
Compound Monads in Specification Languages

Jeremy E. Dawson
Logic and Computation Program, NICTA∗ Automated Reasoning Group,

Australian National University, Canberra, ACT 0200, Australia
http://users.rsise.anu.edu.au/∼jeremy/

Abstract
We consider the language of “extended subsitutions” involving
both angelic and demonic choice. For other related languages ex-
pressing program semantics the implicit model of computation is
based on a combination of monads by a distributive law. We show
how the model of computation underlying extended subsitutions is
based on a monad which, while not being a compound monad, has
strong similarities to a compound monad based on a distributive
law. We discuss these compound monads and monad morphisms
between them. We have used the theorem prover Isabelle to for-
malise and machine-check our results.

Categories and Subject Descriptors F.3.1 [LOGICS AND MEAN-
INGS OF PROGRAMS]: Specifying and Verifying and Reasoning
about Programs—Logics of programs, Pre- and post-conditions;
D.2.1 [SOFTWARE ENGINEERING]: Requirements/Specifications—
Languages

General Terms Languages, Theory, Verification

Keywords specification languages, extended substitutions, com-
pound monads, distributive law for monads, generalised substitu-
tions, demonic choice, angelic choice

1. Introduction
In several papers Dunne has proposed specification languages for
analysing (variously named) “computations”, given rules for com-
bining these computations in various ways, and stated and proved
results about them. These languages contain some constructs simi-
lar to those found in Dijkstra’s guarded command language (Dijk-
stra 1976). Underlying each of these languages, whether explicitly
or implicitly, is a notion of what a computation is, and for some of
these we have used the Isabelle theorem prover to define Dunne’s
various operations in terms of the identified underlying notion of
computation, and have proved that defining the operations inthis
way implies the definitions and results given by Dunne. In this work
we used the fact that a compound monad underlies the model of
computation involved.

∗ National ICT Australia is funded by the Australian Government’s Dept of
Communications, Information Technology and the Arts and the Australian
Research Council through Backing Australia’s Ability and the ICT Centre
of Excellence program.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLPV’07, October 5, 2007, Freiburg, Germany.
Copyright c© 2007 ACM 978-1-59593-677-6/07/0010. . . $5.00

Dunne (2001) gave an account of general correctness (Jacobs
and Gries 1985), which combines the concepts of partial correct-
ness and total correctness, arguing for its utility in analysing the
behaviour of programs. Calling the computations “abstractcom-
mands”, he gave several basic abstract commands and operators
for joining them, for which he gave rules in terms of weakest liberal
preconditions and termination conditions, and many results about
these operators. In (Dawson 2004) we described an operational in-
terpretation of abstract commands equivalent to that of Jacobs and
Gries (1985), which used the construction of Plotkin (1976).

Similarly, Dunne (2002) considered the generalised substitu-
tions used in the B method, which is based on total correctness. In
(Dawson 2007b) we formalised the theory he gave, and the opera-
tional model underlying it, using a similar approach to, andin some
cases the results of, (Dawson 2004). We compared this operational
model with that of the theory of general correctness.

For both general correctness and total correctness we used the
Isabelle/HOL theorem prover to define an operational model and
prove that it implied the rules and results given by Dunne. Inboth
cases the operational model is based on a compound monad and
in both cases this compound monad can be explained (inter alia)
in terms of a distributive law for combining two monads (Barrand
Wells 1983,§9.2).

Semantic models combining angelic and demonic non-determinism
have been developed by Back and von Wright (1998), and Re-
witzky (2003), who described a model using binary multirelations,
which is developed further in (Martin et al. 2007), for computa-
tions involving angelic and demonic non-determinism. In (Back
and von Wright 1998) and (Martin et al. 2007) these computations
are described in terms of a game between the angel and the demon,
where the angel and the demon make “moves” to try to ensure
that the postconditon is or is not satisfied. Recently, Dunne(2007)
defined an “extended substitution” language, which encompasses
the generalised substitutions, allowing for angelic choice as well
as demonic choice, ie, choices which will be made to ensure, if
possible, that the postcondition is, or is not, satisfied. Asexplained
in §3.1 we would expect to see a monad underlying the model of
computation for this language. In this paper we show how the op-
erational model we use (equivalent to the multirelation model) for
this language is in fact based on a monad. We found that while it is
not a compound monad, it can be described using the concepts and
results about joining two monads by a distributive law. Indeed, in
proving that it is a monad, we were helped significantly by copying
and adapting the proofs of results relating to compound monads
based on a distributive law.

In this paper we describe this construction after surveyingthe
role of compound monads based on distributive laws in the opera-
tional models for general and total correctness.

In §2 we discuss the operational models underlying each of
these theories. In§3 we briefly introduce monads, and compound
monads. We then show how the theories of general correctnessand

total correctness are each based on a compound monad which is
based on a distributive law, and that one of these distributive laws
is also a monad morphism between these two monads.

In §4 we describe the construction of the monad underlying
the extended substitutions. This is not actually a compoundmonad
but it is based on equivalence classes of a structure rather like a
compound monad, and we describe how we used the results on
combining two monads by a distributive law to show that this
construction gives a compound monad.

We use the interactive theorem prover Isabelle/HOL. Isabelle
is a framework based on intuitionistic typed higher-order logic,
on which a variety of object logics can be built. We use the HOL
(“higher-order logic”) object logic, which is a classical strongly
typed higher-order logic, giving an object language which has
strong similarities to the functional programming languages Stan-
dard ML and Haskell. In the logic, functions are total, function
equality is defined extensionally, and functions are not necessarily
computable. All results referred to in this paper have been proved
using Isabelle.

2. The Operational Models
We describe the operational models. Firstly, we make a caveat
concerning the role of frames. In each case Dunne’s definition
of a computation involves aframe, which, loosely, is the set of
variables which “might” be affected. In this paper we ignoreframes
(equivalently, we assume the frame to be the set of all variables in
the machine state). In fact this enables us to treat the machine state
entirely as an abstract type.

In each case, a computation is modelled by a function from the
state type to a result type, which is different for each model. Having
described the operational model, we showed in each case thattwo
computations are refinement-equivalent (as defined by Dunne, but
ignoring frames) if and only if they correspond to the same function
in the operational model.

2.1 The General Correctness Operational Model

Firstly, we describe the operational model of (Dawson 2004), used
to describe “abstract commands” and general correctness. Jacobs
and Gries (1985) (see also (Dunne 2001)) explain how, in the case
of a non-deterministic computation, weakest preconditions and to-
tal correctness do not distinguish a computation which simply fails
to terminate from one which (on a given input) may terminate
in a particular final state or may fail to terminate. On the other
hand, weakest liberal preconditions and partial correctness fail to
distinguish a computation which terminates in a given final state
from one which may do that or may fail to terminate. Accordingly,
they develop the theory of general correctness, which does distin-
guish each of these pairs of computations, and in which refinement
(as defined in (Dunne 2001)) means partial correctness refinement
and total correctness refinement. The computational model thatwe
use underlying this theory is the following, suggested by Jacobs
and Gries (1985): each computation (on a given initial state) re-
sults in (one of) a set ofoutcomes, where each outcome is either
non-termination, or termination in a particular final state. Then we
proved that two abstract commands are equivalent in generalcor-
rectness refinement if and only if they are the same function in this
model, from states to sets of outcomes.

So we let an outcome be either the tagNonTerm, indicating
non-termination, orTerm s, indicating termination in the states,
as expressed in Isabelle by

datatype σ TorN = NonTerm | Term σ

where σ is a type variable, and, in Isabelle, a type constructor
follows its argument. This means that a value of the typeσ TorN

is either the tagNonTerm or a member of the typeσ, tagged with
the tagTerm. But we will generally write a type constructor such
asTorN or set beforeits type argument. Thus the typeoutcomeis
TorN state, and the type of computations in this model isstate→
set(TorN state). Thus a computation which (from a given initial
state) can terminate in either states1 or s2 is represented by the
outcome set{Term s1, Term s2}; if the computation can also fail
to terminate, it is represented by{Term s1, Term s2, NonTerm}.

2.2 The Total Correctness Operational Model

Subsequently, Dunne (2002) described generalised substitutions,
based on the B method, in which only total correctness is of interest.
So we want to consider computations equal if they are equivalent
in total correctness refinement: we do not want to distinguish a
computation which may terminate or not (on a particular initial
state) from one which will not terminate. So here the model of
computation we want is that a computation is a function which,
given an initial state, returns either possible non-termination, or
guaranteed termination, in (one of) a set of final states. We then
define the typetcres (“total correctness result”) to beTorN (set
state), that is, eitherNonTerm, meaning possible non-termination,
orTerm S, termination in (one of) a setS of states. So we define the
weakest precondition function[C], where[C] Q s is the condition
that commandC, when executed in states, will terminate in a state
satisfying the predicateQ.

[C] Q s ≡ (∃S. (∀x ∈ S. Q x) ∧ (C s = Term S))

Then we define the total correctness refinement relation⊑tc

accordingly, where[A] Q −→ [B] Q is an abbreviation for
∀s. [A] Q s ⇒ [B] Q s.

A ⊑tc B ≡ (∀Q. [A] Q −→ [B] Q)

This definition of refinement⊑tc is as in (Dunne 2002,§7), but
ignoring frames. Then we proved that two generalised substitutions
are equivalent in total correctness refinement that is, theyhave the
same weakest precondition function, if and only if they are the
same when considered as functions in this computational model.
Equivalently, the weakest precondition function is injective, that is,
if [C] Q = [C′] Q, thenC = C′.

In this model the two computations mentioned at the end of
§2.1 are represented by the resultsTerm{s1, s2} and NonTerm.
For the second of these, the representationNonTerm reflects the
fact that, in total correctness, the computation is indistinguishable
from one which must fail to terminate: they both fail to satisfy any
postcondition.

2.3 The Chorus Angelorum Operational Model

Dunne (2007) notes that conventional program analysis involves
demonic choice: we want a non-deterministic program to satisfy its
postcondition, regardless of what choice the demon (who is try-
ing to ensure that the postcondition is not satisfied) makes.His
framework of computations called “extended substitutions” involv-
ing both demonic and angelic choice, is based on the underlying
computational model of Rewitzky (2003) which is expressed in
terms of up-closed binary multirelations. We describe thisin an
equivalent way: a computation is a function which, given an initial
state, returns a setS of sets of final states. The meaning of this is
that the angel will choose one,S ∈ S , of these sets, and the demon
will choose one final states from that chosen setS. We define the
weakest precondition function accordingly:

[C] Q s ≡ (∃U ∈ Cs. (∀u ∈ U. Q u))

This reflects that the angel tries to make a choiceU which defeats
the demon, who in turn tries to make a choiceu from U which fails
the postconditionQ.

But considering a resultS : set set state, if S′ ⊇ S for
S′, S ∈ S , then the angel could always chooseS rather thanS′

to limit the demon’s choice. So it is enough to consider only results
S which, as sets of sets, are “up-closed”, that is, where, ifS′ ⊇ S
andS ∈ S thenS′ ∈ S ; under this restriction we then find that two
extended substitions which are refinement-equivalent (ie,have the
same weakest precondition function) are represented by thesame
function in this computational model.

3. The Monads used in these Models
3.1 Monads

As discovered by Moggi (1989), monads (long known in category
theory) are useful for representing the structure of a computation.

To define a monadM , we need to define the unit and extension
functions unit and ext, of the types shown, and show that they
satisfy the following rules required for a monad, whereM is a type
constructor, eg,setor TorN.

unit : α → Mα

ext : (α → Mβ) → (Mα → Mβ)

extf ◦ unit = f (1)
ext unit= id (2)

ext(extg ◦ f) = extg ◦ ext f (3)

We defineB ⊙ A = ext B ◦ A, and this represents(A ; B), the
sequencing of computationsB and A, since ext B models the
action of computationB on the result of a previous computation.
The unit function models the computation which does nothing
(skip). So then rules (1) to (3) give us the properties (4) to (6). We
would expect these properties to hold in a model of computation,
since they say that the sequencing operation is associative, and that
theskipcomputation is its identity. These properties show that we
have a category, in which the objects are types, an arrow fromα
to β is a function of typeα → Mβ, the identity arrow for object
α is the functionunit : α → Mα and composition is given by⊙.
This category is called the Kleisli category ofM , K(M). We can
write (3) as (7), and (2) and (7) also show thatext is a functor from
K(M) to the basic category of types and functions.

f ⊙ unit = f (4)
unit⊙ f = f (5)

h ⊙ (g ⊙ f) = (h ⊙ g) ⊙ f (6)

ext(g ⊙ f) = extg ◦ ext f (7)

Two well-known examples of monads used in this paper are
the “non-termination” monad (known under various names such
as “error monad” or “exception monad”), and the set monad. In
each case the unit function turns a simple state into the formof a
computation result, and the extension function turns a computation
acting on a simple initial state into a computation acting onthe
result of a previous computation. Also associated with eachmonad
are functionsmap and join of the types shown, and in fact a
monad can alternatively be characterised by seven rules involving
the functionsunit, mapandjoin (see (Wadler 1992)).

join : MMα → Mα

map: (α → β) → (Mα → Mβ)

extf = join ◦ mapf

The non-termination monad has unit, map, join and extension
functions:

unit nt s = Term s

map nt f NonTerm = NonTerm

mapnt f (Term s) = Term (f s)

join nt (Term NonTerm) = join nt NonTerm = NonTerm

join nt (Term (Term f)) = Term f

ext nt f NonTerm = NonTerm

ext nt f (Term s) = f s

The set monad has unit, map, join and extension functions

unit ss = {s} join sA =
S

A

mapsf S = {f s | s ∈ S} ext sf S =
S

s∈S
f s

Thus the non-termination monad gives a model where a compu-
tation either terminates in a new state, or fails to terminate, and the
set monad models non-deterministic (but necessarily terminating)
computations.

3.2 Compound Monads

Given that each of the type constructorsM andN , with their unit
and extension functions, is a monad, it does not follow, however,
thatMNα (relative toα) is a monad. Yet, in§2.1 and§2.2, we have
found such combination of type constructors arise naturally in mod-
elling programs. There are several seemingly distinct approaches
to constructing a monad out of two simpler monads; see for exam-
ple (Liang et al. 1995,§7.3), (Hyland et al. 2006). In some cases,
several of these constructions may be applicable. This point is dis-
cussed further in§5. We use our results in (Dawson 2007a), which
develop those of Jones and Duponcheel (1993), and are closely re-
lated to the distributive law of Barr and Wells (1983,§9.2). We
describe how those results show that the non-termination monad
and the set monad can be composed in both ways, ie,set(TorN α)
andTorN (setα) to form compound monads.

As in (Jones and Duponcheel 1993), we consider the composi-
tion of two monadsM andN , so the compound monadic type is
MNα. We writeextMN , extM andextN for the extension functions
of MN , M andN , etc.

To define the compound monad, we need the functionextMN ,
which “extends” a functionf from a “smaller” domain,α, to a
“larger” one, MNα. So we use a “partial extension” function
which does part of this job:

extMN : (α → MNβ) → (MNα → MNβ)

pext: (α → MNβ) → (Nα → MNβ)

The following rules and definitions are sufficient to define a com-
pound monad using such a functionpext. Note that in view of (12),
(10) and (11) are equivalent, and that (9) and (11) give thatpextis
a functor fromK(MN) to K(M). (In fact, unitMN andpextare
the unit and extension functions of a monadin the categoryK(M),
whose Kleisli category is alsoK(MN), see (Dawson 2007a)).

pextf ◦ unitN = f (8)
pext unitMN = unitM (9)

pext(extMN g ◦ f) = extMN g ◦ pext f (10)

pext(g ⊙MN f) = pextg ⊙M pext f (11)

extMN g = extM (pextg) (12)
unitMN = unitM ◦ unitN (13)

Relation to distributive laws and compatible monads

Here we briefly outline the relationships between our sufficient
conditions for compound monads and other work in the literature.

Jones and Duponcheel (1993) give two conditions, J(1) and
J(2), which compound monads may satisfy. Under the reasonable
assumptions thatunitMN = unitM ◦unitN andmap

MN
= map

M
◦

map
N

, the compound monads that arise from a functionpextare
those that satisfy J(1). Jones & Duponcheel use a functionprod,
wherepextf = prod ◦map

N
f , and give conditions for defining a

compound monad usingprod. The following are equivalent to J(1)
and J(2) respectively.

extM join
MN

= join
MN

◦ join
M

J(1)′

extMN (map
M

join
N

) = map
M

join
N

◦ join
MN

J(2)′

The compound monads that satisfy both J(1) and J(2) are those
which arise from a functionswap : NMα → MNα satisfying
conditions S(1) to S(4) of (Jones and Duponcheel 1993), shown
below. Compound monads do not necessarily arise from such a
function swap, or from a functionpextas above, though it seems
that in most cases they do so. If so,swap= pext(map

M
unitN).

Conditions S(1) to S(4) of (Jones and Duponcheel 1993), shown
below, on a functionswap : NMα → MNα are necessary
and sufficient to define a compound monad in terms ofswap. The
statement of S(4) uses two further functionsprod anddorp defined
in terms ofswap.

prod : N M N α → M N α

dorp : M N M α → M N α

prod = map
M

join
N
◦ swap

dorp = extM swap

swap◦ map
N

(map
M

f) = map
MN

f ◦ swap S(1)
swap◦ unitN = map

M
unitN S(2)

swap◦ map
N

unitM = unitM S(3)
prod◦ map

N
dorp = dorp◦ prod S(4)

In fact the functionswapof (Jones and Duponcheel 1993) is
the distributive lawλ of (Barr and Wells 1983,§9.2). In this pa-
per we use the terminology and results of Jones and Duponcheel
(1993) rather than the text (Barr and Wells 1983) because Jones and
Duponcheel (1993) also describeprod anddorp, which we use. We
now relate (Jones and Duponcheel 1993) to (Barr and Wells 1983,
§9.2), but this is not used in the remainder of this paper.

We have shown in (Dawson 2007a) that conditions J(1) and J(2)
match conditions (C1) to (C5) of (Barr and Wells 1983,§9.2), for
compatibility of monadsN , M andMN . These are the conditions
on a compound monad which are necessary and sufficient for it to
be definable by a distributive law, that is, by aswapfunction. Con-
ditions (C2) and (C5) (which are in fact equivalent) are equivalent
to J(2) of (Jones and Duponcheel 1993), and conditions (C3) and
(C4) (which are also equivalent) are equivalent to J(1) of (Jones and
Duponcheel 1993). Finally, condition (C1) is (13) above.

We have also shown in (Dawson 2007a) that conditions S(1)
to S(4) correspond to conditions (D1) to (D4) of (Barr and Wells
1983,§9.2) defining a distributive law. S(1) simply says thatswap
is a natural transformation, S(2) and S(3) are (D2) and (D1),and,
in the presence of these, S(4) is equivalent to (D3) and (D4).

3.3 The General Correctness Compound Monad

Here we need to show thatset(TorN α) is a monad; in fact, for
any monadM , M (TorN α) is a monad (as is well-known, see,
eg, (Liang et al. 1995,§7.3), (Hyland et al. 2006)). For an arbitrary
monadM we define the compound monadM (TorN α) by

pextf (Term a) = f a (14)
pextf NonTerm = unitM NonTerm (15)

We also defineunit andext for the compound monad by (13)
and (12). Then we prove thepextrules (8) to (10) as follows. (8) is

just (14). From (14) and (15), we get (9) using (13), and (10) using
(1) for M and (12).

In fact the general correctness monad can be defined using
swap: that is, it satisfies J(1) and J(2). Then the functionswapis
given by the ruleswap= pext(map

M
unitN), so withM theset

monad we have

swapNonTerm = unitM NonTerm = {NonTerm}

swap(Term S) = map
M

Term S = {Term s | s ∈ S}

We proved in Isabelle thatpext defined in this way satisfies
rules (8) to (10) as outlined above, and we also proved thatswap
satisfies the conditions S(1) to S(4), and soswap is a distribu-
tive law for these monads. These Isabelle proofs are available
at http://users.rsise.anu.edu.au/∼jeremy/isabelle/
fgc/Dmng.{thy,ML}. Henceforth we will refer to the functions
defined for the general correctness monad aspext gc, swapgc,
ext gc, and so on.

3.4 The Total Correctness Compound Monad

The typetcres= TorN (set state), relative to the typestate, with
the unit and extension functions defined below, is also a monad, the
total correctnessmonad.

To prove that the total correctness monad is in fact a monad, we
now give the definitions for our particular monadsN = setand
M = TorN.

unit tc : state→ tcres
prod tc : set tcres→ tcres

pext tc : (state→ tcres) → set state→ tcres
ext tc : (state→ tcres) → tcres→ tcres

unit tc s = Term {s}

prod tc T = NonTerm if NonTerm ∈ T

prod tc {Term s | s ∈ S} = Term (
S

S)

pext tc A S = prod tc {A s | s ∈ S}

ext tc A T = ext nt (pext tc A) T

whereext nt is the extension function of theTorN monad (see§3.1).
We then proved, in Isabelle, thatTorN (setα) is a compound

monad, by proving rules (8) to (10), noting that (12) and (13)follow
directly from our definitions.

In fact the total correctness monad can be defined usingswap.
In this caseM is theTorN monad, andN is the set monad, and
swapis a function

swaptc : set(TorN α) → TorN (setα)

swaptc S = NonTerm if NonTerm ∈ S

swaptc {Term s | s ∈ S} = Term S

Our Isabelle proofs included the conditions S(1) to S(4), and so
we have also shown thatswaptc is a distributive law for the mon-
ads. These Isabelle proofs are available athttp://users.rsise.
anu.edu.au/∼jeremy/isabelle/fgc/Dtc.{thy,ML}.

Often, where two monads can be composed to form another
monad, the construction depends on one of them, and the other
may be arbitrary. Thus, as discussed in§3.3, theTorN monad can
be composed with any other monadM to give a compound monad
M (TorN α), which gave theoutcome setmonad. In this case we
have shown that the typeTorN (setα), with unit tc andext tc as
defined, is a monad, but we have not been able to give a more
general construction for unit and extension functions to exhibit,
for an arbitrary monadM , eitherTorN (M α) or M (set α) as
a monad.

3.5 Relating the general correctness and total correctness
monads

The functionswaptc : set (TorN σ) → TorN (set σ) is also
a monad morphismfrom the general correctness monad to the
total correctness monad. We have the following results, which
characterise a monad morphism:

unit tc a = swaptc (unit gca)

ext tc (swaptc ◦ f) (swaptc x) = swaptc (ext gcf x)

Since this monad morphism is surjective, we could use the fact
that the general correctness monad satisfies the monad rulesto give
an alternative proof to show that the total correctness monad also
satisfies them.

The definition ofswaptc reflects the fact that in the general
correctness framework (the abstract command language) a compu-
tation (on a particular given input) may non-deteministically either
terminate or not; in total correctness such a computation (on that
input) does not satisfy any postcondition, and so is equivalent to a
computation which simply does not terminate.

We note that the definitions of many generalised substitution
operations may be obtained by translation from the definitions in
(Dawson 2004) for abstract commands. Indeed, for thechoicetc
function (see below), some results were more easily proved using
the following translation fromchoicegc of the general correctness
model:choicetc C s = swaptc (choicegcA s), for any setA of
abstract commands which gives the generalised substitutionsC, ie,
such thatC = {swaptc A |A ∈ A}.

3.6 Definition of Commands

Dunne (2002) then defines a number of substitutions and operations
on them, by giving their weakest preconditions and frames.

In (Dawson 2007b) we give operational definitions for the gen-
eralised substitutions defined by Dunne (2002), and show that these
definitions correspond. For example, sequencing, defined byDunne
as [A; B] Q = [B] ([A]Q), is represented by the composition⊙
in the Kleisli category. Then Dunne’s definition gives an alternative
proof (once we have proved that the weakest precondition function
is injective) of the associativity of sequencing, and so of⊙, one of
the key properties of monads.

choice

Dunne (2002,§3.1) defines a binary operator,2: A2B is a com-
putation which can choose between two computationsA andB.
Again, Dunne defines this by giving its weakest precondition,
[A2B]Q = [A]Q ∧ [B]Q. This is a special case of choice
among an arbitrary set of commands. In the general correctness
setting this was easy to define,choicegc C s =

S

C∈C
C s. In

the total correctness setting, wherechoicetc C can fail to termi-
nate if anyC ∈ C can fail to terminate, we definechoicetc by:
choicetc C s = pext tc (λC. C s) C.

Note how this definition uses polymorphism: when we use
pext tc (indirectly) in defining sequencing of computations, the
typesα andβ are both the state typeσ. But in this use ofpext, α is
the type of computations.

pext : (α → TorN (setβ)) → setα → TorN (setβ)

Expanding the definition shows that:

if NonTerm ∈ {C s |C ∈ C} thenchoicetc C s = NonTerm

if {C s |C ∈ C} = {Term SC |C ∈ C},
thenchoicetc C s = Term (

S

C∈C
SC)

4. The Chorus Angelorum Monad
In §2.3 we described a model of the computation as a function
returning an up-closed set of sets of final states. As Dunne (2007,
§5.2) explains, there is an alternative model, where a computation
returns a set of sets of states, of which the demon first chooses one
set of states, from which the angel chooses one state.

We define a functionswapuc which turns an angel-chooses-
first result into the corresponding demon-chooses-first result; it
swaps the order of the choices of the demon and the angel. As we
shall see, it also has a role similar to that of theswapfunction (the
distributive law) discussed in§3.2. We also define theup-closureof
a set of sets.

swapucA = {B | ∀A ∈ A. B ∩ A 6= {}}

up cl A = {A′ | ∃A ∈ A. A ⊆ A
′}

We then have the following results, which suggest that we
should work on equivalence classes of sets of sets of states,where
A ≡ A′ iff up cl A = up cl A′, and each equivalence class has
exactly one up-closed member.

LEMMA 1. With up cl and swapuc as defined above,

up cl (up cl A) = up cl A
swapuc (swapucA) = up cl A

swapuc (up cl A) = swapucA
up cl (swapucA) = swapucA

We cannot define a monad based on theset (set) type con-
structor, but we can define a monad on this set of equivalence
classes. As such it is not a compound monad, but in obtaining it we
proceed much as though we were combining theset monad with
itself usingswapuc as a distributive law. The results described in
this section have been proved in Isabelle,http://users.rsise.
anu.edu.au/∼jeremy/isabelle/monad/Chorus.{thy,ML}
and http://users.rsise.anu.edu.au/∼jeremy/isabelle/
fgc/{Dch,Dch tc}.{thy,ML}.

Firstly we list some functions and their types, as used in (Jones
and Duponcheel 1993).

join : M N M N α → M N α prod : N M N α → M N α

dorp : M N M α → M N α swap: N M α → M N α

Here both the type constructorsM and N are set, but we can
intuitively understand these functions, and some of the results about
them, by thinking of the type constructorM as representing a set
from which the angel is to choose, andN as representing a set from
which the demon is to choose. The final result is to be a set of sets
from which the angel is to choose first, and then the demon.

Imitating the procedure for definingset(setα) as a compound
monad using the functionswapuc, we try to prove S(1) to S(4):
we cannot, but we can prove them modulo up-closure. We proved
the following results, wheredorp uc andprod uc are defined from
swapuc, following (Jones and Duponcheel 1993):

dorp uc = join s ◦ map s swapuc
prod uc = maps join s ◦ swapuc

LEMMA 2. With dorp uc and produc defined from swapuc as
shown,

swapuc◦ maps (mapsf) =

up cl ◦ maps (map sf) ◦ swapuc S(1)′

swapuc A = up cl (maps unit sA) S(2)′

swapuc (maps unit sA) = up cl A S(3)′

prod uc◦ maps dorp uc = dorp uc◦ prod uc S(4)

swapuc◦ maps join s = dorp uc◦ swapuc (D3)
swapuc◦ join s = prod uc◦ map s swapuc (D4)

That is, we have proved S(1) to S(3) modulo up-closure, and S(4).
The proof of S(4) is difficult, and uses (equivalents of) (D3)and
(D4) of Barr and Wells (1983,§9.2).

Then, as in (Jones and Duponcheel 1993), we definejoin uc by
(17), or equivalently (18). Definingmap uc in the obvious way by
(16), we defineext uc and⊙uc from join uc in the usual way by
(19) and (21), and alsopext uc from prod uc by (22). We can then
prove (20) and (23). We also give the equivalent literal expressions
for ext uc andpext uc.

mapuc f = map s (mapsf) (16)
join uc = join s ◦ map s prod uc (17)
join uc = map s join s ◦ dorp uc (18)

ext uc f = join uc ◦ map ucf (19)
ext uc = ext s ◦ pext uc (20)

g ⊙uc f = ext ucg ◦ f (21)

pextuc f = prod uc ◦ map sf (22)

prod ucA =
T

{map s up cl A} (23)

pext ucf A = {B | ∀a ∈ A. ∃B
′ ∈ f a. B

′ ⊆ B} (24)

ext uc f A = {B | ∃A ∈ A. ∀a ∈ A. ∃B
′ ∈ f a. B

′ ⊆ B}
(25)

The proofs of the monad rules forset (set α) (again, some
equalities only modulo up-closure: compare the results below with
(1) to (3))) proceed as normal from S(1) to S(4) (see, eg, (Jones and
Duponcheel 1993) or (Dawson 2007a)).

LEMMA 3. With join uc defined by(17) or equivalently(18), and
ext uc by(19)

ext ucf {{x}} = up cl (f {{x}}) (26)
ext uc (λx. {{x}}) = up cl (27)

ext uc (ext ucg ◦ f) = ext ucg ◦ ext uc f (28)

The Monad Functions onUp-closed Sets of Sets

Finally we need to show that these results give a monad on the set
of equivalence classes, which requires several lemmas concerning
the behaviour ofext ucand other functions on different but “equiv-
alent” arguments. Isabelle’stype definitionfacility was useful here,
not least in ensuring that no necessary part of the proof was over-
looked. We define the typeucaα (“up-closed abstract”) as the type
of up-closed sets of sets (a representative of each of the equivalence
classes). The set of members of the new type is isomorphic to,but
distinct from, the set of up-closed sets of sets.

In Isabelle, defining a new typeσ (the “abstract” type) isomor-
phic to a setS : setρ causes the creation of an abstraction func-
tion Abs : ρ → σ and a representation functionRep : σ → ρ,
such thatAbsandRepare mutually inverse bijections betweenS
and the set of all values of typeσ. Note that the domain ofAbs
is the typeρ, but that nothing is said about the values it takes out-
side the setS. Thus we get abstraction and representation functions
Repuca : ucaα → set(setα) andAbsuca : set(setα) → ucaα.
We define an alternative abstraction functionuc Absof the same
type asAbsuca but whose action is specified, in the natural way,
on non-upclosed sets:uc AbsA ≡ Absuca(up cl A).

Then we define the monad functionsunit uca andext uca for
theucaα type; we also defineswapon this type.

DEFINITION 4.

unit ucaa = uc Abs{{a}} (29)
ext ucaf A = uc Abs(ext uc (Repuca ◦ f) (RepucaA))

(30)
swapucaA = uc Abs(swapuc (RepucaA)) (31)

We then used (26) to (28) about the typeset(setα) to prove the
monad rules (1) to (3) for the typeucaα.

THEOREM1. The type constructor uca, with unit and extension
functions unituca and extuca, is a monad.

Changing the Interpretation ; the Conjugate of a Substitution

The result of a computation might equally well be modelled asa
set of sets from which the demon is to choose first, using the same
monad, but translating the result byswapuc. We showed that the
function swapuca (Definition 4, (31)) is a monad morphism. We
also proved some results such asswapuc ◦ prod uc = dorp uc
which would involve a type error ifM andN were not the same
monad.

Dunne also defines the conjugate of a substitution (Dunne 2007,
§3.4): [T o]Q = ¬[T]¬Q. This also amounts to switching the
interpretation of the set-of-sets result from angel-chooses-first to
demon-chooses-first. Thus we can obtain it by applyingswapuc to
the result of a computation, so we provedT o s = swapuca(T s).

A Link to the Continuation Monad

We can obtain an interesting link to the continuation monad
(Wadler 1992,§3.1). We define an “evaluation function”eval uc :
set (set α) → (α → bool) → bool, whereeval uc A P tells
whether the postconditionP is satisfied when angel and demon
have made their choices fromA. (The weakest precondition func-
tion could then be defined in terms ofeval uc). Naturally it is
defined byeval uc B P ≡ ∃B ∈ B. ∀b ∈ B. P b, and so has
the property thateval ucB = eval uc (up cl B). Thus also, ifB
is up-closed andP ′ is the set corresponding to predicateP , then
we haveeval uc B P ′ = P ∈ B. This shows that the model we
describe is also essentially that of the choice semantics ofBack and
von Wright (1998, Ch 15).

Now the typeK α = (α → bool) → bool is the type of
the continuation monadK (Wadler 1992,§3.1), when the fixed
“answer” type isbool. The composition⊙K in the Kleisli category
for K can be given simply in terms of theC combinator:

C f x y = f y x g ⊙K f = C (C f ◦ C g)

The functionsBall and Bex, of type set α → K α, used in
Isabelle to express quantification over a given set:Ball S P ≡
∀s ∈ S. P s, can be used to express the way the functions above
involve the demonic and angelic choices. We find thateval uc =
Ball ⊙K Bex and eval uc ◦ swapuc = Bex⊙K Ball. Further,
there is an obvious isomorphismK α → set (setα), which we
call K to SS. Thus up cl = K to SS ◦ eval uc. Then we find
these results which represent the sequence of angelic and demonic
choices involved in these functions.

up cl = K to SS◦ (Ball ⊙K Bex)

join uc = K to SS◦ (Ball ⊙K Bex⊙K Ball ⊙K Bex)
dorp uc = K to SS◦ (Bex⊙K Ball ⊙K Bex)
prod uc = K to SS◦ (Ball ⊙K Bex⊙K Ball)
swapuc = K to SS◦ (Bex⊙K Ball)
ext uc f = K to SS◦ (Ball ⊙K (Bex◦ f) ⊙K Ball ⊙K Bex)

pext uc f = K to SS◦ (Ball ⊙K (Bex◦ f) ⊙K Ball)

Under the isomorphismK to SS, up-closed sets correspond to
monotoniccontinuations, which we define by

monoK c ≡ ∀P Q. (∀s. P s ⇒ Q s) ⇒ c P ⇒ c Q

Then we find thatK to SSandeval uc are mutually inverse bijec-
tions between the up-closed families of sets and the monotonic
continuations. It follows that there is a bijective correspondence
between functionsf : α → K β which always return monotonic
continuations, and functionsS : α → set (setβ) which always

return up-closed families. From this we can get the bijective corre-
spondence of Rewitzky (2003) between monotonic predicate trans-
formersF : (β → bool) → (α → bool) and up-closed binary
multirelations.

Trivially, Ball S andBexS are monotonic, and also⊙K pre-
serves monotonicity in this sense:

∀a. monoK (f a)∧∀b. monoK (g b) ⇒ ∀x. monoK ((g⊙K f) x)

Similar to the results above is the following:

f ⊙uc g = K to SS◦ ((eval uc◦ f) ⊙K (eval uc◦ g))

This leads to an alternative proof of the associativity of⊙ uc, for

f ⊙uc (g ⊙uc h)

= K to SS◦ ((eval uc◦ f)⊙K

(eval uc◦ (K to SS◦ ((eval uc◦ g) ⊙K (eval uc◦ h)))))

= K to SS◦ ((eval uc◦ f) ⊙K ((eval uc◦ g) ⊙K (eval uc◦ h)))

whereeval uc ◦ K to SSis the identity on its argument, which is
monotonic. Thus the associativity of⊙uc follows from that of⊙K .

Angelic and Demonic Choice

Dunne (2007) defines angelic (demonic) choice by giving their
weakest preconditions, which are just the disjunctions (conjunc-
tions) of the preconditions of the individual substitutions. In the
case of each of these, applying a set of computations to an initial
state gives a set of sets of sets of final states, of typeset(set(setσ)).
In the case of angelic choice, the angel makes the first two choices
and the demon the final choice, so for angelic choice we simply
take the union of the results of the individual computations. For
demonic choice, the consecutive choices are made by the demon,
the angel and the demon again. This is exactly as for theprod uc
function. The definitions are as follows, but we omit the functions
uc AbsandRepucabetween theset(setα) and theucaα types.

dem B s = prod uc{B s | B ∈ B} = pext uc (λB. B s) B

ang B s =
S

{B s | B ∈ B}

So these results are analogous to those above:

up cl ◦
S

=
S

◦map s upcl = K to SS◦ (Ball ⊙K Bex⊙K Bex)
T

◦map s upcl = K to SS◦ (Ball ⊙K Bex⊙K Ball)

Sequencing and Choice

We proved the following results about the distribution of demonic
or angelic choice over sequencing, where the notation implies de-
monic or angelic choice of a set of commands.

dem B ; C = dem
B∈B

(B ; C) ang B ; C = ang
B∈B

(B ; C)

Note that these results hold because in either case there is first a
choice ofB ∈ B, and then execution of(B ; C). The similar results
for choice ofC, ie, B ; (demC∈C C) = demC∈C(B ; C) do not
hold, since that would involve reordering the demonic choice ofC
with the choices involved in executingB.

The proofs of these results use (32) and (33) (which is of the
form of (10)); note however that in this use of them,g is C, while
f is not a command, but rather the functionλB. B s, for an initial
states.

ext s (ext ucg ◦ f) = ext ucg ◦ ext sf (32)
pext uc (ext ucg ◦ f) = ext ucg ◦ pext ucf (33)

Sinceext uc = ext s◦ pext uc, (32) and (33) combine to give (28),
of the form of (3), which is the significant (usually non-trivial) one
among the monad rules.

A Monad Morphism from the Total Correctness Monad

As Dunne points out, the language of extended substitutionsen-
compasses that of generalised substitutions.

We defined the inclusion mappingtc to ch, of typeTorN (setα) →
uca α, as shown below (and as suggested by the discussion in
(Dunne 2007,§5.1,§5.2))

tc to ch (Term S) = uc Abs{S} (34)
tc to chNonTerm = uc Abs{} (35)

For the resultNonTerm, which fails every postcondition, we
get the corresponding result{}, because from it the angel cannot
choose a set of results all of which satisfy even the postcondition
true. At the other extreme is the resultTerm {}, which satisfies
every postcondition. Corresponding to it we have a result from
which the angel can choose{}, from which the demon cannot
choose any which will fail to satisfy even the postconditionfalse.

We proved that this mapping is a monad morphism. Since this
mapping isinjective, it gives an alternative proof that the total cor-
rectness monad is in fact a monad. This is an interesting contrast to
the point noted in§3.5, where asurjectivemappingfrom the gen-
eral correctness monad into the typetcresα provided yet another
proof that the total correctness monad is in fact a monad.

5. Conclusion; Further Work
We have shown how several models of computation arising natu-
rally in the study of program semantics are based on monads, which
can be shown to be monads using results on combining two monads
using a distributive law.

For the general correctness monad we used a well-known gen-
eral construction combining the error (TorN) monad with any
monadM . The total correctness monad used a different construc-
tion, which seems not to be similarly generalisable. For theChorus
Angelorum monad, having combined the set monad with itself,we
needed to take equivalence classes of the result.

In the first two cases the combined monad arises from a dis-
tributive law for monads, and in the third case, the distributive law
equations are satisfied modulo the equivalence relation. Inthis case
the proofs that we have a monad were helped significantly by bas-
ing our approach on the results of (Barr and Wells 1983) and (Jones
and Duponcheel 1993) on compound monads based on a distribu-
tive law. (Trying to prove equation (28) using (25) as a definition
is not recommended!) We also found some monad morphisms re-
lating these monads: in some cases the distributive laws arethem-
selves monad morphisms.

All the discussion of compound monads in this paper focussed
on distributive laws. There are several monad transformers, or
constructions which produce compound monads, such as those
described by Liang et al. (1995). The theory underlying these
has been analysed, for example by Hyland et al. (2006), who
give several general constructions, dealing with arbitrary categories
(such asω−Cpo) rather than just the category of sets. While all
our work (and in particular, our Isabelle proofs) are, following
(Jacobs and Gries 1985) and (Dunne 2007), in terms of sets, it
would be interesting to investigate whether the Chorus Angelorum
operational model and monad can be extended in this way to a more
general category thanSet, and whether any of the constructions for
a compound monad, other than the distributive law, can similarly
be applied to that situation.

References
Ralph-Johan Back and Joakim von Wright.Refinement Calculus: A Sys-

tematic Introduction. Graduate Texts in Computer Science, Springer,
1998. URL http://crest.cs.abo.fi/publications/public/
1998/RefinementCalculusBook.pdf.

Michael Barr and Charles Wells.Toposes, Triples and Theories. Springer-
Verlag, 1983. URLhttp://www.cwru.edu/artsci/math/wells/
pub/ttt.html.

Jeremy E Dawson. Compound monads and the Kleisli category. Un-
published note, 2007a. URLhttp://users.rsise.anu.edu.au/
∼jeremy/pubs/cmkc/.

Jeremy E Dawson. Formalising general correctness. InComputing:
The Australasian Theory Symposium, volume ENTCS 91, pages 21–42,
2004. URLhttp://www.elsevier.com/locate/entcs.

Jeremy E Dawson. Formalising generalised substitutions. In Theorem
Proving in Higher-Order Logics, page to appear, 2007b. URLhttp:
//users.rsise.anu.edu.au/∼jeremy/pubs/fgc/fgs/.

Edsger W Dijkstra.A Discipline of Programming. Prentice-Hall Interna-
tional, 1976.

Steve Dunne. Abstract commands: A uniform notation for specifications
and implementations. InComputing: The Australasian Theory Sympo-
sium, volume ENTCS 42, pages 104–123, 2001. URLhttp://www.
elsevier.com/locate/entcs.

Steve Dunne. Chorus angelorum. InB 2007: Formal Specification and
Development in B, volume LNCS 4355, pages 19–33. Springer, 2007.

Steve Dunne. A theory of generalised substitutions. InFormal Specification
and Development in Z and B, (ZB 2002), volume LNCS 2272, pages
270–290. Springer, 2002.

Martin Hyland, Gordon D Plotkin, and John A Power. Combiningeffects:
Sum and tensor.Theor. Comput. Sci., 357:70–99, 2006.

Dean Jacobs and David Gries. General correctness: A unification of partial
and total correctness.Acta Informatica, 22:67–83, 1985.

Mark P Jones and Luc Duponcheel. Composing monads. Technical Report
YALEU/DCS/RR-1004, Yale University, 1993.

Sheng Liang, Paul Hudak, and Mark P Jones. Monad transformers and
modular interpreters. InSymposium on Principles of Programming
Languages (POPL’95), pages 333–343, 1995.

Clare E Martin, Sharon A Curtis, and Ingrid Rewitzky. Modelling angelic
and demonic nondeterminism with multirelations.Sci. Comput. Pro-
gram., 65:140–158, 2007.

Eugenio Moggi. Computational lambda-calculus and monads.In Sympo-
sium on Logic in Computer Science (LICS). IEEE, 1989.

Gordon D Plotkin. A powerdomain construction.SIAM J. Computing, 5:
452–487, 1976.

Ingrid Rewitzky. Binary multirelations. InTheory and Applications of
Relational Structures as Knowledge Instruments 2003, volume LNCS
2929, pages 256–271. Springer, 2003.

Philip Wadler. The essence of functional programming. InSymposium on
Principles of Programming Languages (POPL’92), pages 1–14, 1992.

