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Abstract

Given the common use of restarts in today’s clause
learning SAT solvers, the task of choosing a good
restart policy appears to have attracted remarkably
little interest. On the other hand, results have
been reported on the use of different restart poli-
cies for combinatorial search algorithms. Such re-
sults are not directly applicable to clause learn-
ing SAT solvers, as the latter are now under-
stood as performing a form of resolution, some-
thing fundamentally different from search (in the
sense of backtracking search for satisfying assign-
ments). In this paper we provide strong evidence
that a clause learning SAT solver could benefit sub-
stantially from a carefully designed restart policy
(which may not yet be available). We begin by
pointing out that the restart policy works together
with other aspects of a SAT solver in determining
the sequence of resolution steps performed by the
solver, and hence its efficiency. In this spirit we
implement a prototype clause learning SAT solver
that facilitates restarts at arbitrary points, and con-
duct experiments on an extensive set of industrial
benchmarks using various restart policies, includ-
ing those used by well-known SAT solvers as well
as a universal policy proposed in 1993 by Luby
et al. The results indicate a substantial impact of
the restart policy on the efficiency of the solver, and
provide motivation for the design of better restart
policies, particularly dynamic ones.

1 Introduction

Propositional satisfiability (SAT) is the problem of determin-
ing whether a propositional formula, traditionally in conjunc-
tive normal form (CNF), has a satisfying assignment—an as-
signment of truth values to its variables making it evaluate to
true. In this paper we focus on a class of algorithms for SAT
that has become known as conflict-driven clause learning, or
clause learning for short. These algorithms are currently the
best for large SAT instances that arise from industrial appli-
cations, such as formal verification [Berre and Simon, 2005].

Clause learning SAT solvers have grown out of their prede-
cessors that implemented variants of a systematic search algo-

rithm known as DPLL [Davis et al., 1962], which solves SAT
by selecting a variable and determining, recursively, whether
the formula can be satisfied by setting that variable to either
value. In fact, the initial intuition for learning clauses and
appending them to the CNF formula was to help prune the
DPLL search, as discussed in earlier work [Marques-Silva
and Sakallah, 1996].

It has been shown, however, that clause learning as prac-
ticed in today’s SAT solvers, assuming unlimited restarts, cor-
responds to a proof system exponentially more powerful than
that of DPLL [Beame et al., 2004]. Specifically, each learn-
ing step is in fact a sequence of resolution steps, of which
the learned clause is the final resolvent; conversely, a reso-
lution proof can be simulated in polynomial time by repeat-
edly (i) learning each of the resolvents in the proof and (ii)
restarting (this assumes a deviation from standard practice:
the freedom to ignore assignments made by unit propagation).
Clause learning can hence be as powerful as general resolu-
tion, while DPLL has been known to correspond to the expo-
nentially weaker tree-like resolution [Beame et al., 2004].

Despite the dependence of this theoretical result on the as-
sumption of unlimited restarts, remarkably little has been said
in the literature on the importance of choosing a good restart
policy in practice. This is in stark contrast, for example, to the
sustained quest by researchers for better decision heuristics.
We argue that this imbalance of attention is doing a disservice
to the SAT community, because with the modern understand-
ing of clause learning, it can be seen that the decision heuris-
tic, together with the restart policy and other components of
the solver, determines the sequence of resolution steps per-
formed by the solver and hence its efficiency.

In this paper we would like to take a step toward study-
ing the importance of restart policies in clause learning SAT
solvers, with a view to motivating further work on designing
more effective policies. To this end we have created a small
prototype SAT solver, called TINISAT, which implements the
essentials of a modern clause learning solver and is designed
to facilitate adoption of arbitrary restart policies. After choos-
ing and fixing a reasonably effective decision heuristic, we
conducted experiments using an extensive set of large indus-
trial benchmarks, on which we ran versions of TINISAT using
different restart policies including those used by well-known
SAT solvers and particularly one proposed in [Luby et al.,
1993] based on a sequence of run lengths of the following



form: 1,1,2,1,1,2,4,1,1,2,1,1,2,4,8,... The results we
have obtained indicate a substantial impact of the restart pol-
icy on the efficiency of the solver. Specifically, all nontrivial
restart policies we experimented with did significantly better
than if restarts were disabled, and exhibited considerably dif-
ferent performance among themselves. More interestingly,
this difference in performance appears more marked when
one looks at individual benchmarks or benchmark families,
as opposed to the whole set in aggregate, which suggests that
substantial performance gains may be possible by using ap-
propriate dynamic restart policies (all policies compared in
this paper are static ones).

The rest of the paper is organized as follows: We present
the simple design of TINISAT and use it as the basis for dis-
cussing the semantics of modern clause learning, leading to
an analytical explanation why restart policies are important.
We then describe our experimental setup including the vari-
ous restart policies we shall use and our attempts to identify a
reasonable decision heuristic so that all policies can be tested
on competitive ground. We then report the results obtained
and make a number of important observations. Finally, we
discuss related work and present our conclusions.

2 Essentials of Clause Learning

We start by presenting the design of a simple SAT solver,
TINISAT, that (i) boasts the essentials of modern clause learn-
ing technology, and (ii) provides a basis for our discussion of
the importance of restart policies later in the section. The
top-level procedure of TINISAT, implemented in under 800
lines of C++, is given in Algorithm 1, which operates on an
implicit CNF formula whose satisfiability is in question.

Algorithm 1 TINISAT

1: loop

2: if (literal = selectLiteral()) == nil then
3: return SATISFIABLE

4: if !decide(literal) then

5: repeat

6: learnClause()

7: if assertionLevel() == 0 then
8: return UNSATISFIABLE
9: if restartPoint() then
10: backtrack(1l)
11: else
12: backtrack(assertionLevel())
13: until assertLearnedClause()

The following components of a modern clause learn-
ing SAT solver can be identified in Algorithm 1: deci-
sion heuristic (selectLiteral), unit propagation (decide, as-
sertLearnedClause), clause learning (learnClause, back-
track), restarts (restartPoint, backtrack). We assume famil-
iarity with the common terminology for DPLL and clause
learning algorithms, and assume that (i) 1-UIP [Zhang et
al., 2001] is used as the learning scheme, (ii) no clauses are
ever deleted (hence the algorithm is complete'), (iii) all func-

Tt can be shown that each learned clause is subsumed by no
existing clause [Zhang, 2005]. Since the algorithm keeps learning
distinct clauses it will always terminate.

tions have deterministic behavior,? and (iv) the first decision
is made in decision level 2: level 1 is reserved for literals
found to be implied by the CNF formula, and level O to signal
derivation of the empty clause. The functions involved have
the following semantics:

e selectlLiteral uses some decision heuristic to select a
free variable and then select one of its two literals, and
returns it, or returns nil if no free variables exist.

e decide increments the decision level, sets the given lit-
eral to true, and performs unit propagation; it returns true
iff no empty clause is derived.

e learnClause performs 1-UIP learning to derive an im-
plicate of the CNF formula, and sets the assertion level
(1) to 0 if the empty clause is derived, (ii) to 1 if a unit
clause is derived, and otherwise (iii) to the second high-
est decision level among literals of the derived clause.

e assertionLevel returns the assertion level, which has
been set by the last call to learnClause.

e restartPoint returns true iff the solver is to restart now
according to some restart policy.

e backtrack(k) undoes all variable assignments in deci-
sion levels > k, and sets the decision level to k.

e assertLearnedClause adds the learned clause to the
clause pool, performs unit propagation if the current de-
cision level equals the assertion level (this is the condi-
tion under which the learned clause becomes unit), and
returns true iff no empty clause is derived.

2.1 Restarts and Backtracks Unified

Note that under this design all that is needed to adopt a given
restart policy is to implement restartPoint accordingly. It is
also interesting to note that a normal backtrack after learn-
ing (Line 12) and a complete restart (Line 10) can both be
regarded as special cases of a more general scheme [Lynce
and Silva, 2002] where the solver can backtrack to any level
between 0 and the current decision level (exclusive). What
we would like to stress here, however, is that the partic-
ular scheme used by most clause learning SAT solvers to-
day, namely backtracking to the assertion level (except when
restarting), has obscured their original characteristics (inher-
ited from DPLL) as systematic search algorithms. In particu-
lar, these solvers do not perform branching anymore: The set-
ting of a literal occurs on Line 4, but the setting of its negation
is never explicitly tried (and possibly never tried at all even
implicitly). L

For example, suppose assignments {A, B,C, D} have
been made in decision levels 2, 3, 4, 5, respectively, before the
empty clause is derived in level 5, and suppose the following
clause is learned: A v D. This clause says that the two deci-
sions made in levels 2 and 5 alone are responsible for the con-
flict. Now, despite the fact that simply flipping the value of
variable D in level 5 could well result in a satisfiable subprob-
lem, Line 12 insists on taking the solver back to the assertion

“The learning scheme, clause deletion policy, and use of ran-
domness are all important factors that affect the efficiency of clause
learning SAT solvers, but are beyond the scope of this paper.



level, which is 2, erasing assignments {D, C, B} on the way.
The learned clause then gets asserted in level 2 (Line 13),
and implies D (because the assignment A is present, making
the clause unit), triggering a round of unit propagation. No-
tice that the branches { A, B, C'} and {A, B}, which can well
contain solutions, have been skipped over without ever being
explored.

It should be emphasized here, as we already alluded to,
that this behavior is not a peculiarity of TINISAT, but is the
common practice of most current clause learning SAT solvers
we have seen, including Chaff, BerkMin, MiniSat, and Siege.
(The earlier solver GRASP, though, used a different back-
tracking scheme such that no branch was skipped over unless
proven to contain no solutions.)

2.2 Importance of Restarts

This shift of paradigm in backtracking, as we discussed, ob-
scures the characteristics of clause learning SAT solvers as
systematic search algorithms. For this reason we propose to
view the modern practice of clause learning not as a version
of DPLL search enhanced with resolution,’ but as a pure res-
olution algorithm in its own right. In fact, what Algorithm 1
does is nothing other than the following 3-step cycle:

(1) set variables till hitting a conflict;
(2) derive a clause by resolution;
(3) unset some variables and go back to (1).

For unsatisfiable formulas, this loop terminates on deriving
the empty clause in (2); for satisfiable formulas, it terminates
when (1) “happens” to exhaust all variables without conflict.
In this context the importance of the restart policy be-
comes prominent: Together with the existing backtracking
scheme, it dictates the set of assignments to undo in (3),
which, together with the decision heuristic, ultimately de-
termines the entire sequence of resolution steps performed
in (2). In other words, the decision heuristic, backtracking
scheme, and restart policy can all be understood as serving a
single purpose, that of guiding the resolution process.
Consider for example a clause learning SAT solver that has
run on a hard instance for a period of time without restarts.
The solver has now accumulated a considerable number of
learned clauses, which have helped update the variable and
literal scores as are maintained by decision heuristics typical
in clause learning SAT solvers. These new scores represent,
in a way, the solver’s current state of belief about the order in
which future decisions should be made, having taken into ac-
count all the conflicts discovered so far. Without the freedom
of restarts, however, the solver would not be able to fully ex-
ecute its belief because it is bound by the decisions that have
been made earlier. In particular, note that these early deci-
sions were made without the benefit of the new knowledge in
the form of all the conflicts discovered since. This, we be-
lieve, is the main reason why restarts can help improve the

3Recall that each learning step is a sequence of resolution steps
the final resolvent of which is recorded as the “learned clause”
[Beame et al., 2004].

efficiency of clause learning SAT solvers even when no ran-
domness is present (which will be the case in our experiments
with TINISAT in Section 4).

In this section we have provided a new understanding of
modern clause learning through the design of TINISAT, a con-
crete and simple clause learning SAT solver, leading to an an-
alytical argument that the restart policy matters. We now pro-
ceed to support this argument with an empirical study of con-
crete restart policies using real-world SAT benchmarks and
the TINISAT solver.

3 Experimental Setup

We describe in this section the restart policies we shall ex-
periment with, the decision heuristic to be used with these
policies in the experiments, and our choice of benchmarks.

3.1 Restart Policies

In choosing the set of restart policies for our empirical study,
we have aimed to include those that are currently used by
well-known SAT solvers as well as some less conventional
ones that may have escaped the attention of the clause learn-
ing community. Specifically, we shall experiment with the
following seven restart policies:

e N: a policy calling for no restarts at all.

e M: a geometric policy used in MiniSat v1.14 [Eén and
Soérensson, 2005] with an initial restart interval of 100
conflicts, which increases by a factor of 1.5 after each
restart. We will denote it by (100, 1.5).

e Z: a fixed-interval policy used in Chaff II, also known
as the 2004 version of zChaff [Moskewicz et al., 20011,
with a restart interval of 700 conflicts, denoted (700, 1).

e B: a fixed-interval policy used in BerkMin [Goldberg
and Novikov, 2002] with a restart interval of 550 con-
flicts, denoted (550, 1).

e G: a geometric policy (32, 1.1), which we have added to
improve the balance between fixed-interval and geomet-
ric policies we consider.

e S: a fixed-interval policy used in Siege [Ryan, 2004]
with a restart interval of 16000 conflicts, denoted
(16000, 1).

e L: aclass of policies proposed in [Luby er al., 1993] for
randomized algorithms based on the following sequence
of run lengths: 1,1,2,1,1,2,4,1,1,2,1,1,2,4,8,...
(defined below). In our experiments we take a
“unit run” in this sequence to be 32 conflicts (we
have experimented with other units as well; see
http://rsise.anu.edu.au/"jinbo/tinisat/). Hence the actual
restart intervals are: 32,32,64,32,32,64,128,... We
denote this policy by (Luby’s, unit=32).

The first six of these policies are straightforward, while
Luby’s policy can be formally defined as the sequence
t1,t9,t3, ... such that:

L2 ifi=2%—1;
U timgkigr, 2RI <i<2b -1



We have chosen Luby’s policy because of an interesting
property it has: In the context of a particular class of ran-
domized algorithms, known as Las Vegas algorithms, [Luby
et al., 1993] proved that this policy is universally optimal in
the sense that (i) it achieves an expected running time that is
only a logarithmic factor slower than the true optimal policy,
which is determined by the specific running time distribution
of the algorithm on a specific problem instance, and (ii) no
other universal policy can do better by more than a constant
factor. (The theoretical relevance of this property to clause
learning remains an interesting question though.)

3.2 Decision Heuristic

To make our comparison of restart policies more meaning-
ful, we have taken steps to ensure that other components
of the SAT solver are tuned toward their best performance.
Rather than low-level optimizations, however, we focused
on choosing a reasonably effective decision heuristic. Based
on experiments using a subset of our full benchmark suite
(described below), we found that a version of the VSIDS
heuristic [Moskewicz et al., 2001] combined with BerkMin’s
practice of choosing literals from recent unsatisfied conflict
clauses [Goldberg and Novikov, 2002] tended to work well.

Specifically, for each literal we keep a score that is ini-
tially the number of its occurrences in the original clauses. On
learning a clause, we increment the score of every literal by 1
for each of its occurrences in clauses that are involved in the
resolution process. The scores of all literals are halved once
every 128 conflicts. When a decision is called for (Line 2 of
Algorithm 1), we pick a (free) literal with the highest score
from the most recently learned clause that has not been sat-
isfied, and set it to true; if no such clause exists we pick any
(free) literal with the highest score.

3.3 Benchmarks

We use the entire set of industrial benchmarks distributed
by Miroslav Velev of Carnegie Mellon University at
http://www.ece.cmu.edu/"mvelev/, except sss.1.0, sss.1.0a,
sss-sat-1.0, vliw-sat-1.0, and vliw-sat-1.1 as they are too
easy,* and dIx-ig-unsat-2.0 as the download appeared to be
incomplete. This gives us 22 benchmark families with 251
instances totaling about 25GB in size—hence the CNF for-
mulas have an average size of about 100MB.

4 Results

Our experiments consist of running TINISAT with each of
the seven restart policies on the entire set of benchmarks.
For additional reference points, we have also run MiniSat
v1.14 [Eén and Sorensson, 2005] and Siege v4 [Ryan, 2004]
(given seed 123456789 for its random number generator) on
the same set of benchmarks. All our experiments were con-
ducted on a cluster of 16 AMD Athlon 64 processors running
at 2GHz with 2GB of RAM under SuSE Linux 9.3 Profes-
sional. A time limit of 2 hours was imposed on all runs of the

“These five families contain a total of 357 instances, which were
solved by Siege v4 in 428 seconds, TINISAT-L in 506 seconds, Min-
iSat v1.14 in 661 seconds, and Chaff IT in 1971 seconds.

solvers, allowing us to complete all the experiments in about
80 CPU days.

The overall results are shown in Table 1. In the second
and third columns we report for each benchmark family the
number of instances and their total size (in megabytes). In the
remaining columns we report the number of instances solved
by each solver for each benchmark family. The total number
of instances solved by each solver and the total time it spent
on all instances (including the 2 hours in case it did not solve
the instance) are reported in the two bottom rows.

The first observation we make from these results is that
restarts definitely helped: All the six nontrivial policies did
significantly better than the no-restarts policy. Even the least
effective of them allowed TINISAT to finish 2.43 days sooner
and solve 37 more instances than the no-restarts policy.

Our second observation is that Luby’s universal policy ap-
pears to outperform all the rest on this particular set of bench-
marks (albeit by only a small margin in some cases). Given
that the optimality of Luby’s policy was originally proved for
Las Vegas algorithms, this empirical result provides motiva-
tion for extending the theoretical study of Luby’s policy to
clause learning algorithms.

To give a more concrete picture of the impact of the restart
policy on the efficiency of the solver, we present detailed re-
sults in Tables 2 and 3 for two of the benchmark families
where TINISAT solved all instances using every policy. For
space constraints we only include three policies in each ta-
ble: the no-restarts policy and the worst and best of the rest.
Results on Siege are also included as a reference point.

An interesting observation to make from Tables 2 and 3 is
that the difference in performance between the restart poli-
cies becomes more substantial now that we look at individual
benchmark families, as opposed to the whole set in aggregate
(bottom two rows of Table 1). For example, policy L out-
performs policy M in running time by only a factor of 1.2
in Table 1, but a factor of 2.5 in Table 2. In fact we can
also see in Table 1 that none of the policies is consistently
best across all benchmark families (in terms of the number
of solved instances). While this explains the decreased dif-
ference between policies when results are aggregated, it also
suggests that substantial performance gains would be possible
if one were to use an appropriate dynamic policy that could
adapt to a given benchmark or benchmark family.

We would like to remind the reader here that all these ex-
periments with TINISAT were conducted with a fixed deci-
sion heuristic, learning method, and backtracking scheme. As
we have discussed, all these components work in combina-
tion with the restart policy to determine the efficiency of the
solver. Hence we view the design of better restart policies as
an opportunity among possibly many others of bringing about
a new generation of clause learning SAT solvers. Finally,
we note that detailed results of the experiments described in
this section, as well as TINISAT, can be downloaded from
http://rsise.anu.edu.au/"jinbo/tinisat/.

5 Related Work

While in this work we have focused on restart policies for
clause learning, in previous work researchers have studied



Table 1: Overall results on running TINISAT with seven restart policies: N = No restarts; M = (100, 1.5); Z = (700, 1); B =
(550, 1); G=(32, 1.1); S = (16000, 1); L = (Luby’s, unit=32). Cutoff was 2 hours.

Benchmark Number of Size Number of Instances Solved
Family ‘ Instances (MB) H N | M | Z | B | G | S | L | MiniSat | Siege
dIx-ig-unsat-1.0 32 4543 10 32 32 32 32 32 32 23 17
engine-unsat-1.0 10 62 7 7 8 7 7 7 7 7 7
fvp-sat.3.0 20 414 1 16 9 9 18 17 14 11 20
fvp-unsat.1.0 4 4 4 4 4 4 4 4 4 4 4
fvp-unsat.2.0 22 74 22 22 22 22 22 22 22 20 22
fvp-unsat.3.0 6 243 0 0 0 0 0 1 0 0 5
liveness-sat-1.0 10 1264 6 5 8 9 6 4 7 7 6
liveness-unsat-1.0 12 1134 4 4 4 4 4 4 4 4 4
liveness-unsat-2.0 9 537 3 3 3 3 3 3 3 3 3
npe-1.0 6 695 2 4 3 4 3 4 3 3 3
pipe-ooo-unsat-1.0 15 1452 6 7 7 7 7 7 7 3 8
pipe-ooo-unsat-1.1 14 775 7 8 8 8 8 8 8 3 9
pipe-sat-1.0 10 1662 9 6 9 10 5 9 10 6 10
pipe-sat-1.1 10 984 9 7 10 10 10 10 10 8 10
pipe-unsat-1.0 13 989 8 8 9 8 8 8 9 4 12
pipe-unsat-1.1 14 760 9 9 11 11 11 10 11 4 14
vliw-sat-2.0 9 1611 5 8 5 6 8 9 9 6 9
vliw-sat-2.1 10 3680 4 2 1 2 5 6 5 2 2
vliw-sat-4.0 10 3076 10 10 10 10 10 10 10 10 7
vliw-unsat-2.0 9 695 0 1 1 1 2 2 2 0 7
vliw-unsat-3.0 2 124 0 0 1 0 0 0 2 0 2
vliw-unsat-4.0 4 405 1 1 1 1 1 1 1 0 1

[ Total 251 [ 25180 ] 127 ] 164 [ 166 [ 168 [ 174 | 178 | 180 128 182 ]

| Total Time on All Instances (days) 11.28 | 885 | 849 | [ 800 | 780 [ 7.68 | 1145 | 745 |

Table 2: Detailed results for fvp-unsat-2.0, all unsatisfiable except 7pipe_bug. Abbreviations: Dec. (decisions), Con. (conflicts),

Res. (restarts). Times are in seconds. Three policies included: Policy N (no restarts) and the worst and best of the rest.

Benchmark Number of TINISAT-N TINISAT-M TINISAT-L Siege
’ Vars | Clauses Dec. | Con. |Res.|Time (s) Dec. | Con. |Res.|Time (s) Dec. | Con. | Res. | Time (s) Dec. | Con. | Time (s) ‘
2pipe 892 6695 3014 1170 0 0.04 3174 1287 4 0.05 2938 1066 16 0.04 4155 1741 0.06
2pipe-1_-000 834 7026 2509 1089 0 0.04 3147 1387 5 0.06 2766 1210 19 0.05 4541 2423 0.10
2pipe-2_000 925 8213 2895 1371 0 0.06 3085 1356 5 0.06 3133 1412 22 0.06 4552 2269 0.09
3pipe 2468 | 27533 19265 6566 0 0.54 22157 8404 9 0.74 20805 7599 86 0.72 25197 8718 0.53
3pipe-1_.000 | 2223 | 26561 11702 5455 0 0.45 12629 5245 8 0.44 15806 6257 65 0.59 16073 7620 0.49
3pipe-2_000 | 2400 | 29981 16688 7435 0 0.70 23334 9943 9 1.04 23500 | 10164 | 117 1.14 23858 9465 0.69
3pipe-3-000 | 2577 | 33270 22712 10182 0 1.09 27407 12487 10 1.37 23423 9038 | 100 1.05 26745 | 11997 1.01
4pipe 5237| 80213 69238 24060 0 5.46 95579 37319 12 8.49 80798 | 25041 | 250 6.17 98531 | 31725 4.03
4pipe_1_0oo0 | 4647 | 74554 44644 18764 0 3.72 55785 23445 11 5.35 56859 | 22797 | 220 5.06 59881 | 27800 3.51
4pipe-2_000 | 4941 | 82207 54429 22013 0 5.14 71958 29928 | 12 7.36 74383 | 26652 | 253 6.70 70755 | 30660 4.15
4pipe-3_000 | 5233 | 89473 65850 22820 0 5.74 88936 34633 12 9.50 76519 | 23385 227 6.22 82797 | 33116 4.93
4pipe4_000| 5525| 96480 73743 30316 0 8.33 169434 81833 14 35.62 88729 | 29030 | 254 8.17 90161 | 36656 5.53
Spipe 9471 | 195452 101530 18176 0 6.03 110712 14569 | 10 4.27 131655 | 14135| 126 4.67 139115 | 15618 2.58
Spipe-1_oo0 | 8441 | 187545 94343 30709 0 11.49 117321 37638 12 18.16 104141 | 31560 | 254 12.43 146601 | 58115 13.55
Spipe-2_000 | 8851 | 201796 97195 33725 0 13.58 140816 48862 13 29.24 123345 | 33414 | 268 15.02 145892 | 55019 13.60
Spipe_3-000 | 9267 | 215440 123283 33839 0 17.53 149626 48628 13 28.17 120410 | 30881 | 254 13.96 133506 | 47582 12.06
Spipe-4_0o00 | 9764 | 221405 || 216620 78339 0 52.23 || 265416 87930 | 15 56.29 || 236519 | 64407 | 509 35.57|| 254647 | 90128 23.14
Spipe_5_ooo0 | 10113 | 240892 116861 37552 0 17.99 141425 42796 | 13 24.41 121361 | 30269 | 254 15.50 150600 | 47137 12.47
6pipe 15800 | 394739 || 577706 | 208817 0| 273.60 (| 571806 | 184524 | 16| 192.17 || 453483 | 88171 | 640 73.44 || 518038 | 91997 28.77
6pipe_6-000 | 17064 | 545612 || 496762 | 124712 0| 181.56 || 463974 | 125891 15| 153.58 || 404756 | 85444 | 636 81.42 || 485418 | 146967 63.59
Tpipe 23910 | 751118 || 1188862 | 388233 0| 764.32|| 1168826 | 318819| 18| 497.61 876368 | 130092 | 998 | 171.05|| 997777 | 131085 59.19
7pipe_bug 24065 | 731850 || 166382 17509 0 13.89|| 542511 | 143273 16| 119.26 144616 | 14526| 131 10.27 || 282794 | 12309 4.21
[Total [[3566233 [ 1122852 0] 1383.53 || 4249058 | 1300107 | 252 1193.24 [ 3186313 | 686550 | 5699 | 4603 || 3761634 [ 900147 258.25 ]

Table 3: Detailed results for vliw-sat-4.0, all satisfiable. Abbreviations: Dec. (decisions), Con. (conflicts), Res. (restarts).
Times are in seconds. Three policies included: Policy N (no restarts) and the worst and best of the rest. Cutoff was 2 hours.

Benchmark Number of TINISAT-N TINISAT-S TINISAT-L Siege

Vars | Clauses Dec. | Con. |Res.| Time (s) Dec. | Con. |Res.|Time (s) Dec. | Con. |Res.|Time(s)|| Dec. | Con. | Time (s)
bugl 521188 | 13378641 || 9881446 | 604996 0] 219998 || 8521585| 49471 3] 242.00 (] 6064544 22613 | 220| 236.31||4138878|26364 154.52
bug2 521158 | 13378532|| 7680490 | 267252 0| 712.04|| 6189255| 17318 1| 118.74|| 6274425| 11959 125| 174.57(|3185190 | 16616 102.06
bug3 521046 | 13376161 || 4447142 2098 0 57.72|| 4447142 2098 0 57.75|| 3327664 2781 36 76.90 || 4460466 | 24509 153.75
bug4 520721 | 13348117 || 7670838 | 563100 0| 204531 6246054 | 43329 2| 229.49|| 5710694 | 16378 | 156| 187.37|/4092308 | 19896 132.98
bug5 520770 | 13380350 || 7754522 86586 0 582.81 || 7459833 | 29041 1| 190.47 || 4620905 7980 92| 133.09 - - -
bug6 521192 13378781 || 8808865 | 362411 0| 1246.53|| 7811661 | 44263 2| 21933 5449328 | 13250| 126| 160.90 ||4138295|37005 199.82
bug7 521147 | 13378010 || 7893893 | 595572 0| 1603.23|| 6125501 | 19414 1] 115.87| 4070162 8026 92| 120.43]|4008315|15148 103.39
bug8 521179 | 13378617 || 7793145| 340079 0| 1557751 6166611 | 38239 2| 216.89|| 4564989 | 10454 | 122| 151.55 - - -
bug9 521187 | 13378624 || 6045105 40574 0 289.25|| 6871992 46122 2| 284.25|| 3547174 5713 62 97.72 || 4475278 | 30692 190.22
bugl10 521182 |13378625|| 6935993 44236 0 252.06 || 8242265| 56847 3| 354.18|| 4681271 | 10683 | 123 | 150.14 - - -
[Total [[74911439] 2906904 ] 0] 10546.68 | 68081899 [ 346142 17] 2028.07 || 48311156 ] 109837 | 1154 1488.98 ] [ [11836.74]]




the use of restarts in combinatorial search algorithms. Fixed-
interval as well as dynamic restart policies, for example, were
studied in [Gomes et al., 1998; Kautz ef al., 2002] using a
randomized version of Satz [Li and Anbulagan, 1997], a SAT
solver based on pure DPLL search (without clause learning).
Another example is found in [Walsh, 1999], where a geomet-
ric policy was found to be particularly effective for search
problems that exhibit a “small world” topology.

These previous studies of restart policies were based on
the observation that for many combinatorial search prob-
lems, repeated runs of a randomized search algorithm on the
same problem instance (or, similarly, runs of a deterministic
search algorithm on random instances of a problem) exhibit
a “heavy-tailed” distribution [Gomes ef al., 1997], meaning
that any run has a nonnegligible probability of taking expo-
nentially longer than all previous runs that have been seen.
Intuitively, a restart policy can help combat this unpredictabil-
ity of search performance by cutting off runs before they take
too long in the hope that one of the future runs will succeed
quickly.

Interestingly, part of this opportunistic thinking appears
to remain valid in the context of clause learning, which as
we discussed performs resolution instead of search. After
all, one cannot always predict the performance of a clause
learning solver on a particular problem instance, either, given
its known performance on similar instances (for a quick re-
minder of this fact, see the performance of Siege in Table 3).
We believe, therefore, that the applicability of these previous
results to clause learning SAT solvers will be an interesting
topic for future work.

6 Conclusions

Through the design of a simple clause learning SAT solver,
we have established a new formulation of modern clause
learning where all aspects of the solver can be understood
as collectively serving the single purpose of guiding a reso-
lution process. This leads to an analytical argument for the
importance of the restart policy in clause learning, which we
studied empirically by comparing the performance of various
policies on a large number of challenging industrial bench-
marks. Our results indicate a substantial impact of the restart
policy on the efficiency of the clause learning solver. We view
this work as a step toward a better understanding of the role
played by restarts in clause learning, and hope that it will
motivate further work on the design of more effective restart
policies, particularly dynamic ones which we have not con-
sidered in this work.
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