
SAT vs. Search for Qualitative Temporal Reasoning
Jinbo Huang1

Abstract. Empirical data from recent work has indicated that SAT-
based solvers can outperform native search-based solvers on cer-
tain classes of problems in qualitative temporal reasoning, particu-
larly over the Interval Algebra (IA). The present work shows that,
for reasoning with IA, SAT strictly dominates search in theoretical
power: (1) We present a SAT encoding of IA that simulates the use
of tractable subsets in native solvers. (2) We show that the refutation
of any inconsistent IA network can always be done by SAT (via our
new encoding) as efficiently as by native search. (3) We exhibit a
class of IA networks that provably require exponential time to refute
by native search, but can be refuted by SAT in polynomial time.

1 Introduction
Qualitative temporal reasoning deals with the consistency of qualita-
tive information about time, typically given in the form of a binary
constraint network where variables represent time intervals and con-
straints are drawn from the Interval Algebra (IA) [1]. There are 13
base relations in IA (Figure 1), and a constraint is a union of any
number of base relations so that indefinite knowledge can be repre-
sented. Consistency of IA networks is NP-complete [18].

Native search-based solvers for IA [14, 8] take advantage of the
existence of a large tractable subset of the 213 IA relations, known as
ORD-Horn [15]: If all constraints of a network belong to ORD-Horn,
then the network is consistent iff enforcement of path consistency,
a polynomial-time procedure, succeeds. Given an arbitrary IA net-
work, each constraint is partitioned into ORD-Horn relations (which
can always be done as ORD-Horn includes all base relations), creat-
ing the branches of a search node. At each leaf of the search tree is
then a refinement of the network having only ORD-Horn constraints,
whose consistency can be checked quickly, and the original network
is consistent iff at least one leaf gives a consistent refinement.

A SAT encoding of IA has been proposed [16], and subsequently
made more compact through a form of partial path consistency
[10]. Empirical data reported in the cited work indicates that certain
classes of problems can be solved more efficiently by a SAT solver
than by native search-based solvers. On the other hand, this encoding
is based on refining every constraint into base relations, and does not
utilize the tractable subset ORD-Horn. As a result, there is no direct
correspondence between the behavior of the SAT solver and that of
a native solver given the same problem instance, and a theoretical
comparison of the two methods remains elusive.2

In this work, we undertake an investigation into the relative the-
oretical power of SAT and native search as proof systems for IA,

1 NICTA and Australian National University. NICTA is funded by the Aus-
tralian Government as represented by the DBCDE and the ARC through
the ICT Centre of Excellence program.

2 Other previous work on mapping qualitative constraint networks to finite-
domain constraint networks and then to SAT [5, 2] likewise does not con-
sider the use of tractable subsets and is hence not directly applicable here.

Figure 1. IA base relations: six shown above, their inverses, and the
identity relation.

assuming the use of a clause learning [12, 13] algorithm on CNF
formulas. Making use of the fact that clause learning is known to
be as powerful as resolution and in particular strictly more powerful
than tree-style search on CNF formulas [3, 17], we are able to es-
tablish that SAT indeed dominates native search in theoretical power
for qualitative temporal reasoning with IA, as follows: (i) We present
a new SAT encoding of IA based on the use of tractable subsets,
where path consistency is simulated by the unit propagation mech-
anism of the SAT algorithm. (ii) With this encoding, we show that
SAT can, in polynomial time, simulate native search using the same
tractable subset; in other words, any inconsistent IA network can be
refuted by SAT as efficiently as by native search. (iii) We cite a class
of 4CNF formulas, PCn, known as the pebbling contradictions [4],
that have polynomial-size refutations in resolution, but not in tree-
like resolution. (iv) We present a translation of 4CNF formulas into
IA networks such that the 4CNF formula has a short tree-like res-
olution refutation in case the IA network has a short refutation by
native search. This implies that native search cannot refute in poly-
nomial time the IA networks created from PCn. (v) We show that
from our SAT encoding of the IA network, we can obtain by resolu-
tion in polynomial time a 4CNF formula isomorphic to the original
4CNF formula from which the IA network has been created. This im-
plies that the CNF formulas encoding the IA networks created from
PCn have polynomial-size resolution refutations, and hence can be
refuted by clause learning in polynomial time.

2 Background
In this paper we use the term SAT to refer to both the satisfiability
problem and the approach of solving a problem by reduction to satis-
fiability. We assume familiarity with DPLL [7] and clause learning3

[12, 13], two major proof systems for SAT, as well as the notion of
unit propagation. It is known that DPLL and clause learning are re-
spectively equivalent to tree-like resolution and (general) resolution
[3, 17], and that (general) resolution is exponentially more powerful
than tree-like resolution [4].
3 While we consider restarts an inherent component of clause learning [9],

some authors use “clause learning with restarts” or “conflict-directed clause
learning with restarts” to refer to the same kind of proof system.

Algorithm 1 Consistency of IA networks by search
Initialization: identify the set BRANCH-POINTS of non-ORD-Horn edges of Φ
consistent(Φ)
1: enforce-path-consistency(Φ)
2: if Φ contains the empty relation then
3: return false
4: if all relations are in ORD-Horn then
5: return true
6: pick an edge (i, j) from BRANCH-POINTS not previously picked
7: split `Φ(i, j) into maximal ORD-Horn relations r
8: for all r ∈ r do
9: `Φ(i, j)← r

10: if consistent(Φ) then
11: return true
12: return false

We now provide, in somewhat more detail, the necessary back-
ground on qualitative temporal reasoning. Given a binary constraint
network Φ, we write VΦ to denote its set of variables (vertices), and
`Φ the function that assigns a constraint between each pair of vari-
ables, i.e., `Φ(i, j) labels the edge between variables i and j, spec-
ifying the relation between them. In particular, `Φ(i, j) returns the
universal relation (allowing all pairs of values) if no constraint is
explicitly specified between the two variables.

In the case of qualitative temporal reasoning with IA, the domain
of variables is the (infinite) set of all time intervals, which can be
taken to be ordered pairs of rational numbers, and a constraint is one
of the 213 IA relations, 13 of which are base or atomic relations (see
Figure 1) and the rest their unions. From here on we will abbreviate
the six base relations shown in Figure 1 as b,m, o, s, d, f , their in-
verses as bi,mi, oi, si, di, fi, and the identity relation as eq. An IA
constraint network is consistent if there is an assignment of a time
interval to every variable such that all constraints are satisfied.

A network is atomic if the constraint between every pair of vari-
ables is an atomic relation. For two networks over exactly the same
variables, if one is more restrictive on the relation permitted between
each pair of variables, it is said to be a refinement of the other. For-
mally, for networks Φ and Ψ, Φ is a refinement of Ψ if VΦ = VΨ

and `Φ(i, j) ⊆ `Ψ(i, j) for all i, j ∈ VΦ; in particular, if Φ is also
atomic, then it is an atomic refinement of Ψ.

Path consistency is a central tool in qualitative temporal (and spa-
tial) reasoning. A network Φ is path consistent if any instantiation of
two variables that satisfies the constraint between them can be ex-
tended to any other variable such that all three constraints on the
triangle are satisfied. More formally, we have

Definition 1 A binary constraint network Φ is path consistent if for
all variables i, j, k ∈ VΦ, ∅ 6= `Φ(i, k) ⊆ `Φ(i, j) ◦ `Φ(j, k), where
“◦” denotes the standard set-theoretic composition of two relations
(i.e., R ◦ S = {(a, c) | ∃b : (a, b) ∈ R, (b, c) ∈ S}).

Composition of base IA relations can be obtained by looking up
a known composition table [1]; for example, o ◦ d = {d, o, s}. By
convention, the set notation is taken to mean the union of the ele-
ments of the set. As composition distributes over union, composition
of general relations can be obtained by composing pairs of base rela-
tions therein and taking the union of the results.

By computing compositions and intersections of relations, path
consistency can be checked or enforced efficiently, in cubic time [11].
Furthermore, it is known that path consistency implies consistency
for networks using only a subset of IA relations known as ORD-
Horn [15], and in particular atomic IA networks [18] since ORD-
Horn includes all base IA relations.

Conventional native solvers for IA [14, 8] implement a search in
the space of ORD-Horn refinements of the given network, by split-
ting each constraint into (maximal) ORD-Horn relations and branch-

Figure 2. A triangle in an IA network.

ing on them. A formulation of this procedure is given in Algorithm 1,
which will be the basis for our analysis of its theoretical power as a
proof system (the use of eligible constraints [6] has no effect on the
theoretical power of the algorithm and is omitted). Note that path
consistency is enforced at each search node for pruning (line 1), and
the network is consistent if a path-consistent ORD-Horn refinement
is found at a leaf node of the search tree (line 5). On the other hand,
the network is inconsistent if at any point the empty relation is gen-
erated (as a result of taking intersections) during the enforcement of
path consistency (line 3).

SAT encodings of IA have been recently proposed [16, 10] where
a CNF formula is constructed for a given IA network such that each
model of the formula corresponds to a path-consistent atomic refine-
ment of the network. Hence consistency of the network is reduced to
satisfiability of the formula. Since these encodings do not use ORD-
Horn, the behavior of a SAT solver on the CNF formulas cannot be
easily related to the behavior of a native solver (i.e., an implemen-
tation of Algorithm 1) on the corresponding IA networks. Indeed, it
was unknown how the two methods (SAT and native search) compare
in their ultimate theoretical power. Does one intrinsically dominate
the other? The rest of the paper is an investigation into this question,
concluding with an answer in the affirmative.

3 New SAT Encoding Using Tractable Subsets

We start by presenting a new SAT encoding of IA such that each
model of the CNF formula corresponds to a consistent ORD-Horn
refinement of the network. To ensure compactness, our encoding is
based on the following ideas: (i) We do not directly encode the fact
that a given network has a path-consistent ORD-Horn refinement,
but instead that it has an ORD-Horn refinement on which path con-
sistency can be successfully enforced. This allows us to only encode
the maximal ORD-Horn refinements of the network. (ii) We encode
compositions of ORD-Horn relations by utilizing the fact that com-
position distributes over union. Specifically, referring to Definition 1,
we encode `Φ(i, k) ⊆ `Φ(i, j) ◦ `Φ(j, k) by encoding the fact that
“every base relation in `Φ(i, k) is contained in the composition of
some pair of base relations respectively from `Φ(i, j) and `Φ(j, k).”
This allows us to only encode compositions of base relations.

3.1 Variables

Our encoding of an IA network will use two groups of pri-
mary Boolean variables, referred to as base and branch variables
respectively. For the triangle in Figure 2, the first group con-
sists of the following, encoding the base relations on each edge:
ABm, ABs, ABf , ABbi (for edge AB); BCmi, BCsi, BCfi, BCb
(for edge BC); ACb, ACm, ACmi, ACbi (for edge AC).

The second group encodes the ORD-Horn partitions of the con-
straint on each edge. In this example, only edge AC has nonatomic

ORD-Horn partitions ({b,m}, {mi, bi}); hence the variables consist
of ACb,m, ACmi,bi (for edge AC).

In general, let B(r) denote the set of all base relations contained
in the relation r, and OH(r) the (unique) set of (maximal) ORD-
Horn partitions of r. These two groups of variables for a network
Φ are: (i) IJp for each p ∈ B(`Φ(i, j)) and (ii) IJq for each q ∈
OH(`Φ(i, j))\B(`Φ(i, j)), for each pair of i, j ∈ VΦ, i < j.

A third group of variables will be used as auxiliary variables to
keep the encoding compact. We will introduce these as we describe
the construction of the clauses.

3.2 Clauses
We have two groups of clauses. The first “defines” the branch vari-
ables. Continuing with Figure 2, we have

ACb,m ∨ ACmi,bi

ACb,m → ACb ∨ ACm, ACb,m → ACmi, ACb,m → ACbi

ACmi,bi → ACmi ∨ ACbi, ACmi,bi → ACb, ACmi,bi → ACm

The first clause says that at least one ORD-Horn partition must
hold; the others relate each ORD-Horn partition to its component
base variables. Note that we are only requiring that one or more of
these base variables be true. This effectively means that all refine-
ments of each ORD-Horn relation can potentially be generated.

For edges AB and BC, the base variables double as branch vari-
ables; hence we have the usual “at-least-one” and “at-most-one”
clauses, shown below for edge AB:

ABm ∨ ABs ∨ ABf ∨ ABbi, ABm ∨ ABs, ABm ∨ ABf

ABm ∨ ABbi, ABs ∨ ABf , ABs ∨ ABbi, ABf ∨ ABbi

In general, for each edge, we have one clause saying that at least
one of the ORD-Horn partitions holds; and for each of these parti-
tions, we have clauses saying that it implies that one or more of its
component base variables are true and that all other base variables
are false. In case an ORD-Horn partition is atomic, the correspond-
ing base variable is used instead of the branch variable (which is not
created). Henceforth, when we refer to branch variables, we assume
that base variables have been substituted where applicable.

The second group of clauses encode the path consistency of the
refinement Φ′′ of the network Φ induced by the instantiation of the
base variables, by encoding every triple of nodes according to Defi-
nition 1. Continuing with Figure 2, we need to encode the condition
`Φ(i, k) ⊆ `Φ(i, j)◦`Φ(j, k) in three orientations: ABC, BCA, CAB
(the other three are redundant). The clauses for the first orientation
consist of the following (plus an analogous set forACmi andACbi):

ACb → a1 ∨ a2 ∨ a3 ∨ a4 ∨ a5 ∨ a6

ACm → a7 ∨ a3 ∨ a6, a1 → ABm, a1 → BCfi

a2 → ABm, a2 → BCb, a3 → ABs, a3 → BCfi, a4 → ABs, a4 → BCb

a5 → ABf , a5 → BCb, a6 → ABbi, a6 → BCb, a7 → ABm, a7 → BCsi

Note that we have utilized a set of auxiliary variables ai so that the
CNF will stay compact. In general, each ai “defines” a pair of base
relations from edge (i, j) and edge (j, k) respectively whose com-
position contains the encoded base relation from edge (i, k), which
is forced to imply the disjunction of the complete list of such pairs.
This ensures that the condition `Φ(i, k) ⊆ `Φ(i, j) ◦ `Φ(j, k) is met
no matter how many base variables are set to true for edge (i, k),
given that composition distributes over union.

The first group of clauses for every edge and the second for every
node triple make up our encoding of an IA network Φ, which we
shall refer to as CNF(Φ). Clearly, CNF(Φ) has polynomial size. We
proceed next to establish its correctness, that CNF(Φ) is satisfiable
iff the network Φ is consistent.

3.3 Correctness of CNF(Φ)

First, if the IA network Φ is consistent, then it has a path-consistent
ORD-Horn refinement Φ′′. The following lemma implies that every
ORD-Horn refinement of (the relation on) an edge must be contained
in one of the maximal ORD-Horn partitions of that edge and hence
must correspond to a unique branch variable in CNF(Φ):

Lemma 1 If p and q are nonintersecting ORD-Horn relations such
that p∪ q 6∈ ORD-Horn, ∅ 6= p′ ⊆ p, and ∅ 6= q′ ⊆ q, then p′ ∪ q′ 6∈
ORD-Horn.

One may thus verify that CNF(Φ) is satisfied by setting all the
base and branch variables precisely in accordance with Φ′′, and then
setting to true all the auxiliary variables whose values are not forced
by unit propagation.

The other direction requires more thinking. If CNF(Φ) is satisfi-
able, let π be a satisfying assignment. The instantiation of the branch
variables in π corresponds to an ORD-Horn refinement Φ′ of the
IA network Φ, and the instantiation of the base variables in π corre-
sponds to a refinement Φ′′ of Φ′. The clauses of CNF(Φ) ensure that
Φ′′ is path consistent. However, none of the clauses say that Φ′′ must
be an ORD-Horn network! So how do we know if Φ′′ is consistent?
And without that knowledge, how do we know that Φ is consistent?

To arrive at the desired conclusion, we need to make a few obser-
vations about CNF(Φ). To facilitate the statement of these, if α is a
partial or complete instantiation of the branch variables of CNF(Φ),
we will write Φ|α to denote the corresponding (ORD-Horn) refine-
ment of the IA network Φ noting that if α sets multiple branch vari-
ables of an edge to true, then Φ|α is defined to have the empty rela-
tion on every edge.

By examining the clauses of CNF(Φ), let us observe first that en-
forcement of path consistency on Φ is fully simulated by unit propa-
gation on CNF(Φ). More precisely, we have

Lemma 2 For any partial or complete instantiation α of the branch
variables of CNF(Φ), unit propagation on CNF(Φ)|α (i) produces
a contradiction iff enforcing path consistency on Φ|α generates an
empty relation, and (ii) sets a base variableABp to false iff enforcing
path consistency on Φ|α removes the corresponding base relation p
from the corresponding edge AB in Φ.

Our second observation concerns an interesting syntactic property
of CNF(Φ) relating to renamable-Horn formulas, which are CNF
formulas that can be made to have at most one positive literal per
clause by swapping variables with their negations. Specifically, the
following may be easily verified (recall that branch variables include
base variables where the ORD-Horn partitions are atomic):

Lemma 3 CNF(Φ)|α is renamable-Horn for any complete instan-
tiation α of the branch variables of CNF(Φ).

It is well known that renamable-Horn formulas are satisfiable iff
unit propagation does not produce a contradiction. Hence by Lem-
mas 2 and 3, we have

Lemma 4 For any complete instantiation α of the branch variables
of CNF(Φ), CNF(Φ)|α is satisfiable iff Φ|α is consistent.

We are now well-equipped to complete our argument for the cor-
rectness of CNF(Φ). Picking up where we left off, let α be the part
of the satisfying assignment π that instantiates the branch variables.

The existence of π implies that CNF(Φ)|α is satisfiable, which im-
plies, by Lemma 4, that Φ|α, and hence Φ, are consistent. Thus we
have circumvented the need to reason about the consistency of Φ′′,
and can now state formally

Theorem 5 CNF(Φ) is satisfiable iff the network Φ is consistent.

4 Simulation of Native Search by SAT
We will now show that native search (Algorithm 1) on an IA network
Φ can be simulated by DPLL on CNF(Φ). To that end it is important
to establish that the branching of Algorithm 1 can be simulated by
the branching of DPLL (on branch variables).

By Lemma 1, as discussed earlier, any ORD-Horn partition r cho-
sen by Algorithm 1 (line 9) must be contained in an original ORD-
Horn partition q, and hence must correspond to a branch variable Q
in CNF(Φ).

By Lemma 2, any base relations that may have been removed
from the original ORD-Horn partition q by path consistency corre-
spond to base variables that have been set to false in CNF(Φ). Hence
the choice of r by Algorithm 1 is precisely simulated by setting the
branch variable Q to true in CNF(Φ). Moreover, by Lemma 2, any
branch of Algorithm 1 will terminate precisely when the correspond-
ing branch of DPLL terminates. Hence we have

Theorem 6 If Algorithm 1 refutes an IA network Φ with a search
tree of size n, then DPLL can refute CNF(Φ) with a search tree of
size O(n).

Note that the search tree size measures the number of search
nodes, while unit propagation occurs within each search node.The
constant factor implicit in O(n) in the theorem reflects the fact that
DPLL has to simulate a k-way branching of the native search with a
sequence of (k − 1) binary branchings.

5 Pebbling Contradictions PCn and Their
Reduction to IA Networks

We have now established that SAT is at least as powerful as native
search for deciding the consistency of IA networks. The next order
of business is constructing a class of IA networks to show that the
reverse does not hold. This will be done by enlisting a class of CNF
formulas PCn, known as pebbling contradictions [4], and then re-
ducing them to IA networks.

For space constraints we will not reproduce the definition of
PCn here, but only note that it is an infinite class of 4CNF for-
mulas (clauses of size < 4 can be “padded” into size 4) that have
been shown to admit polynomial-size resolution refutations, but only
exponential-size tree-like resolution refutations. In other words, they
are tractable for clause learning, but intractable for DPLL.

It remains to translate the 4CNF formulas PCn into IA networks
without creating opportunities for short tree-style refutations, hence
producing a class of IA networks that cannot be refuted by native
search in polynomial time. Our translation is a general 4CNF-to-IA
reduction, based on modifying and extending a known 3CNF-to-IA
reduction [18]. We now describe it in detail.

Given a 4CNF formula ∆, our IA network, denoted Φ∆, con-
tains exactly the following intervals (variables): a single interval
mid; two literal intervals A, notA, plus an auxiliary interval
AXnotA, for each variable A in ∆; four literal wrappers forP,
forQ, forR, forS, plus an auxiliary interval PQRS, for each

clause P ∨ Q ∨ R ∨ S in ∆, where P,Q,R, and S are (positive
or negative) literals.

We describe next the constraints of Φ∆, where we may intuitively
think of intervals falling before mid as false and those falling after
it as true. First, for each pair of A and notA, we ensure that exactly
one of them is true and the other is false, using the third interval
AXnotA (“X” for “excludes”) as an auxiliary:

mid {d}AXnotA (1)

A {m, mi}AXnotA (2)

notA {m, mi}AXnotA (3)

A {b, bi}notA (4)

Now for each clause P ∨ Q ∨ R ∨ S, the goal is to ensure that
at least one of the literals is true, i.e., falls after mid. For the same
reason for which we have “wrapped” mid in AXnotA above, we
do not directly constrain the literal intervals P,Q,R,S, but throw
them in their respective wrappers which are then to be constrained:

P {d} forP (5)

Q {d} forQ, R {d} forR, S {d} forS

The following ensures that the wrappers themselves also fall either
entirely before (b,m) or after (bi) mid:

forP {b, m, bi}mid (6)

forQ {b, m, bi}mid, forR {b, m, bi}mid, forS {b, m, bi}mid

And the wrappers for each clause must not overlap:

forP {b, m, mi, bi} forQ (7)

forP {b, m, mi, bi} forR
forP {b, m, mi, bi} forS, forQ {b, m, mi, bi} forR
forQ {b, m, mi, bi} forS, forR {b, m, mi, bi} forS

The final group of constraints are the essential ones ensuring that
at least one of the four literal wrappers (and hence literals) falls after
mid. This is achieved through the auxiliary interval PQRS, placed
before and adjacent to mid:

PQRS {m}mid (8)

The wrappers having been required not to overlap, the remaining
four constraints, together with the above, will ensure that at most
three of them can fit before mid:

forP {m, s, f, bi}PQRS (9)

forQ {m, s, f, bi}PQRS (10)

forR {m, s, f, bi}PQRS, forS {m, s, f, bi}PQRS

It is straightforward to verify that the reduction described above
correctly preserves satisfiability:

Theorem 7 The IA network Φ∆ is consistent iff the 4CNF formula
∆ is satisfiable.

It is important to also establish that if the 4CNF formulas are hard
for tree-style search, the resulting IA networks will remain so. To
that end, given an unsatisfiable 4CNF formula ∆ and its reduction
to an IA network Φ∆, let us examine the possible decisions (line 9)
that can be made by Algorithm 1 running on Φ∆. The relations used
in Φ∆, except the singletons and implicit universal relation, are all
non-ORD-Horn. For each of these the partitioning into ORD-Horn
relations is as follows:

{m, mi} −→ {m}, {mi}
{b, bi} −→ {b}, {bi}

{b, m, bi} −→ {b, m}, {bi}
{m, s, f, bi} −→ {m}, {s}, {f}, {bi}
{b, m, mi, bi} −→ {b, m}, {mi, bi}

We shall argue that in each of the above cases a branch taken
by Algorithm 1 (line 9) on Φ∆ is simulated by a corresponding
branch of DPLL on ∆. The first three cases are straightforward: The
three partitionings all represent a decision regarding the placement
of opposite literal intervals (A, notA) relative to mid, which cor-
responds to choosing a truth value for a Boolean variable (A). The

Figure 3. A subgraph of Φ∆.

fourth corresponds to choosing a truth value for a Boolean literal,
choosing true if the branch {bi} is taken, and false if any of the
other three branches {m}, {s}, {f} is taken. The final partitioning
concerns the linear ordering of the four literal intervals for a clause,
and is the only one that does not directly correspond to decisions
on a Boolean variable in ∆. It is safe to pretend, however, that Al-
gorithm 1 never makes decisions with respect to this partitioning,
because any such decisions would only be relevant insofar as they
cause one of the four intervals to come last and hence after mid, in
which case they can simply be replaced by a direct decision placing
that interval after mid. To sum up, we have

Lemma 8 Given an unsatisfiable 4CNF formula ∆ and its reduction
to an IA network Φ∆, if Algorithm 1 refutes Φ∆ with a search tree of
size n, then DPLL can refute ∆ with a search tree of size ≤ n.

Given that the shortest DPLL refutations of PCn formulas have ex-
ponential size, it follows from Lemma 8 that the IA networks ΦPCn

are intractable for native search:

Theorem 9 Refutations of ΦPCn networks by Algorithm 1 take at
least exponential time.

6 Tractability of ΦPCn for SAT

By now we have constructed a class of IA networks, ΦPCn , that
are provably hard for native search. It remains to show that they
are tractable for SAT in that our SAT encoding of them admits
polynomial-size resolution refutations and hence can be refuted by
clause learning in polynomial time.

Given any 4CNF formula ∆ and its reduction to an IA network
Φ∆, our SAT encoding CNF(Φ∆) of Φ∆ will look rather different
from ∆. However, we will show that we can produce in polynomial
time, by resolution on CNF(Φ∆), a 4CNF formula that is isomorphic
to ∆. This will imply that CNF(Φ∆) is tractable for resolution and
hence clause learning if ∆ is.

Let P ∨ Q ∨ R ∨ S be any clause of ∆. For the corresponding
intervals P,Q,R,S of Φ∆, we write nP, nQ, nR, nS for the “op-
posite” intervals. For example, if P is positive, then nP = notP; if
Q is negative and hence Q is some notA, then nQ = A.

Instantiating Constraints 1–4 for P, we have

mid {d}PXnP (11)

P {m, mi}PXnP (12)

nP {m, mi}PXnP (13)

P {b, bi}nP (14)

We now proceed to describe elements of CNF(Φ∆) that will al-
low us to derive by resolution a formula isomorphic to ∆. These are
the path-consistency-encoding clauses generated for the five types
of triangles of Φ∆ illustrated in Figure 3 (unit propagation has been
applied to simplify some of the clauses).

6.1 Elements of CNF(Φ∆)
First consider the triangle 〈P, nP,PXnP〉 in Φ∆, labeled with
Constraints 12–14. Let P⊥ and P> be the base variables of
CNF(Φ∆) encoding the edge (P, nP), and PmX and PmiX those
encoding the edge (P,PXnP). The clauses encoding this triangle
include

PmX → P⊥
PmiX → P> (15)

P⊥ ∨ P>

P⊥ ∨ P> (16)

Consider next the triangle 〈P,mid,PXnP〉. The edge
(mid,PXnP) is labeled with Constraint 11. The constraint be-
tween P and mid is universal, and hence will generate 13 Boolean
variables, among which are PMb and PMbi. The clauses encoding
this triangle include

PMb → PmX

PMbi → PmiX (17)

Now consider the triangle 〈forP, forQ,PQRS〉, labeled with
Constraints 7, 9, and 10. Let PQb, PQm, PQmi, and PQbi be
the base variables for the edge (forP, forQ); Pm, Ps, Pf , and Pbi
those for (forP,PQRS); and Qm, Qs, Qf , and Qbi those for
(forQ,PQRS). Our SAT encoding of this triangle contains three
groups of clauses, one for each orientation of path consistency. Only
two of them are needed here. These are

Pm → b1 ∨ b2 ∨ b3 (18)
Ps → b1 ∨ b2 ∨ b4 ∨ b5, Pf → b2 ∨ b6 ∨ b7 ∨ b8, Pbi → b7 ∨ b8 ∨ b9 ∨ b10

b1 → PQb, b1 → Qf (19)

b2 → PQb, b2 → Qbi (20)
b3 → PQm, b3 → Qs (21)

b4 → PQm, b4 → Qf , b5 → PQmi, b5 → Qm, b6 → PQmi, b6 → Qs

b7 → PQbi, b7 → Qm, b8 → PQbi, b8 → Qs, b9 → PQbi, b9 → Qf

b10 → PQbi, b10 → Qbi

Pm ∨ Ps ∨ Pf ∨ Pbi (22)

Pm ∨ Ps, Pm ∨ Pf , Pm ∨ Pbi (23)

Ps ∨ Pf , Ps ∨ Pbi, Pf ∨ Pbi

and another group analogous to the above, obtained by swapping
{Pm, Ps, Pf , Pbi} respectively with {Qm, Qs, Qf , Qbi} and re-
naming the auxiliary variables bi. In particular, the second group
contains the following clauses analogous to Clauses 23:

Qm ∨Qs, Qm ∨Qf , Qm ∨Qbi (24)

Referring to Clause 22 and writing down the analogous clauses for
{Q,R, S}, we have also the following in CNF(Φ∆):

Qm ∨Qs ∨Qf ∨Qbi (25)

Rm ∨ Rs ∨ Rf ∨ Rbi (26)

Sm ∨ Ss ∨ Sf ∨ Sbi (27)

Consider next the triangle 〈forP,PQRS,mid〉. Constraint 8,
between PQRS and mid, is a singleton and need not be encoded.
Constraint 6, between forP and mid, generates three base variables
fPMb, fPMm, fPMbi. The clauses encoding this triangle include

Pm → fPMb, Ps → fPMb, Pf → fPMm

Pbi → fPMbi (28)

Finally, consider the triangle 〈P, forP,mid〉. Constraint 5, be-
tween P and forP, is a singleton and hence need not be encoded.
As discussed earlier, the constraint between P and mid is univer-
sal, generating 13 Boolean variables including PMb and PMbi. The
clauses encoding this triangle include

fPMb → PMb, fPMm → PMb

fPMbi → PMbi (29)

6.2 A Resolution Derivation from CNF(Φ∆)
From Clauses 18, 19, 20, 21, and 24 one may derive: Pm ∨ Qm. By
symmetry, the following may all be derived from CNF(Φ∆):

Ps ∨Qs, Pf ∨Qf , Pm ∨ Rm, Ps ∨ Rs, Pf ∨ Rf

Pm ∨ Sm, Ps ∨ Ss, Pf ∨ Sf , Qm ∨ Rm, Qs ∨ Rs, Qf ∨ Rf

Qm ∨ Sm, Qs ∨ Ss, Qf ∨ Sf , Rm ∨ Sm, Rs ∨ Ss, Rf ∨ Sf

The following derivation can now be readily produced:
(Pm ∨Qm with 22) Qm ∨ Ps ∨ Pf ∨ Pbi

(25 with above) Qs ∨Qf ∨Qbi ∨ Ps ∨ Pf ∨ Pbi

(Qs ∨ Rs with above) Rs ∨Qf ∨Qbi ∨ Ps ∨ Pf ∨ Pbi

(Ps ∨ Rs with above) Rs ∨Qf ∨Qbi ∨ Pf ∨ Pbi

(Qf ∨ Sf with above) Rs ∨ Sf ∨Qbi ∨ Pf ∨ Pbi

(Pf ∨ Sf with above) Rs ∨ Sf ∨Qbi ∨ Pbi (30)

(Rf ∨ Sf with 26) Rm ∨ Rs ∨ Sf ∨ Rbi

(30 with above) Rm ∨ Sf ∨Qbi ∨ Pbi ∨ Rbi (31)

(Pm ∨ Rm with 22) Rm ∨ Ps ∨ Pf ∨ Pbi

(Pf ∨ Sf with above) Rm ∨ Ps ∨ Sf ∨ Pbi (32)

(Qm ∨ Rm with 25) Rm ∨Qs ∨Qf ∨Qbi

(Qf ∨ Sf with above) Rm ∨Qs ∨ Sf ∨Qbi

(Ps ∨Qs with above) Rm ∨ Ps ∨ Sf ∨Qbi

(32 with above) Rm ∨ Sf ∨ Pbi ∨Qbi

(31 with above) Sf ∨ Pbi ∨Qbi ∨ Rbi (33)

By analogy with Clause 33, the following may also be derived:
Ss ∨ Pbi ∨Qbi ∨ Rbi (34)

Sm ∨ Pbi ∨Qbi ∨ Rbi (35)

Resolving Clauses 27, 33, 34, and 35 gives Pbi ∨ Qbi ∨ Rbi ∨ Sbi.
Resolving this with Clauses 28 and 29 and the analogous clauses for
{Q,R, S} gives PMbi ∨QMbi ∨ RMbi ∨ SMbi. Resolving this with
Clauses 17 and 15 and the analogous clauses for {Q,R, S} gives

P> ∨Q> ∨ R> ∨ S> (36)

In contrast to the original clause P ∨Q ∨R ∨ S of ∆, Clause 36
only has positive literals. However, resolving it with Clause 16 and
the analogous clauses for {Q,R, S} as necessary, we can turn it into
a clause that is isomorphic to P ∨Q ∨R ∨ S. This final clause may
be formally given as

P
′ ∨Q

′ ∨ R
′ ∨ S

′ (37)

where P ′ is P> if P is positive and P⊥ otherwise, and similarly for
Q′, R′, and S′.

It is thus clear that repeating the derivation of Clause 37 for each
clause P ∨ Q ∨ R ∨ S in ∆ will produce a 4CNF formula isomor-
phic to ∆. Each repetition takes a constant number of steps, and
hence the whole process clearly takes only polynomial time. Since
the PCn formulas are known to have polynomial-size resolution refu-
tations, substituting PCn for ∆, it follows that our SAT encoding of
the ΦPCn networks also have polynomial-size resolution refutations.
Since clause learning is as powerful as resolution, we have finally ar-
rived at the end of our investigation:

Theorem 10 CNF(ΦPCn) can be refuted by clause learning in
polynomial time.4

7 Conclusion and Future Work
Theorem 6 establishes that SAT is at least as powerful as native
search for deciding the consistency of IA networks. Theorems 9
and 10 together establish that the reverse does not hold: There are
IA networks that require exponentially longer refutations by native

4 The reader is reminded that clause learning here refers to a proof system—a
concrete clause learning solver having a deterministic resolution strategy is
not guaranteed to run in polynomial time on these formulas.

search than by SAT. Therefore, we conclude that SAT strictly domi-
nates native search in theoretical power for deciding the consistency
of IA networks in qualitative temporal reasoning.

While the IA networks ΦPCn constructed from the pebbling con-
tradictions witness the separation in power of the two approaches
to qualitative temporal reasoning, it remains an interesting question
whether a similar separation can be associated with any class of ran-
dom networks as used in standard benchmarking of qualitative rea-
soners. Another open question is how exactly the use of ORD-Horn
(over the set of base relations) as a tractable subset affects the power
of the proof system, in both the native and SAT-based approaches.

REFERENCES
[1] James F. Allen, ‘Maintaining knowledge about temporal intervals’,

Communications of the ACM, 26(11), 832–843, (1983).
[2] Fahiem Bacchus, ‘GAC via unit propagation’, in Proceedings of the

13th International Conference on Principles and Practice of Constraint
Programming (CP), pp. 133–147, (2007).

[3] Paul Beame, Henry A. Kautz, and Ashish Sabharwal, ‘Towards under-
standing and harnessing the potential of clause learning’, Journal of
Artificial Intelligence Research, 22, 319–351, (2004).

[4] Eli Ben-Sasson, Russell Impagliazzo, and Avi Wigderson, ‘Near op-
timal separation of tree-like and general resolution’, Combinatorica,
24(4), 585–603, (2004).

[5] Jean-François Condotta, Dominique DAlmeida, Christophe Lecoutre,
and Lakhdar Saı̈s, ‘From qualitative to discrete constraint networks’, in
Workshop on Qualitative Constraint Calculi, pp. 54–64, (2006).

[6] Jean-François Condotta, Gérard Ligozat, and Mahmoud Saade, ‘Eligi-
ble and frozen constraints for solving temporal qualitative constraint
networks’, in Proceedings of the 13th International Conference on
Principles and Practice of Constraint Programming (CP), pp. 806–814,
(2007).

[7] Martin Davis, George Logemann, and Donald Loveland, ‘A machine
program for theorem proving’, Journal of the ACM, (5)7, 394–397,
(1962).

[8] Zeno Gantner, Matthias Westphal, and Stefan Wölfl, ‘GQR—A fast rea-
soner for binary qualitative constraint calculi’, in AAAI-08 Workshop on
Spatial and Temporal Reasoning, (2008).

[9] Jinbo Huang, ‘The effect of restarts on the efficiency of clause learn-
ing’, in Proceedings of the 20th International Joint Conference on Ar-
tificial Intelligence (IJCAI), pp. 2318–2323, (2007).

[10] Jason Jingshi Li, Jinbo Huang, and Jochen Renz, ‘A divide-and-conquer
approach for solving interval algebra networks’, in Proceedings of the
21st International Joint Conference on Artificial Intelligence (IJCAI),
pp. 572–577, (2009).

[11] Alan K. Mackworth, ‘Consistency in networks of relations’, Artificial
Intelligence, 8, 99–118, (1977).

[12] Joao Marques-Silva and Karem Sakallah, ‘GRASP—A new search al-
gorithm for satisfiability’, in Proceedings of the International Confer-
ence on Computer Aided Design (ICCAD), pp. 220–227, (1996).

[13] Matthew Moskewicz, Conor Madigan, Ying Zhao, Lintao Zhang, and
Sharad Malik, ‘Chaff: Engineering an efficient SAT solver’, in Proceed-
ings of the 38th Design Automation Conference (DAC), pp. 530–535,
(2001).

[14] Bernhard Nebel, ‘Solving hard qualitative temporal reasoning prob-
lems: Evaluating the efficiency of using the ORD-Horn class’, Con-
straints, 1(3), 175–190, (1997).

[15] Bernhard Nebel and Hans-Jürgen Bürckert, ‘Reasoning about tempo-
ral relations: A maximal tractable subclass of Allen’s interval algebra’,
Journal of the ACM, 42(1), 43–66, (1995).

[16] Duc Nghia Pham, John Thornton, and Abdul Sattar, ‘Modelling and
solving temporal reasoning as propositional satisfiability’, Artificial In-
telligence, 172(15), 1752–1782, (2008).

[17] Knot Pipatsrisawat and Adnan Darwiche, ‘On the power of clause-
learning SAT solvers with restarts’, in CP, ed., Ian P. Gent, volume
5732 of Lecture Notes in Computer Science, pp. 654–668. Springer,
(2009).

[18] Marc Vilain and Henry Kautz, ‘Constraint propagation algorithms for
temporal reasoning’, in Proceedings of the Fifth National Conference
on Artificial Intelligence (AAAI), pp. 377–382, (1986).

