Compound Monads in Specification Languages

Jeremy E.

Logic and Computation Program, NICTA

Australian National University,

Dawson

Automated Reasoning Group,
Canberra, ACT 0200, Aafix

http://users.rsise.anu.edu.au/~ jeremy/

Abstract

We consider the language of “extended subsitutions” irmglv
both angelic and demonic choice. For other related language
pressing program semantics the implicit model of compoiais
based on a combination of monads by a distributive law. Wevsho
how the model of computation underlying extended subsibgtis
based on a monad which, while not being a compound monad, ha
strong similarities to a compound monad based on a disirébut

law. We discuss these compound monads and monad morphism
between them. We have used the theorem prover Isabelle-to for

malise and machine-check our results.

Categoriesand Subject Descriptors F.3.1 LOGICS AND MEAN-
INGS OF PROGRAMSSpecifying and Verifying and Reasoning
about Programs—Logics of programs, Pre- and post-conditio
D.2.1 [SOFTWARE ENGINEERINGRequirements/Specifications—
Languages

General Terms Languages, Theory, Verification

Keywords specification languages, extended substitutions, com-
pound monads, distributive law for monads, generalisedtiub
tions, demonic choice, angelic choice

1. Introduction

In several papers Dunne has proposed specification langdiage
analysing (variously named) “computations”, given rulesdom-
bining these computations in various ways, and stated ameegr
results about them. These languages contain some colss$innit

lar to those found in Dijkstra’s guarded command languagg{D
stra 1976). Underlying each of these languages, whethdiciyp

or implicitly, is a notion of what a computation is, and foinse of
these we have used the Isabelle theorem prover to define Bunne
various operations in terms of the identified underlyingioroof
computation, and have proved that defining the operatiorkisn
way implies the definitions and results given by Dunne. Ig tiork

we used the fact that a compound monad underlies the model o
computation involved.

* National ICT Australia is funded by the Australian Govermt®Dept of
Communications, Information Technology and the Arts ardAhstralian
Research Council through Backing Australia’s Ability ahe iCT Centre
of Excellence program.

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

PLPV'07, October 5, 2007, Freiburg, Germany.
Copyright© 2007 ACM 978-1-59593-677-6/07/0010. . . $5.00

Dunne (2001) gave an account of general correctness (Jacobs
and Gries 1985), which combines the concepts of partiakcorr
ness and total correctness, arguing for its utility in asialy the
behaviour of programs. Calling the computations “abstcach-
mands”, he gave several basic abstract commands and aperato
for joining them, for which he gave rules in terms of weakéstral

Spreconditions and termination conditions, and many resatliout
these operators. In (Dawson 2004) we described an opesation
gerpretation of abstract commands equivalent to that aflilmand
Gries (1985), which used the construction of Plotkin (1976)

Similarly, Dunne (2002) considered the generalised substi
tions used in the B method, which is based on total correstries
(Dawson 2007b) we formalised the theory he gave, and theeper
tional model underlying it, using a similar approach to, ansome
cases the results of, (Dawson 2004). We compared this oqeaht
model with that of the theory of general correctness.

For both general correctness and total correctness we heed t
Isabelle/HOL theorem prover to define an operational modél a
prove that it implied the rules and results given by Dunnebdth
cases the operational model is based on a compound monad and
in both cases this compound monad can be explaimtdr (alia)
in terms of a distributive law for combining two monads (Band
Wells 1983,59.2).

Semantic models combining angelic and demonic non-detésmi
have been developed by Back and von Wright (1998), and Re-
witzky (2003), who described a model using binary multitielas,
which is developed further in (Martin et al. 2007), for cortgu
tions involving angelic and demonic non-determinism. Ira¢B
and von Wright 1998) and (Martin et al. 2007) these compaorati
are described in terms of a game between the angel and thexdemo
where the angel and the demon make “moves” to try to ensure
that the postconditon is or is not satisfied. Recently, DU2087)
defined an “extended substitution” language, which encesgm
the generalised substitutions, allowing for angelic caais well
as demonic choice, ie, choices which will be made to enstre, i

fpossible, that the postcondition is, or is not, satisfiedeydained
in §3.1 we would expect to see a monad underlying the model of
computation for this language. In this paper we show how fhe o
erational model we use (equivalent to the multirelation efpbr
this language is in fact based on a monad. We found that viide i
not a compound monad, it can be described using the conaagts a
results about joining two monads by a distributive law. kediein
proving that it is a monad, we were helped significantly byytog
and adapting the proofs of results relating to compound mi®na
based on a distributive law.

In this paper we describe this construction after surveyigy
role of compound monads based on distributive laws in theaspe
tional models for general and total correctness.

In §2 we discuss the operational models underlying each of
these theories. 1§3 we briefly introduce monads, and compound
monads. We then show how the theories of general correcamelss

total correctness are each based on a compound monad which iss either the tagionTerm or a member of the type, tagged with

based on a distributive law, and that one of these distxibuéiws
is also a monad morphism between these two monads.

In §4 we describe the construction of the monad underlying
the extended substitutions. This is not actually a compaonaodad
but it is based on equivalence classes of a structure rakeeal

the tagTerm. But we will generally write a type constructor such
asTorN or set befordts type argument. Thus the typeitcomes
TorN statg and the type of computations in this modektate —
set (TorN statg. Thus a computation which (from a given initial
state) can terminate in either statgor s. is represented by the

compound monad, and we describe how we used the results onoutcome sefTerm s1, Term s2}; if the computation can also fail

combining two monads by a distributive law to show that this
construction gives a compound monad.

We use the interactive theorem prover Isabelle/HOL. Idabel
is a framework based on intuitionistic typed higher-ordagid,
on which a variety of object logics can be built. We use the HOL
(“higher-order logic”) object logic, which is a classicatangly
typed higher-order logic, giving an object language whias h
strong similarities to the functional programming langestan-
dard ML and Haskell. In the logic, functions are total, fuant
equality is defined extensionally, and functions are notssarily
computable. All results referred to in this paper have beengul
using Isabelle.

2. The Operational Models

We describe the operational models. Firstly, we make a tavea
concerning the role of frames. In each case Dunne’s definitio
of a computation involves &ame which, loosely, is the set of
variables which “might” be affected. In this paper we ignfseanes
(equivalently, we assume the frame to be the set of all visah

the machine state). In fact this enables us to treat the machate
entirely as an abstract type.

In each case, a computation is modelled by a function from the
state type to a result type, which is different for each madealing
described the operational model, we showed in each casenthat
computations are refinement-equivalent (as defined by Dunute
ignoring frames) if and only if they correspond to the sanrefion
in the operational model.

2.1 The General Correctness Operational Model

Firstly, we describe the operational model of (Dawson 2004¢d
to describe “abstract commands” and general correctnassbs
and Gries (1985) (see also (Dunne 2001)) explain how, indise ¢
of a non-deterministic computation, weakest preconditiand to-
tal correctness do not distinguish a computation which birfgils
to terminate from one which (on a given input) may terminate
in a particular final state or may fail to terminate. On theeoth
hand, weakest liberal preconditions and partial corresstriail to
distinguish a computation which terminates in a given finates
from one which may do that or may fail to terminate. According
they develop the theory of general correctness, which distisd
guish each of these pairs of computations, and in which nmefémé
(as defined in (Dunne 2001)) means partial correctness neéine
andtotal correctness refinement. The computational modelikat
use underlying this theory is the following, suggested bgoBa
and Gries (1985): each computation (on a given initial tede
sults in (one of) a set cdutcomeswhere each outcome is either
non-termination, or termination in a particular final statben we
proved that two abstract commands are equivalent in general
rectness refinement if and only if they are the same functidhis
model, from states to sets of outcomes.

So we let an outcome be either the tgnTerm, indicating
non-termination, oerm s, indicating termination in the state
as expressed in Isabelle by

datatype o TorN = NonTerm | Term o

where o is a type variable, and, in Isabelle, a type constructor
follows its argument. This means that a value of the typBorN

to terminate, it is represented §¥erm s1, Term s2, NonTerm}.

2.2 The Total Correctness Operational Model

Subsequently, Dunne (2002) described generalised sutiysti,
based on the B method, in which only total correctness istef@st.
So we want to consider computations equal if they are ecprival
in total correctness refinement: we do not want to distingais
computation which may terminate or not (on a particulariahit
state) from one which will not terminate. So here the model of
computation we want is that a computation is a function which
given an initial state, returns either possible non-teatiom, or
guaranteed termination, in (one of) a set of final states. Wea t
define the typecres (“total correctness result”) to b8orN (set
statg, that is, eitheNonTerm, meaning possible non-termination,
or Term S, termination in (one of) a s&t of states. So we define the
weakest precondition functioi®], where[C] @ s is the condition
that command”, when executed in state will terminate in a state
satisfying the predicaté.

[C1Qs=(3S. VxeS. Q)N (Cs=TermS))

Then we define the total correctness refinement relatign
accordingly, whergl4d] Q — [B] Q is an abbreviation for
Vs. [A] Q s = [B] Q s.

AL B=(VQ.[A]Q — [B] Q)

This definition of refinemen;. is as in (Dunne 2002§7), but
ignoring frames. Then we proved that two generalised sultisins
are equivalent in total correctness refinement that is, tiaey the
same weakest precondition function, if and only if they dre t
same when considered as functions in this computationakemod
Equivalently, the weakest precondition function is inpeetthat is,

if [C] Q= [C"] Q,thenC = (C".

In this model the two computations mentioned at the end of
§2.1 are represented by the resufesrm{si, s2} and NonTerm.
For the second of these, the representationTerm reflects the
fact that, in total correctness, the computation is indgiishable
from one which must fail to terminate: they both fail to sitiany
postcondition.

2.3 The Chorus Angelorum Operational Model

Dunne (2007) notes that conventional program analysisiiago
demonic choice: we want a non-deterministic program teSaitis
postcondition, regardless of what choice the demon (whaoyis t
ing to ensure that the postcondition is not satisfied) makies.
framework of computations called “extended substitutiomegolv-

ing both demonic and angelic choice, is based on the underlyi
computational model of Rewitzky (2003) which is expressed i
terms of up-closed binary multirelations. We describe thign
equivalent way: a computation is a function which, givenratial
state, returns a s& of sets of final states. The meaning of this is
that the angel will choose on#, € S, of these sets, and the demon
will choose one final state from that chosen sef. We define the
weakest precondition function accordingly:

[C1Qs=(3U e€Cs. (YueU. Qu))

This reflects that the angel tries to make a chaéicerhich defeats
the demon, who in turn tries to make a choicsom U which fails
the postconditiorn).

But considering a resulf : set set stateif S O S for
S’, S € 8, then the angel could always chooSeather thanS’
to limit the demon'’s choice. So it is enough to consider orbuits
S which, as sets of sets, are “up-closed”, that is, wher§; i S
andS € SthenS’ € S; under this restriction we then find that two
extended substitions which are refinement-equivalenhéee the
same weakest precondition function) are represented byaime
function in this computational model.

3. The Monads used in these Models
3.1 Monads

As discovered by Moggi (1989), monads (long known in catggor
theory) are useful for representing the structure of a cdatjmn.

To define a monad/, we need to define the unit and extension
functions unit and ext, of the types shown, and show that they
satisfy the following rules required for a monad, whéfeis a type
constructor, egsetor TorN.

unit: « - Ma
ext: (¢ —» Mp) - (Ma — Mp)

extfounit= f 1)
ext unit= id (2)
ext(extg o f) = extgoext f 3)

We defineB ® A = ext B o A, and this representsA ; B), the
sequencing of computation8 and A, since ext B models the
action of computatiorB on the result of a previous computation.
The unit function models the computation which does nothing
(skip. So then rules (1) to (3) give us the properties (4) to (6). We
would expect these properties to hold in a model of compnati
since they say that the sequencing operation is associatidghat
the skipcomputation is its identity. These properties show that we
have a category, in which the objects are types, an arrow from
to 8 is a function of typex — Mg, the identity arrow for object

« is the functionunit : « — M« and composition is given by.
This category is called the Kleisli category df, IC(M). We can
write (3) as (7), and (2) and (7) also show tkatis a functor from
KC(M) to the basic category of types and functions.

foOunit=f 4)
unit® f = f (5)
ho(gof)=(hogof (6)
ext(g® f) =extgoext f @)

The non-termination monad has unit, map, join and extension
functions:

unitnt s = Term s
mapnt f NonTerm = NonTerm
mapnt f (Term s) = Term (f s)
join_nt (Term NonTerm) = join_ntNonTerm = NonTerm
join_nt (Term (Term f)) = Term f

extnt f NonTerm = NonTerm
extnt f (Terms) = f s

The set monad has unit, map, join and extension functions
unitss = {s} jonsA=JA
mapsfS={fs|se€S} extsfS=U,csf5

Thus the non-termination monad gives a model where a compu-
tation either terminates in a new state, or fails to ternginahd the
set monad models non-deterministic (but necessarily textimg)
computations.

3.2 Compound Monads

Given that each of the type constructdisand N, with their unit
and extension functions, is a monad, it does not follow, hare
that M N« (relative toa) is a monad. Yet, i§2.1 andg2.2, we have
found such combination of type constructors arise natyalinod-
elling programs. There are several seemingly distinct @ggres
to constructing a monad out of two simpler monads; see famexa
ple (Liang et al. 1995§7.3), (Hyland et al. 2006). In some cases,
several of these constructions may be applicable. Thig poufis-
cussed further ig5. We use our results in (Dawson 2007a), which
develop those of Jones and Duponcheel (1993), and areyclesel
lated to the distributive law of Barr and Wells (1988.2). We
describe how those results show that the non-terminationacho
and the set monad can be composed in both waysetéTorN)
andTorN (seta) to form compound monads.

As in (Jones and Duponcheel 1993), we consider the composi-
tion of two monads\M and N, so the compound monadic type is
M Na. We writeextys v, €xtay andexty for the extension functions
of MN, M andN, etc.

To define the compound monad, we need the funatigy v,
which “extends” a functionf from a “smaller” domaina, to a
“larger” one, MNa. So we use a “partial extension” function
which does part of this job:

extyn : (¢ = MNB) - (MNa — MNp)
pext: (&« - MNB) — (Na — MNp)
The following rules and definitions are sufficient to defineoane

pound monad using such a functipext Note that in view of (12),
(10) and (11) are equivalent, and that (9) and (11) give pieatis

Two well-known examples of monads used in this paper are a functor fromC(MN) to IC(M). (In fact, unitys v andpextare

the “non-termination” monad (known under various nameshsuc
as “error monad” or “exception monad”), and the set monad. In
each case the unit function turns a simple state into the fafren
computation result, and the extension function turns a ctatipn
acting on a simple initial state into a computation actingtioa
result of a previous computation. Also associated with eachad

are functionsmap and join of the types shown, and in fact a
monad can alternatively be characterised by seven ruledving

the functionaunit, mapandjoin (see (Wadler 1992)).

join: MMa — Ma
map: (a — B) — (Ma — Mp)
extf =joinomapf

the unit and extension functions of a monadhe categoryC(M),
whose Kleisli category is alsG@(M N), see (Dawson 2007a)).

pextf o unity = f (8)
pext unity, x = unitys 9)
pext(extun go f) = extun g o pext f (10)
pext(g Omn f) = pextg O pext f (12)
extun g = exty (pextg) (12)

unitaysy = unitys o unity (13)

Relation to distributive laws and compatible monads

Here we briefly outline the relationships between our swfiti
conditions for compound monads and other work in the liteat

Jones and Duponcheel (1993) give two conditions, J(1) and
J(2), which compound monads may satisfy. Under the reat®mnab
assumptions thatnity; x = unitaz ounity andmap,, ,, = map,, o
map,, the compound monads that arise from a funcpentare
those that satisfy J(1). Jones & Duponcheel use a fungtrod,
wherepextf = prod o map, f, and give conditions for defining a
compound monad usingrod. The following are equivalent to J(1)
and J(2) respectively.

J(1y
J2y

exty join,,y = join,,n ojoin,,
extyn (map,, joiny) = map,, joiny ojoin,,

The compound monads that satisfy both J(1) and J(2) are those

which arise from a functioswap: NMa — M N« satisfying
conditions S(1) to S(4) of (Jones and Duponcheel 1993), show
below. Compound monads do not necessarily arise from such a
function swap or from a functionpextas above, though it seems
that in most cases they do so. If ssyap= pext(map,, unity).
Conditions S(1) to S(4) of (Jones and Duponcheel 1993), show
below, on a functionswap : NMa — MNa are necessary
and sufficient to define a compound monad in termsvedip The
statement of S(4) uses two further functigmed anddorp defined
in terms ofswap

prod: NM Naoa— M N «
dorp: M NMa— MN «
prod = map,, join,, o swap
dorp = extys swap

swapo mapy (map,,; f) = map,,;y f o swap S(1)
swapo unity = map,, unity S(2)

swapo map, unita; = unitas S(3)
prod o map,, dorp = dorpo prod S(4)

In fact the functionswap of (Jones and Duponcheel 1993) is
the distributive law\ of (Barr and Wells 1983¢9.2). In this pa-
per we use the terminology and results of Jones and Dupoihchee
(1993) rather than the text (Barr and Wells 1983) becausesiand
Duponcheel (1993) also descripmd anddorp, which we use. We
now relate (Jones and Duponcheel 1993) to (Barr and Well3,198
§9.2), but this is not used in the remainder of this paper.

We have shown in (Dawson 2007a) that conditions J(1) and J(2)
match conditions (C1) to (C5) of (Barr and Wells 1989,2), for
compatibility of monadsV, M andM N. These are the conditions
on a compound monad which are necessary and sufficient for it t
be definable by a distributive law, that is, bgwapfunction. Con-
ditions (C2) and (C5) (which are in fact equivalent) are egjgint
to J(2) of (Jones and Duponcheel 1993), and conditions (68) a
(C4) (which are also equivalent) are equivalent to J(1) @fié3 and
Duponcheel 1993). Finally, condition (C1) is (13) above.

We have also shown in (Dawson 2007a) that conditions S(1)
to S(4) correspond to conditions (D1) to (D4) of (Barr and M/el
1983,§9.2) defining a distributive law. S(1) simply says tsatap
is a natural transformation, S(2) and S(3) are (D2) and (BdJl,
in the presence of these, S(4) is equivalent to (D3) and (D4).

3.3 The General Correctness Compound Monad

Here we need to show thaet(TorN «) is a monad; in fact, for
any monadM, M (TorN «) is a monad (as is well-known, see,
eg, (Liang et al. 19957.3), (Hyland et al. 2006)). For an arbitrary
monad) we define the compound monadd (TorN «) by

pextf (Terma) = f a
pextf NonTerm = unitys NonTerm

(14)
(15)

We also definaunit and ext for the compound monad by (13)
and (12). Then we prove thgextrules (8) to (10) as follows. (8) is

just (14). From (14) and (15), we get (9) using (13), and (EMal
(1) for M and (12).

In fact the general correctness monad can be defined using
swap that is, it satisfies J(1) and J(2). Then the functswapis
given by the ruleswap= pext(map,, unity), so with M the set
monad we have

swapNonTerm = unity; NonTerm = {NonTerm}
swap(Term S) = map,; Term S = {Term s |s € S}

We proved in Isabelle thatext defined in this way satisfies
rules (8) to (10) as outlined above, and we also proved Svaip
satisfies the conditions S(1) to S(4), and seapis a distribu-
tive law for these monads. These Isabelle proofs are availab
at http://users.rsise.anu.edu.au/~ jeremy/isabelle/
fgc/Dmng. {thy,ML}. Henceforth we will refer to the functions
defined for the general correctness monadpestgc, swapgc,
extgc, and so on.

3.4 The Total Correctness Compound Monad

The typetcres= TorN (set statg relative to the typestate with
the unit and extension functions defined below, is also a mhaha
total correctnessnonad.

To prove that the total correctness monad is in fact a monad, w
now give the definitions for our particular monads = setand
M = TorN.

: State— tcres
: set tcres— tcres
pexttc : (state— tcres) — set state— tcres
exttc : (state— tcres — tcres— tcres
unittc s = Term {s}
prod.tc 7 = NonTerm
prodtc {Term s|s € S} = Term (U S)
pexttc A S = proditc {A s|s € S}
exttc A T = extnt (pexttc A) T’

unit_tc
prod_tc

if NonTerm € 7

whereextntis the extension function of tHeorN monad (se§3.1).
We then proved, in Isabelle, th@brN (set«) is a compound
monad, by proving rules (8) to (10), noting that (12) and (b8pw
directly from our definitions.
In fact the total correctness monad can be defined usivap
In this caseM is the TorN monad, andV is the set monad, and
swapis a function

swaptc : set(TorN o) — TorN (seta)

swaptc S = NonTerm if NonTerm € S
swaptc {Term s|s € S} = Term S

Our Isabelle proofs included the conditions S(1) to S(4) aa
we have also shown thatvaptc is a distributive law for the mon-
ads. These Isabelle proofs are availabletatp: //users.rsise.
anu.edu.au/~jeremy/isabelle/fgc/Dtc.{thy,ML}.

Often, where two monads can be composed to form another
monad, the construction depends on one of them, and the other
may be arbitrary. Thus, as discussed®3, theTorN monad can
be composed with any other monad to give a compound monad
M (ToxN a), which gave theutcome setonad. In this case we
have shown that the typBorN (seta), with unit_tc andexttc as
defined, is a monad, but we have not been able to give a more
general construction for unit and extension functions thilsk
for an arbitrary monad/, eitherTorN (M «) or M (seta) as
a monad.

3.5 Relating the general correctness and total correctness
monads

The functionswaptc : set(TorN o) — TorN (seto) is also

a monad morphisnfrom the general correctness monad to the
total correctness monad. We have the following results,clwvhi
characterise a monad morphism:

unit_tc a = swaptc (unitgca)
exttc (swaptco f) (swaptc x) = swaptc (extgc f z)

Since this monad morphism is surjective, we could use the fac
that the general correctness monad satisfies the monadoge®
an alternative proof to show that the total correctness mhahso
satisfies them.

The definition ofswaptc reflects the fact that in the general
correctness framework (the abstract command languagehpLco
tation (on a particular given input) may non-deteminigdtjcaither
terminate or not; in total correctness such a computationtitat
input) does not satisfy any postcondition, and so is egentaio a
computation which simply does not terminate.

We note that the definitions of many generalised substitutio
operations may be obtained by translation from the defimstim
(Dawson 2004) for abstract commands. Indeed, forcthaicetc
function (see below), some results were more easily progatyu
the following translation fronthoicegc of the general correctness
model:choicetc C s = swaptc (choicegc A s), for any set4 of
abstract commands which gives the generalised substitdide,
such thaC = {swaptc A| A € A}.

3.6 Definition of Commands

Dunne (2002) then defines a number of substitutions and tipesa
on them, by giving their weakest preconditions and frames.

In (Dawson 2007b) we give operational definitions for the-gen
eralised substitutions defined by Dunne (2002), and shatttibae
definitions correspond. For example, sequencing, defin&libye
as[A; B] Q = [B] (JA]Q), is represented by the compositian
in the Kleisli category. Then Dunne’s definition gives araiative
proof (once we have proved that the weakest preconditioctifom
is injective) of the associativity of sequencing, and s®obne of
the key properties of monads.

choice

Dunne (2002§3.1) defines a binary operataér; AOB is a com-
putation which can choose between two computatidnand B.
Again, Dunne defines this by giving its weakest precondijtion
[AOB]Q = [A]Q A [B]Q. This is a special case of choice
among an arbitrary set of commands. In the general correstne
setting this was easy to definehoicegc C s = Ucec C s.In
the total correctness setting, wheieoicetc C can fail to termi-
nate if anyC € C can fail to terminate, we definehoicetc by:
choicetc C s = pexttc (AC. C s) C.

Note how this definition uses polymorphism: when we use
pexttc (indirectly) in defining sequencing of computations, the
typesa andg are both the state type But in this use opext « is
the type of computations.

pext : (a« — TorN (set3)) — seta — TorN (setg)
Expanding the definition shows that:

if NonTerm € {C s|C € C} thenchoicetc C s = NonTerm

if {Cs|CeC}={TermSc|C € C},
thenchoicetc C s = Tern ([Jo e Sc)

4. The Chorus Angelorum Monad

In §2.3 we described a model of the computation as a function
returning an up-closed set of sets of final states. As Dunde7(2
§5.2) explains, there is an alternative model, where a coatiput
returns a set of sets of states, of which the demon first clsamse

set of states, from which the angel chooses one state.

We define a functiorswapuc which turns an angel-chooses-
first result into the corresponding demon-chooses-firstiltie
swaps the order of the choices of the demon and the angel. As we
shall see, it also has a role similar to that of weapfunction (the
distributive law) discussed i§8.2. We also define thep-closureof
a set of sets.

swapuc A ={B|VAe€ A BNA#{}}
upcl A={A"|3Ac A AC A"}

We then have the following results, which suggest that we
should work on equivalence classes of sets of sets of statese
A = A iff up.cl A = upcl A’, and each equivalence class has
exactly one up-closed member.

LEMMA 1. With upcl and swapuc as defined above,

up-cl (upcl A) = upcl A

swapuc (swapuc.A) = upcl A
swapuc (up.cl A) = swapuc A
up.cl (swapuc.A) = swapuc.A

We cannot define a monad based on ské(set) type con-
structor, but we can define a monad on this set of equivalence
classes. As such it is not a compound monad, but in obtaiting i
proceed much as though we were combining 4eemonad with
itself usingswapuc as a distributive law. The results described in
this section have been proved in Isabelletp: //users.rsise.
anu.edu.au/~jeremy/isabelle/monad/Chorus.{thy,ML}
andhttp://users.rsise.anu.edu.au/~ jeremy/isabelle/
fgc/{Dch,Dch_tc}.{thy,ML}.

Firstly we list some functions and their types, as used in¢3o
and Duponcheel 1993).

on: MNMNa—-MNa prod: NMNa— MN «
dorp: M NMa— MN « swap: N M a— M N «

Here both the type constructof® and N are set but we can
intuitively understand these functions, and some of thelteabout
them, by thinking of the type constructdd as representing a set
from which the angel is to choose, antlas representing a set from
which the demon is to choose. The final result is to be a settsf se
from which the angel is to choose first, and then the demon.

Imitating the procedure for defininget(seta) as a compound
monad using the functioswapuc, we try to prove S(1) to S(4):
we cannot, but we can prove them modulo up-closure. We proved
the following results, wherdorp_uc andprod_uc are defined from
swapuc, following (Jones and Duponcheel 1993):

dorp_uc = join_s o map.s swapuc
prod_uc = maps join.s o swapuc

LEMMA 2. With dorpuc and produc defined from swapc as
shown,

swapuco maps (maps f) =
up_cl o maps (maps f) o swapuc S(1)

swapuc A = upcl (maps units A) S(2)

swapuc (maps units A) = upcl A S(3)
prod_uc o maps dorpuc = dorp_uco prod_.uc S(4)
swapuco maps join.s = dorp_uco swapuc (D3)
swapuc o join_s = prod_.uco maps swapuc (D4)

That is, we have proved S(1) to S(3) modulo up-closure, aAjl S(
The proof of S(4) is difficult, and uses (equivalents of) (28
(D4) of Barr and Wells (19839.2).

Then, as in (Jones and Duponcheel 1993), we d@ineuc by
(17), or equivalently (18). Defininghap.ucin the obvious way by
(16), we defineextuc and ®.. from join_uc in the usual way by
(19) and (21), and alspextuc from prod_uc by (22). We can then
prove (20) and (23). We also give the equivalent literal ezpions
for extuc andpextuc.

mapuc f = maps (maps f) (16)
join_uc = join_s o maps prod.uc a7
join_uc = maps join.s o dorp_uc (18)

extuc f = join_uc o mapuc f (29)
extuc = exts o pextuc (20)

g Oue f =extucgo f (21)
pextuc f = prod_uc o maps f (22)
prod.uc A = (N{maps upcl A} (23)
pextuc f A= {B|VYa€ A.3B' € fa. B' C B} (24)

extucf A={B|3Ac A Vac A.3B € fa. B’ C B}
(25)

The proofs of the monad rules feet (seta) (again, some
equalities only modulo up-closure: compare the resultsvbelith
(1) to (3))) proceed as normal from S(1) to S(4) (see, eggdand
Duponcheel 1993) or (Dawson 2007a)).

LEMMA 3. With join.uc defined by17) or equivalently(18), and
extuc by(19)

extuc f {{z}} = up.cl (f {{z}}) (26)
extuc (Az. {{z}}) = upcl 27)
extuc (extucg o f) = extucg o extuc f (28)

The Monad Functions onUp-closed Sets of Sets

Finally we need to show that these results give a monad orethe s
of equivalence classes, which requires several lemmasoung
the behaviour oéxtuc and other functions on different but “equiv-
alent” arguments. Isabellefgpe definitiorfacility was useful here,
not least in ensuring that no necessary part of the proof wes o
looked. We define the typgca« (“up-closed abstract”) as the type
of up-closed sets of sets (a representative of each of theasdence
classes). The set of members of the new type is isomorphito,
distinct from, the set of up-closed sets of sets.

In Isabelle, defining a new type (the “abstract” type) isomor-
phic to a setS : setp causes the creation of an abstraction func-
tion Abs: p — o and a representation functidRep: o — p,
such thatAbsand Repare mutually inverse bijections betweén
and the set of all values of type. Note that the domain ofbs
is the typep, but that nothing is said about the values it takes out-
side the sef. Thus we get abstraction and representation functions
Repuca: ucaa — set(seta) andAbsuca: set(seta) — ucaa.

We define an alternative abstraction functiemAbs of the same
type asAbsucabut whose action is specified, in the natural way,
on non-upclosed setac_.Abs.4 = Absuca (up-cl A).

Then we define the monad functionsit_uca and extuca for

theucaa type; we also definewapon this type.

DEFINITION 4.

unitucaa = uc.Abs{{a}} (29)
extuca f A = uc.Abs(extuc (Repuca o f) (Repuca.A))
(30)

swapuca.A = uc_Abs(swapuc (Repuca.4)) (31)

We then used (26) to (28) about the typet (set«) to prove the
monad rules (1) to (3) for the typeca.

THEOREM1. The type constructor uca, with unit and extension
functions unituca and extuca, is a monad.

Changing the Interpretation ; the Conjugate of a Substitution

The result of a computation might equally well be modellechas
set of sets from which the demon is to choose first, using thesa
monad, but translating the result bwapuc. We showed that the
function swapuca (Definition 4, (31)) is a monad morphism. We
also proved some results such @gapuc o prod.uc = dorp_uc
which would involve a type error it/ and N were not the same
monad.

Dunne also defines the conjugate of a substitution (Dunn&,200
§3.4): [T°]Q = —[T]—-Q. This also amounts to switching the
interpretation of the set-of-sets result from angel-cesef#st to
demon-chooses-first. Thus we can obtain it by applgingpucto
the result of a computation, so we provetl s = swapuca(T s).

A Link to the Continuation Monad

We can obtain an interesting link to the continuation monad
(Wadler 1992 §3.1). We define an “evaluation functioevaluc :
set(seta) — (a — bool) — bool, whereevaluc A P tells
whether the postconditiof® is satisfied when angel and demon
have made their choices from. (The weakest precondition func-
tion could then be defined in terms efaluc). Naturally it is
defined byevaluc B P = 3B € B. Vb € B. P b, and so has
the property thaevaluc B = evaluc (up.cl B). Thus also, if3

is up-closed and’ is the set corresponding to predica®e then
we haveevaluc B P’ = P € B. This shows that the model we
describe is also essentially that of the choice semantiBack and
von Wright (1998, Ch 15).

Now the typeK « (e« — bool) — bool is the type of
the continuation monad< (Wadler 1992,63.1), when the fixed
“answer” type isbool. The compositior® k in the Kleisli category
for K can be given simply in terms of the combinator:

Cfzy=fyx 9Ok f=C(CfoCyg)

The functionsBall and Bex of type seta — K «, used in
Isabelle to express quantification over a given 8&ttl S P =
Vs € S. P s, can be used to express the way the functions above
involve the demonic and angelic choices. We find #nadluc =
Ball ®x Bexand evaluc o swapuc = Bex®x Ball. Further,
there is an obvious isomorphisfi o — set(seta), which we
call K_to_SS Thus up.cl K_to_SS o evaluc. Then we find
these results which represent the sequence of angelic amohite
choices involved in these functions.

up_cl = K_to_SSo (Ball ®x Bex

join_uc = K_to_SSo (Ball ©x Bex®x Ball 0k BexX
dorp_uc = K_to_SSo (Bex®x Ball ©x Bex
prod.uc = K_to_SSo (Ball ®x Bex®x Ball)

(

(

swapuc = K_to_SSo (Bex® x Ball)
extuc f = K_to_SSo (Ball ©x (Bexo f) ®x Ball ©x Bex
pextuc f = K_to_.SSo (Ball ©x (Bexo f) ©x Ball)

Under the isomorphisrK_to_SS up-closed sets correspond to
monotoniccontinuations, which we define by

monk c=VP Q. (Vs. Ps=Qs)=cP=cQ

Then we find thaK_to_SSandevaluc are mutually inverse bijec-
tions between the up-closed families of sets and the moiwton
continuations. It follows that there is a bijective corresgence
between functiong’ : a« — K (which always return monotonic
continuations, and functionS : a — set(set3) which always

return up-closed families. From this we can get the bijectiorre-
spondence of Rewitzky (2003) between monotonic predicatest
formersF : (8 — bool) — (o — bool) and up-closed binary
multirelations.

Trivially, Ball S andBex S are monotonic, and als®@x pre-
serves monotonicity in this sense:

Va. mona (f a) AVb. monax (g b) = Vx. monas ((9 Ok f))
Similar to the results above is the following:
f Oue g = Kt0_SSo ((evaluco f) Ok (evaluco g))
This leads to an alternative proof of the associativityafic, for

f Ouec (g Ouc h)
= K_to_SSo ((evaluco f)Ox
(evaluco (K_to_SSo ((evaluco g) ®x (evaluco h)))))
= K_to_SSo ((evaluco f) ®k ((evaluco g) ©®k (evalLuco h)))

whereevaluc o K_to_SSis the identity on its argument, which is
monotonic. Thus the associativity @f,. follows from that of®© « .

Angelic and Demonic Choice

Dunne (2007) defines angelic (demonic) choice by givingrthei
weakest preconditions, which are just the disjunctionsj(otc-
tions) of the preconditions of the individual substitusorn the
case of each of these, applying a set of computations to &alini
state gives a set of sets of sets of final states, ofsgpeset(seto)).

In the case of angelic choice, the angel makes the first twizeso
and the demon the final choice, so for angelic choice we simply
take the union of the results of the individual computatidfer
demonic choice, the consecutive choices are made by therdemo
the angel and the demon again. This is exactly as fopthd_uc
function. The definitions are as follows, but we omit the fiimrs
uc_AbsandRepucabetween theet(seta) and theucac types.

dem B s =produc{B s|B € B} = pextuc(AB. B s) B
ang Bs=J{Bs|B¢€ B}
So these results are analogous to those above:
up_clo |J = |Jomaps upcl = Kto_.SSo (Ball ®x Bex®x Bex
(N omaps upcl = K to_SSo (Ball ©x Bex®x Ball)

Sequencing and Choice

We proved the following results about the distribution oframic
or angelic choice over sequencing, where the notation eaple-
monic or angelic choice of a set of commands.

dem B; C =dem (B;C) ang B; C = ang (B;C)

BEB BeB
Note that these results hold because in either case themstis fi
choice of B € B, and then execution ¢B ; C'). The similar results
for choice ofC, ie, B; (demcec C) = demcec(B;C) do not
hold, since that would involve reordering the demonic ce@tC
with the choices involved in executing.

The proofs of these results use (32) and (33) (which is of the
form of (10)); note however that in this use of thegnis C, while
f is not a command, but rather the functia®. B s, for an initial
states.

exts (extucg o f) = extucg o exts f
pextuc (extucg o f) = extucg o pextuc f

(32)
(33)
Sinceextuc = extso pextuc, (32) and (33) combine to give (28),

of the form of (3), which is the significant (usually non-tef) one
among the monad rules.

A Monad Morphism from the Total Correctness Monad

As Dunne points out, the language of extended substitugoRs
compasses that of generalised substitutions.

We defined the inclusion mappingto_ch, of typeTorN (seta) —
uca «, as shown below (and as suggested by the discussion in
(Dunne 2007§5.185.2))

tc_to_ch (Term S) = uc_Abs{S}
tc_to_chNonTerm = uc_Abs{}

(34)
(35)

For the resultNonTerm, which fails every postcondition, we
get the corresponding resyl}, because from it the angel cannot
choose a set of results all of which satisfy even the positond
true. At the other extreme is the resuierm {}, which satisfies
every postcondition. Corresponding to it we have a reswoitnfr
which the angel can choosg, from which the demon cannot
choose any which will fail to satisfy even the postconditialse

We proved that this mapping is a monad morphism. Since this
mapping isinjective it gives an alternative proof that the total cor-
rectness monad is in fact a monad. This is an interestingastrtb
the point noted ir3.5, where aurjectivemappingfrom the gen-
eral correctness monad into the tyfoees « provided yet another
proof that the total correctness monad is in fact a monad.

5. Conclusion; Further Work

We have shown how several models of computation arising natu
rally in the study of program semantics are based on monadshw
can be shown to be monads using results on combining two nsonad
using a distributive law.

For the general correctness monad we used a well-known gen-
eral construction combining the errofoN) monad withany
monad)M . The total correctness monad used a different construc-
tion, which seems not to be similarly generalisable. FoiGherus
Angelorum monad, having combined the set monad with itaedf,
needed to take equivalence classes of the result.

In the first two cases the combined monad arises from a dis-
tributive law for monads, and in the third case, the distilalaw
equations are satisfied modulo the equivalence relatichidrcase
the proofs that we have a monad were helped significantly by ba
ing our approach on the results of (Barr and Wells 1983) amaed
and Duponcheel 1993) on compound monads based on a distribu-
tive law. (Trying to prove equation (28) using (25) as a défni
is not recommended!) We also found some monad morphisms re-
lating these monads: in some cases the distributive lawthare-
selves monad morphisms.

All the discussion of compound monads in this paper focussed
on distributive laws. There are several monad transformers
constructions which produce compound monads, such as those
described by Liang et al. (1995). The theory underlying ¢hes
has been analysed, for example by Hyland et al. (2006), who
give several general constructions, dealing with arhjtcategories
(such asv—Cpo) rather than just the category of sets. While all
our work (and in particular, our Isabelle proofs) are, faling
(Jacobs and Gries 1985) and (Dunne 2007), in terms of sets, it
would be interesting to investigate whether the Chorus forgen
operational model and monad can be extended in this way tad@ mo
general category tha®et and whether any of the constructions for
a compound monad, other than the distributive law, can ailyil
be applied to that situation.

References

Ralph-Johan Back and Joakim von WrigtRefinement Calculus: A Sys-
tematic Introduction Graduate Texts in Computer Science, Springer,
1998. URL http://crest.cs.abo.fi/publications/public/
1998/Ref inementCalculusBook. pdf.

Michael Barr and Charles Well§oposes, Triples and TheorieSpringer-
Verlag, 1983. URLhttp://www.cwru.edu/artsci/math/wells/
pub/ttt.html.

Jeremy E Dawson. Compound monads and the Kleisli categorg- U
published note, 2007a. URhttp://users.rsise.anu.edu.au/
~jeremy/pubs/cmkc/.

Jeremy E Dawson. Formalising general correctness. Cémputing:
The Australasian Theory Symposiwnlume ENTCS 91, pages 21-42,
2004. URLhttp://www.elsevier.com/locate/entcs.

Jeremy E Dawson. Formalising generalised substitutions.Theorem
Proving in Higher-Order Logicspage to appear, 2007b. URittp:
//users.rsise.anu.edu.au/"~ jeremy/pubs/fgc/fgs/.

Edsger W Dijkstra.A Discipline of Programming Prentice-Hall Interna-
tional, 1976.

Steve Dunne. Abstract commands: A uniform notation for gjgations
and implementations. I@omputing: The Australasian Theory Sympo-
sium volume ENTCS 42, pages 104-123, 2001. URltp://www.
elsevier.com/locate/entcs.

Steve Dunne. Chorus angelorum. Bn2007: Formal Specification and
Development in Bvolume LNCS 4355, pages 19-33. Springer, 2007.

Steve Dunne. A theory of generalised substitutions-oimmal Specification
and Development in Z and B, (ZB 2002plume LNCS 2272, pages
270-290. Springer, 2002.

Martin Hyland, Gordon D Plotkin, and John A Power. Combineffgcts:
Sum and tensoiTheor. Comput. S¢i357:70-99, 2006.

Dean Jacobs and David Gries. General correctness: A uiutficet partial
and total correctnes#\cta Informatica 22:67-83, 1985.

Mark P Jones and Luc Duponcheel. Composing monads. TetlRepart
YALEU/DCS/RR-1004, Yale University, 1993.

Sheng Liang, Paul Hudak, and Mark P Jones. Monad transferame
modular interpreters. IIBymposium on Principles of Programming
Languages (POPL'95pages 333-343, 1995.

Clare E Martin, Sharon A Curtis, and Ingrid Rewitzky. Modwl angelic
and demonic nondeterminism with multirelation&ci. Comput. Pro-
gram, 65:140-158, 2007.

Eugenio Moggi. Computational lambda-calculus and mondwalsSympo-
sium on Logic in Computer Science (LICEEE, 1989.

Gordon D Plotkin. A powerdomain constructio®IAM J. Computing5:
452-487, 1976.

Ingrid Rewitzky. Binary multirelations. IimTheory and Applications of
Relational Structures as Knowledge Instruments 20@%ume LNCS
2929, pages 256-271. Springer, 2003.

Philip Wadler. The essence of functional programmingSymposium on
Principles of Programming Languages (POPL'9gages 1-14, 1992.

