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Abstract. Recent work has shown that SAT can be theoretically
more powerful than heuristic search provided the heuristic used by
search is implemented as a set of clauses on which unit propagation
simulates the evaluation of the heuristic. The hmax heuristic has been
shown to be implemented trivially by the empty set of clauses. This
paper presents an implementation of hm, a generalization of hmax.

1 Introduction
Heuristic search and reduction to SAT are two major approaches to
planning that can be viewed as complementary: On the one hand,
pruning heuristics used in search are generally not available to
SAT solvers. On the other, logical reasoning methods used by SAT
solvers, such as unit propagation and clause learning, are not directly
applicable in heuristic search. Interestingly, with their own strengths
and weaknesses, the two approaches appear to exhibit comparable
performance overall on the types of problems they both handle [5].

One may logically expect, therefore, that if either approach is to
overcome one of its weaknesses, the balance may be tipped in its fa-
vor. Indeed, the notion of implementing pruning heuristics for SAT
has been proposed [4], where a heuristic is encoded into a set of
clauses such that unit propagation will derive a contradiction when-
ever the corresponding branch of a native search would be pruned by
the heuristic. Furthermore, the same work shows that a SAT search
can simulate (forward state-space) heuristic search in polynomial
time as long as the former efficiently implements the same heuris-
tic used by the latter. Where hmax [1] is the heuristic used, it also
shows that the reverse does not hold: There are problems that are
exponentially harder for heuristic search than for SAT.

It is understood that the hmax heuristic is implicit in the basic SAT
encoding of planning [4]. This heuristic is based on taking the cost
of achieving a set of goals to be that of achieving the costliest goal in
the set, and applying the idea recursively in regression.

The hm family of heuristics [3], also known as critical path heuris-
tics, generalize and strengthen hmax by considering the costliest sub-
set ofm goals (hence hmax = h1). This paper presents an implemen-
tation of hm for SAT. The size of the implementation is exponential
in m, which is consistent with the fact that computing hm in the
native search space requires time exponential in m.

2 Background
As in [4], we consider a sequential SAT encoding of STRIPS plan-
ning problems based on explanatory axioms. Our planning problem
P consists of a set of facts F and a set of actions A, and each ac-
tion a ∈ A has a set of preconditions pre(a), add effects add(a), and
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delete effects del(a), which are all sets of facts ⊆ F . A problem in-
stance specifies, in addition, an initial state sI as the set of facts that
initially hold and a set of goals G ⊆ F to achieve. The objective is
to find a plan the contains the fewest actions.

In a SAT encoding, all facts and actions become Boolean variables,
and there is a fresh copy of these variables for each time step, up to
a fixed horizon T . Specifically, we have f@t for each f ∈ F and
t ∈ {0, · · · , T}, and a@t for each a ∈ A and t ∈ {0, · · · , T −
1}. Each action a is encoded by the following set of clauses for
all t ∈ {0, · · · , T − 1}: a@t ∨ f@t, for all f ∈ pre(a); a@t ∨
f@(t+1), for all f ∈ add(a); a@t∨f@(t+ 1), for all f ∈ del(a).
For each fact f and time t ∈ {0, · · · , T − 1}, we have the following
frame axioms stating that each fact remains unchanged unless some
action capable of changing it occurs: f@t∨f@(t+ 1)∨ak1@t∨· · ·∨
akm@t, f@t∨f@(t+1)∨an1@t∨· · ·∨ans@t, where ak1 , · · · , akm

are all the actions whose add effects include f , and an1 , · · · , ans

are all the actions whose delete effects include f . To ensure that
at most one action occurs at a time, we have the following for all
t ∈ {0, · · · , T − 1}: a@t ∨ a′@t, for all distinct a, a′ ∈ A. Finally,
the goalsG are encoded by a set of unit clauses: f@T, for all f ∈ G.

For a given natural number T , we denote the collection of the
clauses described above by HT . For a state s, again as a set of facts,
and time t, we write s@t as shorthand for {f@t | f ∈ s}∪{f@t | f ∈
F\s}. The optimal planning problem is then to determine the small-
est T such that sI@0 ∪ HT is satisfiable, where such a T exists.

We write ∆ `UP β to denote that unit propagation on clauses
∆ results in a set of clauses that include β (a special case is when
β = ⊥, a contradiction). Let h be a heuristic such that hs(G) gives
an estimate on the number of actions required to achieve the goals G
from the state s. The following definition generalizes the one in [4]:

Definition 1 A set of clauses χT implements the heuristic h, for a
given horizon T , if s@t∪HT ∪χT `UP ⊥ for all states s and times
t ∈ {0, · · · , T} such that (T − t) < hs(G).

3 Implementation of hm

In our present context, the hm estimate for achieving a set of facts
ψ ∈ F from a state s may be defined as follows:

hms (ψ) =


0 if ψ ⊆ s
mina h

m
s (R(ψ, a)) + 1 if |ψ| ≤ m

maxψ′⊂ψ,|ψ′|=m h
m
s (ψ′) if |ψ| > m

(1)

where R(ψ, a) is the regression operator, defined as
R(ψ, a) = (ψ \ add(a)) ∪ pre(a)

if add(a)∩ψ 6= ∅ and del(a)∩ψ = ∅, and undefined otherwise, and
the min ranges over all actions a such that R(ψ, a) is defined [3].

We now describe our implementation χmT of hm, followed by a
proof of its correctness.



Because unit propagation will only produce consequences regard-
ing the truth of single variables, to simulate hm, we need Boolean
variables that correspond to sets of facts. Specifically, for each set of
facts φ ⊆ F such that 2 ≤ |φ| ≤ m, we create a meta-fact fφ, which
implies the truth of all facts in φ, at each time point t ∈ {0, · · · , T}:

fφ@t ∨ f@t, for all f ∈ φ (2)
For succinctness of presentation, in what follows we will take fφ

to be (an alias of) f in case φ = {f}; thus fφ is defined for all φ ⊆ F
such that 1 ≤ |φ| ≤ m.

The frame axiom for each meta-fact fφ, 2 ≤ |φ| ≤ m, gives the
condition under which the value of fφ can possibly change from false
to true. It consists of the following clauses for all t ∈ {0, · · · , T−1}:

fφ@t ∨ fφ@(t+ 1) ∨ x1 ∨ · · · ∨ xp (3)

xi ∨ fφ′@t, for all φ′ ⊆ R(φ, aki) 6= ∅, (4)

|φ′| = min(m, |R(φ, aki)|), and for all i ∈ {1, · · · , p}

where ak1 , · · · , akp are all the actions for which R(φ, aki) is de-
fined, and x1, · · · , xp are a set of (not necessarily distinct) auxiliary
variables such that xi and xj are the same variable iff R(φ, aki) =
R(φ, akj ) (which implies that clauses 4 for i are identical to those
for j and hence only one set will actually appear in χmT ). This shar-
ing of variables and clauses applies across all frame axioms for
the same time step t. To avoid doubt, we also note that whenever
R(φ, aki) = ∅, the set of clauses (4) is empty but the literal xi ap-
pears in clause (3) regardless (this corresponds to cases where the set
of facts φ can be achieved by an action that has no preconditions).

Finally, the following unit clauses assert the achievement of goals
in terms of meta-facts:

fφ@T, for all φ ⊆ G, 2 ≤ |φ| ≤ m (5)

The clauses (2–5) given above make up our implementation χmT of
hm. That it does not rule out valid plans is implied by the following:

Theorem 2 For any satisfying assignment π for sI@0 ∪HT , there
is an assignment π′ for the meta-fact and auxiliary variables in χmT
such that π ∪ π′ satisfies χmT .

To show that it correctly implements the heuristic, we first prove a
more general theorem:

Theorem 3 Let t, i be natural numbers such that t+ i ≤ T . For all
ψ ⊆ F and states s such that hms (ψ) > i, s@t ∪ HT ∪ χmT `UP
fφ@(t+ i) for some φ ⊆ ψ, |φ| = min(m, |ψ|).

Proof: The proof is by induction on i. If i = 0, then the definition
(1) of hm implies that ψ 6⊆ s. Hence there is an f ∈ ψ such that
s@t `UP f@t, which, in conjunction with (2), implies that s@t ∪
χmt `UP fφ@t for all φ, 1 ≤ |φ| ≤ m, such that f ∈ φ ⊆ F .
Choose any such φ of size min(m, |ψ|) such that φ ⊆ ψ, and the
statement is proved.

Assume that the statement holds for i = n, 0 ≤ n < T − t.
Consider any ψ ⊆ F and state s such that hms (ψ) > n + 1. The
inductive step consists in a case analysis on |ψ|.

Suppose |ψ| ≤ m. Since hms (ψ) > n + 1 > n, by the induction
hypothesis,

s@t ∪HT ∪ χmT `UP fφ@(t+ n) (6)

for some φ ⊆ ψ, |φ| = min(m, |ψ|). But |ψ| ≤ m; therefore
φ = ψ. Hence n+1 < hms (ψ) = hms (φ) = mina h

m
s (R(φ, a))+1,

which implies that hms (R(φ, a)) > n for all a where R(φ, a)
is defined. By the induction hypothesis, s@t ∪ HT ∪ χmT `UP

fφ′@(t+ n) for some φ′ ⊆ R(φ, a), |φ′| = min(m, |R(φ, a)|).
In conjunction with the frame axiom (4) for fφ, this implies that
s@t∪HT ∪χmT `UP xi for all xi in the frame axiom. In conjunction
with (3) and (6), this implies that

s@t ∪HT ∪ χmT `UP fφ@(t+ n+ 1). (7)

In other words, the statement holds for i = n+ 1.
If |ψ| > m, then hms (ψ) = maxψ′⊂ψ,|ψ′|=m h

m
s (ψ′). The

preceding argument applies to the ψ′ that attains the maximum in
this equation, and shows that (7) holds for φ = ψ′ ⊂ ψ, where
|φ| = |ψ′| = m, which completes the proof. �

Letting ψ = G and i = T − t in Theorem 3, it readily follows that
χmT correctly implements hm according to Definition 1:

Corollary 4 s@t ∪ HT ∪ χmT `UP ⊥ for all states s and times
t ∈ {0, · · · , T} such that (T − t) < hms (G).

4 Discussion
Recent work [2] has shown that the hm heuristic for the planning
problem P can be formulated as the hmax for a new problem Pm.
The latter features the same set of meta-facts as χmT , and a set of new
meta-actions αa,φ each representing the execution of action a while
“preserving” the truth of all facts φ. This work implies that, in prin-
ciple, a basic SAT encoding of Pm, when suitably linked into that of
P , would function as an implementation of hm for P . Such an imple-
mentation, however, would include action definition and one-action-
at-a-time clauses for the meta-actions, and frame axioms preventing
true meta-facts from becoming false, which are absent from χmT . On
the other hand, χmT includes clauses (4), which may be regarded as
an economical way of encoding any relevant information that would
be represented by the meta-actions.

Although the details are omitted, we note that it is not difficult to
adapt our implementation of hm to the parallel setting, where com-
patible actions are allowed to take place in the same time step, and an
optimal plan is one with the fewest steps (after the basic SAT encod-
ing and the definition of hm have both been adapted accordingly).

We conclude the paper by considering two theoretical questions
that arise from the presented work: (i) Can the addition of χmT allow
resolution to derive the empty clause in exponentially fewer steps?
(ii) Can the addition of the meta-fact variables, along with the clauses
(2 and 5, e.g.) defining them, alone allow resolution to derive the
empty clause in exponentially fewer steps? Answers to these ques-
tions will offer important insights into the power and limitations of
SAT-based planning by determining to what extent a pruning heuris-
tic can possibly be made redundant by suitable resolution strategies.
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