
Search Strategy Simulation in Constraint Booleanization

Jinbo Huang
Optimisation Research Group, NICTA and

Research School of Computer Science, Australian National University

Abstract

Within the recently proposed Universal Booleanization
framework, we consider the CUMULATIVE constraint, for
which the original Boolean encoding proves ineffective, and
present a new Boolean encoding that causes the SAT solver
to simulate, largely, the search strategy used by some of the
best-performing native methods. Apart from providing mo-
tivation for future research in a similar direction, we obtain
a significantly enhanced version of Universal Booleanization
for problems containing CUMULATIVE constraints.

Introduction
The recently proposed MiniZinc language (Nethercote et al.
2007) is an example attempt toward a common modeling
language for constraint programming (CP), and there now
exist its implementations based on finite domain (FD) (G12
2009), linear programming (LP) (Brand et al. 2008), satis-
fiability (SAT) (Huang 2008), combination of FD and SAT
in the form of lazy clause generation (Ohrimenko, Stuckey,
and Codish 2007), as well as interfaces to such popular CP
systems as ECLiPSe (ECLiPSe 2009) and Gecode (Schulte,
Lagerkvist, and Tack 2009).

In this work we consider the SAT-based approach pro-
posed by Huang (2008), which implements MiniZinc by
translating it to Boolean formulas such that any constraint
model written in MiniZinc (not involving floating point
numbers) can be solved by one or more calls to a SAT solver.
A major limitation of the Booleanization of Huang (2008)
is the lack of direct support for global constraints. Instead
these are supported by expanding each global constraint in
the model into a set of more primitive constraints using a
standard definition.

For any particular type of constraint X , it is quite possi-
ble that Booleanization does not lead to the most efficient
solver. However, given the suitability of Booleanization for
many types of problems (Huang 2008), there will be situa-
tions where a constraint model contains some constraints of
type X , but is otherwise best solved by Booleanization. In
these situations, it can well be that Booleanizing the whole
model will lead to the most efficient solution, even if the
constraints of type X , on their own, would have admitted

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

better solution methods. In other words, the goal in this case
is not necessarily to devise a Booleanization that will out-
perform native methods for constraints of type X , but rather
one whose effectiveness is maximized, particularly by capi-
talizing on successful techniques used in native methods.

It is in this spirit that we propose, in this work, a new,
substantially improved Boolean encoding of CUMULATIVE,
one of the the most widely used global constraints (Rossi,
van Beek, and Walsh 2006). We first present an encoding
that utilizes recent advances in solving pseudo-Boolean (PB)
constraints (Eén and Sörensson 2006), and then show how
we can augment the encoding to effectively simulate domain
splitting, a search strategy known to be beneficial for CU-
MULATIVE constraints in native search algorithms (Simonis
and O’Sullivan 2008; Huang and Korf 2009).

Empirical results indicate that our new encoding leads to
significant improvements over the original Booleanization,
while we observe, on the other hand, the efficiency of na-
tive solvers over our Booleanization on some of the bench-
marks. In concluding the paper, we discuss analytically
some strength and weaknesses of our work.

The CUMULATIVE Constraint
Given a set of tasks each of duration di and continuously
requiring ri units of a resource, the CUMULATIVE constraint
asks that they be scheduled to start respectively at time si

(which has a finite domain) so that at no point in time does
the total resource used by all tasks exceed a given bound b.
More formally,

CUMULATIVE(s, d, r, b)
def
=∧

t: min si≤t<max(si+di)

(∑
i: si≤t<si+di

ri

)
≤ b, (1)

where s is an array of bounded integer variables, d and r are
arrays of integer constants, and b is an integer constant.

Figure 1 depicts an example CUMULATIVE constraint in-
volving three tasks, along with one of its solutions that min-
imizes the total time span of the tasks.

In addition to its natural use in scheduling, CUMULATIVE
has recently been used as a relaxation of rectangle packing to
provide effective pruning for the latter problem (Simonis and
O’Sullivan 2008; Huang and Korf 2009). Rectangle pack-
ing is deciding whether a given set of rectangles (with fixed

0 ≤ s1, s2, s3 ≤ 2
d1 = 2, r1 = 2
d2 = 2, r2 = 1
d3 = 1, r3 = 3
b = 3

CUMULATIVE(s, d, r, b)

Figure 1: A CUMULATIVE constraint and a solution.

orientations) can be placed into a larger rectangle with no
overlap, which has many applications in its own right (Korf
2003). The CUMULATIVE relaxation of a rectangle packing
instance asks whether the rectangles can be placed within
the two vertical walls of the enclosing rectangle so that at
no point along the horizontal line does their total height ex-
ceed the height of the enclosing rectangle. This is equivalent
to allowing each rectangle to be sliced into vertical strips of
unit width to be placed contiguously along the horizontal
dimension but independently along the vertical dimension.
Note that the CUMULATIVE solution depicted in Figure 1
happens to correspond to a rectangle packing solution with
enclosing width equal to the total time span of the tasks and
enclosing height equal to the resource bound. In general,
this is not always possible.

The CUMULATIVE relaxation allows one to place rectan-
gles in one dimension first, and consider the second dimen-
sion only if the one-dimensional placement is not pruned
by the CUMULATIVE constraint, which leads to significantly
faster solutions than placing rectangles directly in the orig-
inal two-dimensional space (Simonis and O’Sullivan 2008;
Huang and Korf 2009). This relation between the two prob-
lems provides additional motivation for the study of the CU-
MULATIVE constraint, and in fact we shall later adapt a stan-
dard rectangle packing benchmark into one for CUMULA-
TIVE for use in our experiments.

Booleanization of CUMULATIVE

Our encoding of CUMULATIVE follows Equation (1), in
such a way that each summation in the equation is treated
as a PB constraint. We then enlist recent advances in PB
constraint solving to further convert them into pure Boolean
formulas. On top of this baseline encoding, we then intro-
duce additional Boolean variables and clauses to effectively
implement domain splitting, a search strategy recently iden-
tified to be beneficial for CUMULATIVE constraints.

Baseline Encoding
Let us describe our encoding using the example in Figure 1.
We start by creating one Boolean variable for each value of
s1’s domain, for a total of three variables s10, s11, s12, and
posting the following three constraints:

s10 ↔ (s1 = 0), s11 ↔ (s1 = 1), s12 ↔ (s1 = 2). (2)

The same is done for s2 and s3. These fall under the category
of reified integer comparisons discussed in Huang (2008),
and can be Booleanized by the existing method, providing

the necessary “channeling” between what we are going to
do next and the existing encoding of any other constraints in
the model.

In the second step, we create m = 4 “occupancy” vari-
ables for Task 1, o10, o11, o12, o13, where m is the total pos-
sible time span of all tasks: m = max(si + di) −min(si).
Each o1i will encode that Task 1 is in process between time
points i and i + 1. This is achieved by a set of formulas
linking the s1i with the o1i variables taking into account the
duration d1 = 2 of the task:

s10 → o10, s10 → o11;

s11 → o11, s11 → o12;
s12 → o12, s12 → o13. (3)

Again the same is done for every other task. Note that it’s
not necessary to encode the “unoccupied” time slots (for ex-
ample, s10 → ¬o12, s10 → ¬o13), because if the CUMU-
LATIVE constraint can be satisfied by allowing tasks to run
“overtime,” it surely can be satisfied the normal way by the
same schedule.

In the third step, we write m PB constraints, one for each
unit time slot, to encode that the resource bound not be ex-
ceeded at any point in time:

r1 · o10 + r2 · o20 + r3 · o30 ≤ b,

r1 · o11 + r2 · o21 + r3 · o31 ≤ b,

r1 · o12 + r2 · o22 + r3 · o32 ≤ b.

It now remains to further convert these into pure Boolean
formulas. For that we enlist the recent work of Eén and
Sörensson (2006), where three methods were proposed for
Booleanizing PB constraints, based on binary decision dia-
grams (BDDs), adder networks, and sorting networks. The
BDD-based method is the only one where unit propagation
on the Boolean formula enforces arc consistency for the
original PB constraint. Although the BDD-based encoding
can be larger than those produced by the other two methods,
in our experiments it proves the best choice overall for the
types of problems we are solving.

This method works by constructing a BDD for the PB
constraint, and then converting the BDD into clauses using
a standard procedure involving the introduction of auxiliary
variables (Eén and Sörensson 2006). For example, the first
PB constraint shown above (with r1 = 2, r2 = 1, r3 =
3, b = 3 plugged in) is translated into the following three
clauses:

¬o10 ∨ ¬x,¬o20 ∨ ¬x,¬o30 ∨ x,

where x is an auxiliary variable introduced during the trans-
lation. One can check that these are indeed equivalent to
the PB constraint, and that unit propagation will enforce arc
consistency.

In summary, for a CUMULATIVE constraint over n tasks
we create n · |domain(s)| domain variables and n · m oc-
cupancy variables (MiniZinc syntax requires the task start
times s to all have the same domain), and a proportional
number of new constraints. Further Booleanization of each
reified integer comparison in the form of Formulas (2) adds
a constant number of variables and clauses (Huang 2008).

Domain of s1 is split
into {0, 1} and {2}.

The interval {0, 1}
leads to an obligatory
part of width 1.

Figure 2: Obligatory part for an interval.

Booleanization of the PB constraints adds additional vari-
ables and clauses whose number depends on the external
tool that implements the Booleanization and can be expo-
nential in n in the worst case.

Domain Splitting
It is well known that the search strategy is critical for con-
straint solvers based on backtracking search. By contrast,
when a constraint model is Booleanized to be solved by a
SAT solver, we lose direct control over the search and have
to rely on the generic strategies of whatever SAT solver we
choose to use. Although good strategies used by the SAT
solver may be sufficiently adaptive so that a good search be-
havior is achieved despite the solver’s blindness to the origi-
nal problem structure, we show here that in our present case
we can do even better by going an extra mile in our encoding
to simulate a search strategy known to be beneficial for the
original search space.

Specifically, it has been shown that splitting the domains
of the si variables (start times of the tasks) into intervals and
branching on the intervals instead of individual values can
significantly improve the efficiency of solving CUMULA-
TIVE constraints. Evidence to this effect has been reported
both for the case where an existing CP system is used (Simo-
nis and O’Sullivan 2008), and for the case where the search
is implemented from scratch (Huang and Korf 2009).

The effect of branching on an interval instead of an in-
dividual value is twofold: It reduces the branching factor,
but weakens propagation. Consider the example in Fig-
ure 2 where the domain of s1 (the start time of Task 1) has
been split into two smaller intervals {0, 1} and {2}. This
reduces the branching factor from 3 to 2. If we take the
second branch, usual propagation follows based on the fact
that Task 1 is now set to occupy time slots 2 and 3 (since
d2 = 2). If we take the first branch, however, the exact po-
sition of Task 1 in the schedule remains unfixed, preventing
the same kind of propagation from taking place.

An important observation here is that we can still uti-
lize partial propagation in these situations. In this example,
whether s1 = 0 or 1, we know that time slot 1 must be occu-
pied. This is known as an obligatory part (see Figure 2). In
general, branching on an interval is now followed by propa-
gation based on the obligatory part for that interval.

While this form of propagation may help prune many
branches of the search tree, at some point we must still de-
cide on the values of the variables in order to get a con-
crete solution, or to prune those branches that remain open
after the propagations based on obligatory parts. When to

do these decisions thus becomes part of the variable order-
ing strategy of the search. Examples of such strategies can
be found in Simonis and O’Sullivan (2008) and Huang and
Korf (2009).

Now to simulate this form of search on our Boolean en-
coding of the problem, we begin by also splitting the do-
mains of the variables, and creating new Boolean variables
to represent the resulting intervals. For the example of Fig-
ure 2, we create two new variables intv10, intv11 to encode
the intervals, and add the following formulas:

intv10 ∨ intv11, intv10 → (s10 ∨ s11), intv11 → s12. (4)

The first formula says that at least one interval must be cho-
sen; the other two define the intervals (in practice the sec-
ond interval, being of size one, does not need additional en-
coding; we retain it here for the purpose of illustrating the
general method). Note that it’s not necessary to explicitly
require that “at most one interval be chosen” because that is
implied by the encoding: Choosing more than one interval
would ultimately imply setting the start time to more than
one value, which would falsify the encoding. By the same
token the use of “→” instead of “↔” in these formulas is
sufficient.

Next is to encode the obligatory parts. Continuing with
our example, the formula below encodes the obligatory part
for the first interval, saying that time slot 1 must be occupied
as long as that interval is chosen:

intv10 → o11. (5)

We now come to an issue critical to the effectiveness of
our encoding. In Formulas (3), we already have

s10 → o11, s11 → o11, (6)

which means if the SAT solver derives o11 = true at some
point during its search and that eventually contributes to a
conflict, it’s quite possible that intv10 = true and one of
s10 = true and s11 = true have both been set, and hence
both have the potential to be identified as part of the cause
of the conflict (we assume the use of a clause learning SAT
solver), even though intv10 = true should be the preferred
choice, as that would lead to potentially pruning an inter-
val as opposed to a single value once the conflict clause is
learned. In other words, these multiple implications of the
same literal in a way confuse the SAT solver, diminishing the
effectiveness of the reduced branching factor. The solution
is quite simple once the problem is realized: We drop For-
mulas (6) from the encoding. The SAT solver would now
be forced to identify intv10 = true as contributing to the
conflict, pruning a larger portion of the search space than if
a single value in the interval is identified as responsible.

The final issue to discuss is the sizes of the intervals.
Larger intervals lead to a smaller branching factor, but nar-
rower obligatory parts and hence weaker propagation. The
best compromise has been identified by empirical means in
previous work, and can vary across different types of prob-
lems (Simonis and O’Sullivan 2008; Huang and Korf 2009).
In our case we have found p ≈ 0.9 to work best, where p is
the ratio of interval size to task duration; our experimental
results will be reported based on that setting.

In summary, to implement domain splitting we add as
many new variables as the number of intervals created by
splitting the variable domains, and a roughly proportional
number of associated clauses in the form of Formulas (4).
The encoding of obligatory parts actually reduces the num-
ber of clauses as each clause in the form of Formula (5) re-
places several clauses in the form of Formulas (6). In all
cases in our experiments the overall encoding size is reduced
compared with the baseline encoding.

Experimental Results
We implemented our new encoding on top of FZN-
TINI (Huang 2008), and will refer to our new program
as FZNTINI+. For comparison we use the original FZN-
TINI, Gecode/FlatZinc (Gecode version 3.0.2 with FlatZinc
interpreter version 1.5), and G12/FD (from MiniZinc ver-
sion 0.9), all of which use the default expansion of CUMU-
LATIVE that comes with MiniZinc. To assess the relative
contributions of the baseline coding and domain splitting,
we also ran FZNTINI+ with domain splitting disabled on all
benchmarks, and will refer to that program as FZNTINI+−.
Our hardware is a cluster of CPUs running Linux at 2.4 GHz
with 4 GB of RAM. A time limit of 4 hours applied to each
run of a solver on each instance.

Our first group of benchmarks are an adaptation of the
consecutive square packing benchmarks (Korf 2003), and
we will refer to them as consecutive square scheduling.
Specifically, each benchmark is a satisfaction problem spec-
ified by a triple (n, w, h), asking for a set of n “square” tasks
with di = ri = i for i = 1, . . . , n to be scheduled with h
as the the resource bound and the total time span ≤ w. For
each n from 11 to 20, we create a sequence of pairs (w, h) in
nondecreasing order of w × h using the method of Simonis
and O’Sullivan (2008) so that the first satisfiable instance in
the sequence gives an optimal schedule with respect to min-
imizing w × h; the sequence then terminates. This gives us
a total of 80 instances, 10 of them satisfiable (one for each
n) and the rest unsatisfiable. As each of these consists pri-
marily of a single CUMULATIVE constraint, they provide a
good basis for evaluating the effectiveness of our new CU-
MULATIVE encoding in isolation.

In the MiniZinc model we specify (first fail,
indomain split) as the search strategy, meaning that
variables are assigned in increasing order of their do-
main size, and values are assigned by successively split-
ting the domain in half, which appears to work best for
Gecode/FlatZinc and G12/FD.

Table 1 (top) summarizes the results on these benchmarks.
We observe that our baseline encoding (FZNTINI+−) is im-
mediately a step up from the original FZNTINI, solving
all instances while the latter only solved the 10 satisfiable
ones. With domain splitting enabled (FZNTINI+), the run-
ning time further reduces by a factor of 4. Gecode/FlatZinc
and G12/FD exhibited similar performance; both of them
were over two orders of magnitude slower than FZNTINI+.

Our second group of benchmarks come from the MiniZ-
inc distribution (G12 2009). They are ten instances of a
resource-constrained project scheduling problem (RCPSP),

n Instances A B C D E
11 3 10 (1) 0.07 0.06 0.12 0.33
12 6 18 (1) 0.26 0.17 0.29 2
13 5 24 (1) 0.28 0.18 0.77 4
14 8 41 (1) 0.5 0.39 2 8
15 8 99 (1) 2 0.66 15 78
16 8 127 (1) 2 0.94 59 212
17 5 297 (1) 3 2 89 449
18 13 641 (1) 136 16 3552 10632
19 10 2294 (1) 63 15 5783 16034
20 14 497 (1) 44 30 34027 38909 (12)
Σ 80 4044 (10) 247 64 43527 66324 (78)

ID A B C D E
0 − 38 50 − −
1 − 493 249 − −
2 − 103 90 2 9
3 − 107 143 3 14
4 − 6282 7675 − −
5 − 1304 1328 − −
6 − 970 1050 5 19
7 − − 1169 8 29
8 − − − − −
9 − 2616 2898 14 86
Σ − 11908 (8) 14649 (9) 30 (5) 155 (5)

Table 1: Performance of solvers (A: FZNTINI, B:
FZNTINI+−, C: FZNTINI+, D: Gecode/FlatZinc, E:
G12/FD) on consecutive square scheduling (top) and
RCPSP (bottom). Shows total time in seconds on solved in-
stances. Number of solved instances in parentheses if not all
were solved. For RCPSP, “−” denotes an unsolved instance.

each involving four different resources (hence four CUMU-
LATIVE constraints), between 30 and 120 tasks, and a set
of precedence relations between tasks, where the total time
span of tasks is to be minimized.

The search strategy that comes with the model is
(smallest, indomain min), meaning that variables
are assigned in increasing order of their smallest domain
value, and values are assigned in ascending order.

Table 1 (bottom) summarizes the results on these bench-
marks (the first column shows the identifier for each in-
stance). Again our baseline encoding (FZNTINI+−) greatly
improves on the original FZNTINI, which could not solve
any instance. Domain splitting (FZNTINI+) allowed an ad-
ditional instance to be solved, but did not significantly affect
the performance on other instances. We believe this is due to
the relatively short task durations (all ≤ 10) in these bench-
marks, which lead to small intervals and obligatory parts,
diminishing the benefit of domain splitting.

Both Gecode/FlatZinc and G12/FD solved (the same) half
of the instances very quickly (their inability to solve the
other half is likely due to the unsuitability of the search strat-
egy for those particular instances). We believe one reason
why Booleanization was much slower on those instances
was that the precedence relations were handled less effi-
ciently. In an FD solver, those relations can be efficiently
enforced by simply pruning the domains of variables “on
demand” during search. In Booleanization, they are treated

as generic inequalities on integer expressions, which when
Booleanized using binary encodings of integers lose much
of their propagation power.

Hence, while Table 1 (bottom) demonstrates the effective-
ness of our new encoding over the previous one, it gives an
example class of instances for which our Booleanization ap-
proach does not offer the most efficient solutions in the first
place; the interested reader may find additional results to this
effect that have been obtained using a specialized solver for
RCPSP based on lazy clause generation (Schutt et al. 2009).

Discussion
We have shown that it is possible to simulate a nontrivial
search strategy used by native constraint solvers in a static
SAT encoding, without having to modify the behavior of the
SAT solver. For the CUMULATIVE constraint in particular,
we have demonstrated that our new encoding greatly en-
hances the efficiency of generic SAT-based constraint solv-
ing where these constraints are involved.

A major strength of the Universal Booleanization frame-
work lies in the relative power of two different classes of
reasoning algorithms. Specifically, clause learning used in
modern SAT solvers is understood to be exponentially more
powerful, in principle, than simple backtracking search (Pi-
patsrisawat and Darwiche 2009); a separation remains even
when the latter is augmented with (the traditional form of)
nogood learning (Katsirelos and Bacchus 2005), as tradi-
tional nogoods involve decision variables only and are hence
less general than clauses learned in SAT solvers.

On the other hand, Universal Booleanization currently
suffers from weak propagation in binary integer arithmetic,
as discussed earlier, and our approach to the Booleanization
of CUMULATIVE also has the weakness that pruning tech-
niques useful in the original search space may not be easy to
incorporate. An example is the pruning method from Huang
and Korf (2009), based on the observation that the resource
left by already scheduled tasks may not all be usable by the
remaining tasks. For example, a single unit of resource left
over in some time slot can never be utilized by tasks requir-
ing two units of resource or more. Pruning is effected when-
ever an insufficient amount of resource is identified for a
group of unscheduled tasks. This type of technique requires
keeping track of certain measures during search; hence it’s
not at all obvious how it can be incorporated into a static
encoding of the problem.

Hence there are many avenues that remain to be explored,
as to how one may best combine the power of domain-
specific techniques with that of SAT, how different types of
encodings may be utilized to enhance propagation, and on
a more general level, how different techniques may be best
hybridized, either automatically or with user assistance, to
handle different types of problems.

Acknowledgements
NICTA is funded by the Australian Government as repre-
sented by the Department of Broadband, Communications
and the Digital Economy and the Australian Research Coun-
cil through the ICT Centre of Excellence program.

References
Brand, S.; Duck, G. J.; Puchinger, J.; and Stuckey, P. J. 2008.
Flexible, rule-based constraint model linearisation. In 10th
International Symposium on Practical Aspects of Declara-
tive Languages (PADL), 68–83.
ECLiPSe. 2009. The ECLiPSe constraint programming sys-
tem. http://87.230.22.228/.
Eén, N., and Sörensson, N. 2006. Translating pseudo-
Boolean constraints into SAT. Journal on Satisfiability,
Boolean Modeling and Computation 2:1–26.
G12. 2009. MiniZinc Distribution.
www.g12.cs.mu.oz.au/minizinc/.
Huang, E., and Korf, R. E. 2009. New improvements in
optimal rectangle packing. In Proceedings of the 21st Inter-
national Joint Conference on Artificial Intelligence (IJCAI).
Huang, J. 2008. Universal Booleanization of constraint
models. In Proceedings of the 14th International Confer-
ence on Principles and Practice of Constraint Programming
(CP), 144–158.
Katsirelos, G., and Bacchus, F. 2005. Generalized nogoods
in CSPs. In Veloso, M. M., and Kambhampati, S., eds.,
Proceedings of the 20th AAAI Conference on Artificial In-
telligence (AAAI), 390–396. AAAI Press / The MIT Press.
Korf, R. E. 2003. Optimal rectangle packing: Initial re-
sults. In Proceedings of the 13th International Conference
on Automated Planning and Scheduling (ICAPS), 287–295.
Nethercote, N.; Stuckey, P. J.; Becket, R.; Brand, S.; Duck,
G. J.; and Tack, G. 2007. Minizinc: Towards a standard
CP modelling language. In Proceedings of the 13th Interna-
tional Conference on Principles and Practice of Constraint
Programming (CP), 529–543.
Ohrimenko, O.; Stuckey, P. J.; and Codish, M. 2007. Prop-
agation = lazy clause generation. In Proceedings of the
13th International Conference on Principles and Practice
of Constraint Programming (CP), 544–558.
Pipatsrisawat, K., and Darwiche, A. 2009. On the power
of clause-learning SAT solvers with restarts. In Gent, I. P.,
ed., CP, volume 5732 of Lecture Notes in Computer Science,
654–668. Springer.
Rossi, F.; van Beek, P.; and Walsh, T., eds. 2006. Handbook
of Constraint Programming. Elsevier.
Schulte, C.; Lagerkvist, M.; and Tack, G. 2009. Gecode.
http://www.gecode.org/.
Schutt, A.; Feydy, T.; Stuckey, P. J.; and Wallace, M. 2009.
Why cumulative decomposition is not as bad as it sounds. In
Proceedings of the 15th International Conference on Prin-
ciples and Practice of Constraint Programming (CP), 746–
761.
Simonis, H., and O’Sullivan, B. 2008. Search strategies
for rectangle packing. In Proceedings of the 14th Interna-
tional Conference on Principles and Practice of Constraint
Programming (CP), 52–66.

