizing the
common properties of a number of algorithms for discrete optimization problems. These
algorithms are typically called ACO-algorithms or ant algorithms[3, 6]. A high-level
description of the ACO metaheuristic reported in[3] in pseudo-code is as follows:

procedure ACO_Meta_heuristic()
while (termination_criterion_not_satisfied)

 schedule_activities
ants_generation_and_activity();
pheromone_trail_update();
daemon_actions();{optional}

 end schedule_activities
end while

end procedure

procedure ants_generation_and_activity()
 while (available_resources)
 schedule_the_creation_of_a_new_ant();

new_active_ant();
end while

end procedure

procedure new_active_ant() {ant lifecycle}

initialize_ant();
M= update_ant_memory();

while (current state ≠ target state)
A = read_local_ant-routing_table();
P = compute_ transition_probabilities(A;M; problem constraints);
next state = apply_ant_decision_policy(P; problem constraints);
move_to_ next state(next_state);
if (online_step-by-step_pheromone_update)
 deposit_pheromone_on_the_visited_arc();

update_ant-routing_table();
end if
M= update_internal_state();

end while
if (online_delayed_pheromone_update)

evaluate_solution();
deposit_pheromone_on_ all_visited_arcs();
update_ ant-routing_ table();

end if
die();

end procedure
 7

The above pseudo-code states that ACO algorithms construct solutions by constructing paths
in a graph. Ant algorithms can be constructed by simply implementing the procedures
defined in the pseudo-code to solve a specific problem.

2.4 Ant Algorithms

Since we implement an ACO algorithm called Ant System (AS)[3, 6] in our software, we
will now discuss the AS. AS is the first ACO algorithm proposed and has been applied to the
TSP problem. AS initially showed promising results, but did not scale well enough to be
applicable on large graphs and was therefore not competitive with state-of-the-art algorithms
for TSP. In spite of the limitations of the AS itself, most of ACO algorithms are inspired by
it. In addition to the TSP problem, ant algorithms are applied to some of other application
domains, such as quadratic assignment, job scheduling, vehicle routing and graph coloring
problems[3], etc.

2.4.1 Swarm Intelligence and Ant algorithms

It is worth mentioning that ant algorithms belong to a larger field of algorithms called Swarm
Intelligence algorithms. Swarm Intelligence (SI)[2] is the property of a system whereby the
collective behaviors of (unsophisticated) agents interacting locally with their environment
cause coherent functional global patterns to emerge. SI provides a basis with which it is
possible to explore collective (or distributed) problem solving without centralized control or
the provision of a global model.

2.4.2 Traveling Salesman Problem

The Traveling Salesman Problem (TSP) is a NP hard
optimization problem and it is a standard test-bed for
new algorithms. It is, therefore, natural that the first
application of an ant colony algorithm was to a path
optimization problem: the Traveling Salesman
Problem[2].

The TSP problem can be stated as finding the minimal
length of the walked path, a closed tour on a graph
with each node representing a city. There are two
kinds of TSP problems:

 Symmetric traveling salesman problem (TSP): Given a set of n nodes and distances for
each pair of nodes, find a roundtrip of minimal total length visiting each node
exactly once. The distance from node i to node j is the same as from node j to node
i.

 8

 Asymmetric traveling salesman problem (ATSP): Similar to the TSP problem. But in
this case, the distance from node i to node j and the distance from node j to node i
may be different.

In ACO algorithms ants are simple agents which construct tours by moving from city to city
on the problem graph. The ants’ solution construction is guided by artificial pheromone trails
and a priori available heuristic information.

2.4.3 Ant System (AS)

There were three different versions of the AS:

 Ant-density and Ant-quantity: The pheromone update is done directly after a move from
one city to another adjacent city.

 Ant-cycle: The pheromone update is only done after all the ants have constructed the

tours and the amount of pheromone deposited by each ant is set to be a function of
the tour quality.

In the following, we will just discuss the Ant-cycle algorithm. Ant-cycle performs much
better then the other two variants, that’s also the algorithm we implement in our project as
the default algorithm for solving the TSP problem.

2.4.3.1 Stochastic state transition rule

Probability that ant k goes from city i to city j:

[] []
[] []

0,
.)(

.)(
)(elseallowedjif

nt
nt

tp k

allowedl
ilil

ijijk
ij

k

∈
∑

=

∈

βα

βα

τ
τ

i, j = edge between nodes i, j
nij = 1/distance (i,j)
α = weight for marking: determine the relative influence of the pheromone trail
β = weight for node “neighbourhoodness”: influence of heuristic information
allowedk= unvisited cities for ant k

If α = 0, the closest cities are more likely to be selected (corresponds to classical stochastic
greedy algorithm).

If β = 0, only pheromone amplification is at work. This leads to rapid emergence of a
stagnation situation with suboptimal generated tours. The ant chooses the edge to continue
his path if the probability is higher than a random generated number.

 9

2.4.3.2 Trail deposition and pheromone trail update

After all ants have constructed their tours, the pheromone trails are updated. This is done by
first lowering the pheromone strength on all arcs by a constant factor and then allowing each
ant to add pheromone on the arcs it has visited:

∑∆+−=+
=

m

k

k
ijijij ttt

1
)()().1()1(ττρτ

0 < ρ < 1 is evaporation rate. It enables the algorithm to forget previously done bad decisions.

)(
1)(tLt k

k
i =∆τ If arc (i,j) is used by ant κ and 0 otherwise (L = length of ant’s tour)

3. Software Design

The task of our project is to present a design of a generic software framework capable of
visualizing different kinds of swarm algorithms in different application contexts. To meet
this requirement the framework should be designed in a way so that it can be extended easily
for simulating various swarm algorithms.

We use the object-oriented programming language C++ to implement the framework. All
elements of a swarm system are modeled using C++ classes, which is defined based on
different levels of abstraction so that the code can be reused as much as possible when future
features will be added. For testing purpose, we simulate the basic ant algorithm (Ant System
(AS)) in the traveling salesman setting.

3.1 Three-layered Framework

For enhancing the extendability of the software framework, we propose a three-layered
design: the Model, the Application and the View layers. Inspired by the ACO metaheuristic
the Model layer implements the base logic of ant algorithms. On the contrary, the
Application layer implements application-oriented operations. That is, the generic part of the
ant algorithms is modeled in the Model layer while concrete solutions to the real word
applications (e.g. TSP problems) are implemented in the Application layer. Because
algorithm visualization is also an important part of the functionality we need to implement
for this project, we design the View layer for the visualization purpose.

 The Model layer: Common properties of ant algorithms as indicated by the
pseudo-coded ACO metaheuristic are implemented in this layer. All classes
belonging to this layer model the base logic of ant algorithms, such as
UpdatePheromoneTrail, DepositPheromone, MoveToNextState,
ScheduleActivities, etc. Most classes in this layer are supposed to be abstract

 10

classes as they represent ant algorithms at a high level of abstraction. These classes,
such as CAgent, CAnt, CColony, CAntSystem, CEnvironment and CPheromone
are designed as top-level classes in the hierarchical class framework, which can be
inherited by various kinds of application-oriented classes.

 The Application layer: The application layer contains classes which hold application

specific information. These classes, such as CTSPAnt, CTSPAntSystem, are
separated from the Model layer for their application-oriented characteristics.
Inheriting from the corresponding classes in the Model layer, classes in this layer
can be defined for different agent-based applications, e.g. implementing a class
CRoutingAnt for simulating network routing approach, or a class CGraphColorAnt
for handling Graph Coloring problem.

 The View layer: Classes defined in the View layer implement the graphical user

interface (GUI) and the visualization. In the current stage we have the class
CGUIGraph for creating 2-D displays on the screen indicating the results of swarm
actions. Encapsulating visualization functionalities into classes makes it easy to
create multiple graphical views. We use CSwarmView class, which is inherited
from the Microsoft Foundation Class (MFC) CView to handle user messages
associated with the User-Interface Objects. We implement the text output function
in the MFC class CMainframe.

3.2 Class Design

It is now time to present the class design. In the current stage we only implement those
classes which are necessary for creating a graph-based simulation program in the context of
TSP problem. But under the three-layered framework further extensions of the design can be
easily conducted by adding new top-level classes for the Model layer, creating new
inheriting classes for the Application layer or designing new classes offering more
visualization functionalities. The following diagram created in UML with Rational Rose,
shows all the important classes and their operations. We notice that according to their roles
in a software swarm system these classes can be grouped into three categories:

 Individuals(A): Classes belonging to this category model the individual agent which has
limited memory and is capable of performing simple actions.

 Environment(B): Classes in this category model the environment in which software

agents work. A graph, a matrix or a set of cells are the possible working
environment.

 Swarm(C): Classes put in this category model the swarm, a collection of agents

executing a schedule of actions.

 11

In addition to the above three categories indicated by the following class diagram, we will
discuss two extra categories:

 View(D): Classes in this category implement graphical user interface and visualization.

 Auxiliaries(E): Classes in this category facilitate problem-specific operations.

CAntSystem

<<abstract>> FindOptimalSolution()
<<abstract>> InitAntSystem()
CAntSystem()
<<virtual>> ~CAntSystem()

CColony
m_numAgents : int
m_iteration : int

SetIteration()
GetNumberofAgent()
GetIteration()
GetSpace()
CColony()
<<virtual>> ~CColony()
<<abstract>> ScheduleActivities()
<<abstract>> UpdatePheromoneTrail()
<<virtual>> LoadAgents()
<<virtual>> RemoveAgents()

CAnt

CAnt()
<<virtual>> ~CAnt()
CalculateProduct()

CNode

CNode()
<<virtual>> ~CNode()

CEnvironment
m_hiPheromone : double
ENVIRONMENT_TYPE : const UINT
m_boundaryY : double
m_boundaryX : double

GetLocationNum()
GetTypeofEnvironment()
GetBoundaryY()
GetBoundaryX()
GetLocations()
<<abstract>> PheromoneEvaporation()
<<virtual>> GetHightestPheromone()
<<abstract>> GetDistance()
<<abstract>> GetPheromoneAt()
<<abstract>> SetPheromoneAt()
<<abstract>> AddPheromoneAt()
CEnvironment()
<<virtual>> ~CEnvironment()
SetBoundaryX()
SetBoundaryY()

#m_pSpace

CAgent
m_stepNum : UINT
m_randomProb : double

GetCurPosition()
GetSpace()
GetPheromone()
CAgent()
<<virtual>> ~CAgent()
<<virtual>> MoveToNextState()
<<abstract>> DepositPheromone()

#m_pSpace

CLocation
m_positionX : double
m_positionY : double
m_id : CString
m_index : UINT

CLocation()
<<virtual>> ~CLocation()
GetPositionY()
GetPositionX()
GetID()
GetIndex()
SetIndex()

#m_pCurPosition

CEdge
m_length : double

GetNodeConnectedF()
GetNodeConnectedT()
GetPheromone()
SetPheromone()
GetLength()
CEdge()
<<virtual>> ~CEdge()

#m_pFNode
#m_pTNode

CTSPAnt
m_tourLength : double
intTellerCities : int

GetCurNode()
CTSPAnt()
MoveToNextState()
GetNodesVisited()
GetTourLength()
DepositPheromone()
<<virtual>> ~CTSPAnt()
GetAntProductOnEdge()
GetAntProductOnEdge()
StoreTour()
RandomDistribute()
ChooseNextCity()

#m_pCurNode

#m_pHomeCity

CTSPAntSystem
_ProblemSolved : bool
_OneIterationStart : bool
m_bestTourLength : double

ResetAntSys()
SetGraph()
GetGraph()
StartAntSystem()
FindOptimalSolution()
GetBestTourNodes()
GetBestTourLength()
GetAgents()
CTSPAntSystem()
Step()
UpdatePheromoneTrail()
<<virtual>> ~CTSPAntSystem()
DisplayResult()
RemoveAgents()
LoadAgents()
ScheduleActivities()
InitAntSystem()

CGraph

ResetGraph()
AddPheromoneAt()
GetHightestPheromone()
PheromoneEvaporation()
GetPheromoneAt()
GetPheromoneAt()
GetDistance()
SetPheromoneAt()
GetDistance()
GetPheromoneAt()
SetPheromoneAt()
AddPheromoneAt()
GetEdges()
GetNodes()
CGraph()
<<virtual>> ~CGraph()
CreateLocations()
FindEdge()
FindEdge()
MaxCoordinate()

#m_pSpaceG #m_pSpaceG

CBA

12

3.2.1 Individuals

There are three classes: CAgent, CAnt and CTSPAnt created for
modeling an individual agent. CAgent and CAnt are both top-level
classes designed for the Model layer while CTSPAnt for the
Application layer.

CAgent
m_stepNum : UINT
m_randomProb : double

GetCurPosition()
GetSpace()
GetPheromone()
CAgent()
<<virtual>> ~CAgent()
<<virtual>> MoveToNextState()
<<abstract>> DepositPheromone()

CAnt

CAnt()
<<virtual>> ~CAnt()
CalculateProduct()

CTSPAnt
m_tourLength : double
intTellerCities : int

GetCurNode()
CTSPAnt()
MoveToNextState()
GetNodesVisited()
GetTourLength()
DepositPheromone()
<<virtual>> ~CTSPAnt()
GetAntProductOnEdge()
GetAntProductOnEdge()
StoreTour()
RandomDistribute()
ChooseNextCity()

3.2.1.1 CAgent

CAgent is an abstract class, which models the behaviour of an
individual agent in a high level of abstraction. Operations are
designed referring to the pseudo-coded Ant Colony Optimization
(ACO) - metaheuristic presented in[3]. The basic logic of ant
algorithms implemented in this class includes:

 Hold dynamic information of the environment and
agent’s current position.

 Make a stochastic move to the next state. The concrete

definition of the virtual operation MoveToNextState()
should be given by subclasses which may implement
different algorithms.

 Drop pheromones in the environment. The abstract

operation DepositPheromone() must be implemented by
subclasses.

3.2.1.2 CAnt

CAnt is a subclass of CAgent. The mathematical implementation of the stochastic state
transition rule (referring to section 2.4.1.2) that is often used by many ant algorithms is
implemented in the CalculateProduct() operation.

3.2.1.3 CTSPAnt

CTSPAnt implements problem specific functionalities for solving the TSP problem using the
Ant System (AS):

 Initially, an ant is put on a randomly chosen city in a graph-based environment. The
RandomDistribute() function gives a random initial home position (starting node),
to which the ant returns afterwards.

 13

 Implement the ant-cycle algorithm in the TSP context: choose the next city by
taking the pheromone intensity, heuristic value and randomness into account
(ChooseNextCity()); calculate the amount of the pheromone according to the quality
of the route and increase the pheromone intensity on the edges the ant walked
through (DepositPheromone()).

 Remember visited cities (StoreTour()); calculate the length of the tour

(GetTourLength()) and get information of all the nodes visited (GetNodesVisited())
for backtracking its path to drop the pheromone.

3.2.2 Environment

In the current design, there are six classes created for
modeling the working environment of software agents:
CEnvironment, CGraph, CLocation, CNode, CEdge and
CPheromone. All the classes in this category belong to the
Model layer because they don’t carry any
application-specific information.

3.2.2.1 CEnvironment

CEnvironment is an abstract class, which represents the
general concept of the environment, working space of a
collection of agents with pheromone deposited in it. Basic
properties associated with a swarm environment are
defined in this class:

 Work with a number of locations, which can be
graphical nodes or cells in a grid, etc.

 Hold information of space boundaries.

 Calculate distances between locations, and

manipulate pheromone intensity in the
environment. The abstract operation GetDistance()
and several abstract operations for pheromone
handling such as SetPheromoneAt() and
AddPheromoneAt() must be implemented by
subclasses.

CEnvironment
m_hiPheromone : double
ENVIRONMENT_TYPE : const UINT
m_boundaryY : double
m_boundaryX : double

GetLocationNum()
GetTypeofEnvironment()
GetBoundaryY()
GetBoundaryX()
<<abstract>> PheromoneEvaporation()
<<virtual>> GetLocations()
<<virtual>> GetHightestPheromone()
<<abstract>> GetDistance()
<<abstract>> GetPheromoneAt()
<<abstract>> SetPheromoneAt()
<<abstract>> AddPheromoneAt()
CEnvironment()
<<virtual>> ~CEnvironment()
SetBoundaryX()
SetBoundaryY()

CGraph

AddPheromoneAt()
GetHightestPheromone()
PheromoneEvaporation()
GetPheromoneAt()
GetPheromoneAt()
GetDistance()
SetPheromoneAt()
GetEdges()
GetNodes()
CGraph()
<<virtual>> ~CGraph()
CreateLocations()
FindEdge()
MaxCoordinate()

CLocation
m_positionX : double
m_positionY : double
m_id : CString

CLocation()
<<virtual>> ~CLocation()
GetPositionY()
GetPositionX()
GetID()

CNode

CNode()
<<virtual>> ~CNode()

CPheromone
m_strenght : double

GetStrength()
SetStrength()
CPheromone()
<<virtual>> ~CPheromone()

CEdge
m_length : double

GetNodeConnectedF()
GetNodeConnectedT()
GetPheromone()
SetPheromone()
GetLength()
CEdge()
<<virtual>> ~CEdge()

#m_pFNode

#m_pTNode

#m_pPheromone

 14

3.2.2.2 CLocation

CLocation is created for the common concept of a location, which is employed by the
CEnvironment class. It is the super-class of classes which represent specific location
structures e.g. a node or a cell.

3.2.2.3 CGraph

CGraph is a simple implementation of a graph. A graph is a collection of nodes and edges.
For the TSP problem, the graph is a good representation of the environment. Nodes can be
described as cities and routes between cities can be represented by edges. Main
functionalities implemented in this class include:

 Manipulate the pheromone intensity over edges (PheromoneEvaporation() and
SetPheromoneAt(), etc.).

 Hold coordinate information (MaxCooridinate()).

 Calculate Euclidian distance between two nodes (GetDistance()).

3.2.2.4 CEdge

CEdge represents an undirected connection between two nodes. This class contains
information about the length of the edge and the pheromone intensity over it.

3.2.2.5 CNode

CNode represents a vertex in a graph, which is a subclass of CLocation.

3.2.2.6 CPheromone

CPheromone is designed to keep the intensity information of a pheromone. As the
pheromone is a substance in an environment we put it to the Environment category.

3.2.3 Swarm

Classes in this category are designed to model a swarm, a collection of agents executing a
schedule of actions in a certain environment. Three classes are put in this category: CColony,
CAntSystem and CTSPAntSystem. CColony and CAntSystem belong to the Model layer
because they model the common properties of a swarm, while CTSPAntSystem belongs to
the Application layer because it is TSP-specific.

 15

3.2.3.1 CColony

CColony is an abstract class, which defines operations
based on the pseudo-coded Ant Colony Optimization (ACO)
– metaheuristic. Functionalities implemented in this class,
are applicable to all kinds of swarm systems:

 Generate agents at the beginning of every cycle
and remove agents at the end. Virtual operations
LoadAgents() and RemoveAgents() should be
implemented in subclasses because the
implementation depends on what kind of agents we
work with.

 Schedule the main activities which agents will

execute. The abstract operation ScheduleActivities()
must be implemented by subclasses since the
schedule of activities is algorithm dependent .

 Update pheromone intensity through pheromone

3.2.3.2 CAntSystem

CAntSystem is an abstract class, which inherits from CColony class. Because discrete

3.2.3.3 CTSPAntSystem

CTSPAntSystem implements problem specific functionalities for solving the TSP problem

 Create a swarm of ants (instances of CTSPAnt class) designed for handling the TSP

deposition and evaporation. The abstract operation
UpdatePheromoneTrail() must be implemented by
subclasses because the pheromone update
mechanism may be different for different ant
algorithms.

CColony
m_numAgents : int
m_iteration : int

SetIteration()
GetNumberofAgent()
GetIteration()
GetSpace()
CColony()
<<virtual>> ~CColony()
<<abstract>> ScheduleActivities()
<<abstract>> UpdatePheromoneTrail()
<<virtual>> LoadAgents()
<<virtual>> RemoveAgents()

CAntSystem

<<abstract>> FindOptimalSolution()
<<abstract>> InitAntSystem()
CAntSystem()
<<virtual>> ~CAntSystem()

CTSPAntSystem
_ProblemSolved : bool
_OneIterationStart : bool
m_bestTourLength : double

ResetAntSys()
SetGraph()
GetGraph()
StartAntSystem()
FindOptimalSolution()
GetBestTourNodes()
GetBestTourLength()
GetAgents()
CTSPAntSystem()
Step()
UpdatePheromoneTrail()
<<virtual>> ~CTSPAntSystem()
DisplayResult()
RemoveAgents()
LoadAgents()
ScheduleActivities()
InitAntSystem()

optimization is a major application field of ant algorithms, we define an abstract operation
FindOptimalSolution() in this class, which must be implemented by inheriting classes using
the application-specific optimality criterion.

using the ant-cycle algorithm (AS):

problem in a graph-based environment.

 16

 Implement ant-cycle algorithm in the traveling context: keep track of the best tour,
update the pheromone trails according to the result of ant activities and stop the
operation when the number of iterations has been reached.

3.2.4 View

All the classes in this category belong to the
View layer in the three-layered framework
and are designed to implement the Graphical
User Interface (GUI) and the visualization.

CSwarmView
BOARD_WIDTH : int
BOARD_HEIGHT : int
m_bReadytoPaint : bool

CSwarmView()
GetDocument()
<<virtual>> OnDraw()
<<virtual>> PreCreateWindow()
<<virtual>> OnPreparePrinting()
<<virtual>> OnBeginPrinting()
<<virtual>> OnEndPrinting()
StartAntSystem()
<<virtual>> ~CSwarmView()
<<virtual, const>> AssertValid()
<<virtual, const>> Dump()
GetView2nd()
LoadRandomMap()
DrawAnts()
DisplayParameters()
LoadTSPData()
DrawEdges()
DrawEdges_GradedColor1()
DrawEdges_GradedColor2()
DrawEdges_GradedColor3()
DrawCities()
SimulateAntSys()
<<afx_msg>> OnEraseBkgnd()
<<afx_msg>> OnPaint()
<<afx_msg>> OnTimer()
<<afx_msg>> OnCreate()
<<afx_msg>> OnLoadTSPFile()
<<afx_msg>> OnLoadRandomMap()
<<afx_msg>> OnSize()
<<afx_msg>> OnAntsysStart()
<<afx_msg>> OnDestroy()
<<afx_msg>> OnAntsysStep()
<<afx_msg>> OnUpdateAntsysStep()
<<afx_msg>> OnUpdateAntsysStart()
<<afx_msg>> OnAntsysStop()
<<afx_msg>> OnAntsysReset()
<<afx_msg>> OnUpdateAntsysReset()
<<afx_msg>> OnAntsysConfig()
<<afx_msg>> OnUpdateAntsysConfig()

CGUIGraph

SetBoundaryY()
SetBoundaryX()
SetScreenHeight()
SetScreenWidth()
DrawNodes()
DrawEdges()
DrawEdges_GradedColor1()
DrawEdges_GradedColor2()
DrawEdges_GradedColor3()
CGUIGraph()
CGUIGraph()
<<virtual>> ~CGUIGraph()
ClearNodesScaled()
ScaledNodes_2D()
ScaledNodes_1D()

#m_pGUIGraph

CSwarmView2nd
BOARD_WIDTH : int
BOARD_HEIGHT : int

CSwarmView2nd()
CreateMap()
<<virtual>> OnDraw()
<<virtual>> ~CSwarmView2nd()
<<virtual, const>> AssertValid()
<<virtual, const>> Dump()
<<afx_msg>> OnPaint()
<<afx_msg>> OnEraseBkgnd()
<<afx_msg>> OnSize()
<<afx_msg>> OnSetFocus()

#m_pGUIGraph

CACOOption
m_alpha : UINT
m_beta : UINT
m_rho : double
m_nodeNum : UINT
m_antNum : UINT
m_iteration : UINT
m_initPheromone : double
m_qval : UINT

CACOOption()
<<virtual>> DoDataExchange()
ApplyChange()
<<virtual>> OnOK()
<<virtual>> OnCancel()
<<virtual>> OnInitDialog()

CRandomDlg
m_noCities : int

CRandomDlg()
<<virtual>> DoDataExchange()
<<virtual>> OnOK()
<<virtual>> OnCancel()

3.2.4.1 CGUIGraph

CGUIGraph is designed to visualize the
graph-based environment. Operations such
as drawing nodes, edges on the screen and
coloring the pheromone level over the edges
are implemented. Encapsulating these
graph-related visualization functionalities
into one class makes it easy to create
multiple displays.

3.2.4.2 CSwarmView

CSwarmView inherits from the Microsoft
Foundation Class (MFC) CView. This class
handles user messages associated with
User-Interface Objects. In addition, it is
associated with the display window in which
the pheromone level of the environment is
visualized using different gray levels.

3.2.4.3 CSwarmView2nd

CSwarmView2nd inherits from the MFC
class CView. It is associated with the display
window in which the best route in each cycle
of the algorithm is highlighted.

 17

3.2.4.4 CACOOption

CACOOption is associated with the option dialog, containing the configuration settings for
the Ant-cycle (AS) algorithm. Users can easily change the default value of parameters before
starting the ant system. The result depends greatly on the settings, and some fine tuning is
needed to have a good result for a particular problem.

3.2.4.5 CRandomDlg

CRandomDlg is associated with the random map dialog, which is used to ask for the number
of nodes for creating a random TSP map.

3.2.5 Auxiliaries

In order to create a program in the object oriented programming
style, we group relevant operations into one class. With their
specific functionalities, classes in this category are used as
auxiliary classes for creating the TSP simulation program.

CACOConf igure
ANT_NUM : int
NODE_NUM : int
ALPHA : int
BETA : int
RHO : double
ENVIRONMENT_TYPE : int
ITERATION : int
QVAL : int
DIS_SPEED : int
MAX_PHEROMONE : double
INIT_PHEROMONE : double

CACOConf igure()

CMemDC
m_rect : CRect
m_bMemDC : BOOL

CMemDC()
~CMemDC()
operator->()
operator CMemDC*()

CTSPFileParser
m_strFileName : CString

GetFileName()
GetAntSy s()
CTSPFileParser()
<<v irtual>> ~CTSPFileParser()
CreateTSPAntSy s()
CreateGraph()
CalEdgeLength()
ParseFile()
CreateEdges()

CRandomTSP

GetAntSy s()
CRandomTSP()
<<v irtual>> ~CRandomTSP()
CreateTSPAntSy s()
CreateRandomNodes()
CalEdgeLength()
CreateEdges()
CreateGraph()

CUtils

Seed()
RandomProb()
RandomInteger()
CUtils()
<<v irtual>> ~CUtils()

3.2.5.1 CACOConfigure

CACOConfigure is the class used to hold all the algorithm
related data. This is, parameters associated with the chosen ant
algorithm. Parameters will be updated when users adjust the
setting by filling in new values in the parameter setting dialog.

3.2.5.2 CMemDC

We use a user-defined C++ class CMemDC developed by Keith
Rule (http://www.codeproject.com/gdi/flickerfree.asp) for double
buffering. This is a technique used in computer animation to
avoid screen flicker, which was a major problem due to the fact
that the screen is updated (repainted) several times each second.
The technique used is to create an off-screen buffer to which the
image is drawn. The final image is then copied to the screen.

3.2.5.3 CTSPFileParser

CTSPFileParser as indicated by its name is used to import a TSP
instance from the TSPLIB benchmark library[7]. TSPLIB is a

 18

http://www.codeproject.com/gdi/flickerfree.asp

library of sample instances for the TSP (and related problems) from various sources and of
various types. Currently, we only make this class capable to parse TSP instances which have
their EDGE_WEIGHT_TYPE as EUC_2D. That means position of cities is indicated by 2-D
coordinates and the distance between two cities is calculated by using Euclidean norm.

3.2.5.4 CRandomTSP

CRandomTSP is used to create random TSP data. Working with the random map dialog, this
class is used to asks users for the number of cities and create a TSP map with those cities
randomly distributed on it.

3.2.5.5 CUtils

The nondeterministic nature of ants leads to their unpredictable tendency to move from the
current state to the next state. Intuitively, we can bring randomness to the simulation
program by means of randomly generated numbers. So the CUtils class is created as a
random data generator.

3.3 Visualization Approach

As the major task of our project, visualizing the swarm
algorithm should be implemented in the simulation
program and important aspects to visualize are the
structure of the environment, the pheromone distribution
in the space and the solutions emerged in the software
swarm. In this section we will discuss the class design
from the visualization point of view.

As described in section 3.1, Classes implementing
visualization functionalities belong to the View layer.
More specifically, those classes are CGUIGraph,
CSwarmView and CSwarmView2nd. As indicated by the
class diagram on the right, the classes mentioned above
have to work with the class CTSPAntSystem and the
class CGraph in order to get information about the
dynamics of the swarm system and the environment in
which the swarm system exists.

CGUIGraph class is designed to produce 2-D displays on
the screen. Only the information about the graph-based
environment where the swarm exists is needed to create
the display. For visualizing the graph-based environment

 19

within a predefined display area, operations, such as DrawNodes(), DrawEdges,
SetBoundaryX() and SetScreenWidth() are defined for this class. In addition, in order to give
a graphical representation of the volatile property of pheromones, we define operations (e.g.
DrawEdges_GradedColor1 ()) which visualize the environment in graded color indicating
the relative intensity of pheromones over edges. If the pheromone intensity over an edge is
high compared to other edges, the color used to draw this edge will have lower brightness
(e.g. dark blue).

CSwarmView is associated with the main display window. Swarms of ants are created in this
class and the dynamic information about the evolvement of those swarms can be tracked by
this class. There can be several swarms associated with it at the same time. Containing all the
real-time data about a swarm or several swarms, CSwarmView assigns the visualization task
with the environment related information to the instance of CGUIGraph class when
visualization task is triggered.

CSwarmView2nd is associated with the auxiliary display window. Having this class, we can
create a simulation program with two display windows having different views of the swarm
dynamics. The visualization task is also assigned to the instance of CGUIGraph class.

3.4 Implementation

In order to examine the three-layered design, we choose to simulation the most basic ant
algorithm, Ant System (Ant-cycle) in the context of traveling salesman problem. C++ is
chosen as the programming language to implement the framework. The program was
developed and compiled using Visual C++ 6.0. Other object oriented programming
languages such as Java are also possible programming languages. We choose to use the
Microsoft Foundation Classes (MFC) application framework. The benefits of using MFC
application framework are:

 Application framework is small and fast.

 The visual C++ tools reduce coding drudgery.

 The framework is rich in features.

Because the TSP problem is NP-hard, the simulation process can become very
time-consuming as the number of cities increases. If the simulation program had only one
thread, messages associated with the user interface objects (e.g. buttons and menu items)
would be blocked when the main thread is occupied by the running algorithm. In
consideration of this problem we assign the algorithm execution task to an auxiliary thread,
and the rest of the functionalities: visualization and message response are handled in the
main thread. Based on this design, user controls of the simulation program can be resumed

 20

very fast (the response delay is hardly noticed.) just after the main thread hands over the
computation task to the auxiliary thread.

4. Application

As the product of the ideas described in this paper, a simulation program is developed. The
program allows the user to apply an ant algorithm (AS) to TSP problems which can be
imported from the benchmark TSP library (http://www.math.princeton.edu/tsp/) or randomly
created by users themselves. Furthermore, as an important functionality of this program the
dynamics of the artificial swarm is visualized and the text information about the result of ant
actions is provided. In order to create an application with a professional and user-friendly
interface, we employ the Professional User Interface Suite Library[4], which enables us to
easily create user-interface objects with Office 2003 look & feel.

4.1 Overview

To find your way between all the forms and buttons, we first present an overview of our
program. It is a windows application, containing following components:

 Dockable menu bar (2) and toolbar (3) for providing all the controls of the program

 Title bar(1) and status bar (7) for providing the user with software related
information

 View of Pheromone Intensity (4) for displaying the environment in graded color

indicating the pheromone intensity over edges

 View of Current Tour (5) for highlighting the best route in the current iteration of
the chosen algorithm

 Dockable Text View (6) for providing text information on the solutions given by the

chosen ant system.

 21

http://www.math.princeton.edu/tsp/

4.2 Graphical User Interface (GUI)

 Two choices are given to the user to build up a TSP
working space. One is to import the TSP instances
from the TSPLIB benchmark library. The other is to
create random TSP data. Both kinds of data are
scaled according to the size of the display window
and then represented as nodes on the screen.

 With the configuration setting dialog, the users can

change parameters of the ant algorithm, which enables
them to observe the behavior of the algorithm with
different config. The settings for the ant algorithm are
the number of ants, Alpha, Beta, the evaporation rate
(Rho) and the number of iterations (the number of cycles
the algorithm works). Sometimes, when the TSP
problem is relatively simple, the simulation is conducted
so fast that the time between two consecutive iterations
is not long enough for the user to track the result. In
order to handle this problem a slider is provided for
controlling the execution speed of the algorithm.

 22

 The available menu items are self explanatory.
The Start menu is used to start the simulation.
The Stop menu is used to stop the simulation.
The Step menu is used to step through the
simulation. The Reset menu resets the
simulation: pheromones left in the
environment are set to be the initial value;
controls ever performed to change the
execution speed of the algorithm are canceled.

 A dockable toolbar is created as the

shortcut to the menu items which may
be frequently used.

 A dockable text output window is created for providing
algorithm related information: the parameter settings, the
best route in every cycle of the algorithm, etc.

 Selection of the application appearance is provided. For
instance, users can choose to show or hide the text
output window.

4.3 TSP Simulation

In this section we will see how the Ant System handles the TSP problem through the
simulation program. Since our task was to create a framework to visualise the result, we are
not responsible for the result itself. It could be noticed that the result is not guaranteed to be
optimal by applying the Ant System.

4.3.1 Berlin52: 20 ants

We start with the TSP instance from the TSPLIB benchmark library
(Berlin52). This TSP instance contains position information of 52
Berlin cities. 20 ants are allowed to find the best path in 10 iterations.
Alpha and Beta are set to be 2, the evaporation rate Rho is set to be
0.7.

 23

Iteration 1 (14,064) Iteration 2 (10,196)

Iteration 3 (9609) Iteration 4 (8924)

Iteration 5 (8668) Iteration 6 (8516)

 24

Iteration 7 (8799) Iteration 8 (9068)

Iteration 9 (9325) Iteration 10 (9550)

We notice that the result is not so good. The best route in the last iteration is about 9550 long.
But the best route an ant walked through is at a certain moment 8516 long but this path is
gone after a while.

4.3.2 Berlin52: 50 ants

This time we drop 50 ants on the same map of Berlin. We also
change the constant QVALUE used in the algorithm for
pheromone strength calculation from 100 to 80. Having more
ants work on the same problem, we observe that within 6
iterations, the best path ever found is 7805 long compared to
8516 in the previous simulation.

 25

Iteration 1 (12,000) Iteration 2 (9625)

Iteration 3 (8566) Iteration 4 (7872)

Iteration 5 (8128) Iteration 6 (7805)

 26

5. Conclusion

The main purpose of our project is to design a software framework which is suitable for
visualizing swarm algorithms. For visualizing swarm algorithms, we should design a
framework which can first of all model those algorithms. After a thorough study of different
swarm algorithms, we propose a framework which is made resilient to different simulation
purposes. The most important characteristic of the framework is its three-layered structure
which can represent swarm algorithms in different levels of abstraction.

Modeling is a central part of all the activities that lead up to the deployment of a good
software. Based on our framework design, we implement it in the object oriented
programming language C++. Elements in a swarm system, such as the environment, the
pheromone, and the agent are modeled using C++ classes. For illustration purpose, we
implement an ant algorithm – Ant System (AS) in the context of the TSP problem. Because
of the extendability of the framework other swarm algorithms can also be easily
implemented under the layered framework.

In order to ensure an easy implementation of the visualization, we propose a class design
which encapsulates visualization functionalities associated with different environment
representations (e.g. graph, matrix or 3-D space) in different classes. In the current stage, we
implement a class (CGUIGraph) for visualizing a 2-D graph-based environment. In addition,
we employ a Microsoft Foundation Classes (MFC) extension library Prof-UIS that enables
us to deliver current application with a professional and user-friendly interface.

Based on the software design we develop a simulation program, by which the behavior of
software ants in the TSP working space is simulated. Easy controls are provided through user
interface objects. The structure of the environment, the changing distribution of pheromones
and the solutions given by the swarm are visualized over time to provide indicative
information on the performance of the ant algorithm.

 27

References

[1] Dante R. Chialvo and Mark M. Millonas(1995).
How Swarms Build Cognitive Maps.
In Working Papers from Santa Fe Institute.

[2] Eric Bonabeau, Marco Dorigo, Guy Theraulaz(1999).

Swarm Intelligence: From Natural to Artificial Systems.
Oxford University Press.

[3] M. Dorigo, G. Di Caro, L. M. Gambardella(1999).
Ant Algorithms for Discrete Optimization.
Proceedings of the Congress on Evolutionary Computation(Vol 2, pp. 1470-1477).
IEEE Press.

[4] Sergiy Lavrynenko

Professional User Interface Suite Library
http://www.codeguru.com/Cpp/W-D/docking/article.php/c4587/
http://www.prof-uis.com/

[5] Swarm Development Group (http://www.swarm.org)
A tutorial introduction to Swarm
http://www.swarm.org/csss-tutorial/frames.html

[6] Thomas Stützle and Marco Dorigo(1999).
ACO Algorithms for the Traveling Salesman Problem.
Evolutionary Algorithms in Engineering and Computer Science (pp. 163-183).

[7] G. Reinelt (1991).

TSPLIB | A Traveling Salesman Problem Library.
ORSA Journal on Computing(Vol 3, pp. 376-384).

[8] Tom Holvoet

Slides for the Multi Agent Systems Course.

 28

http://www.codeguru.com/Cpp/W-D/docking/article.php/c4587/
http://www.prof-uis.com/
http://www.swarm.org/csss-tutorial/frames.html

	Collective behavior in social insects
	Self-organization
	Stigmergy

	Artificial ants
	Self-organization
	Stigmergy

	The Ant Colony Optimization metaheuristic
	Ant Algorithms
	Swarm Intelligence and Ant algorithms
	Traveling Salesman Problem
	Ant System (AS)
	Stochastic state transition rule
	Trail deposition and pheromone trail update

	Three-layered Framework
	Class Design
	Individuals
	CAgent
	CAnt
	CTSPAnt

	Environment
	CEnvironment
	CLocation
	CGraph
	CEdge
	CNode
	CPheromone

	Swarm
	CColony
	CAntSystem
	CTSPAntSystem

	View
	CGUIGraph
	CSwarmView
	CSwarmView2nd
	CACOOption
	CRandomDlg

	Auxiliaries
	CACOConfigure
	CMemDC
	CTSPFileParser
	CRandomTSP
	CUtils

	Visualization Approach
	Implementation
	Overview
	Graphical User Interface (GUI)
	TSP Simulation
	Berlin52: 20 ants
	Berlin52: 50 ants

