
Supplementary Material – Multi-View 3D Reconstruction from Uncalibrated
Radially-Symmetric Cameras

Appendix

In this supplementary material, we present implementa-
tion details of our alternating direction continuation method
for complete measurements, as well as incomplete measure-
ments. The supplementary video showing 3D reconstruc-
tion results is also included as the supplementary material.

1. Efficient implementation through ALM

In the paper, we present an Augmented Lagrangian Mul-
tiplier (ALM) based efficient implementation (similar im-
plementations have been applied to various problems, such
as recovery of corrupted low-rank matrices [2], unsuper-
vised visual learning [3] and projective factorization [1]).
Algorithm 1 illustrates the efficient implementation under
complete measurements case.

1: Initialization: Given Φ(0), set W(0) = Φ(0) � M,
compute U(0), V(0) through low rank projection, select
ε, µ̄ and ηµ, fix the sequence of µl as
µl+1 = max{µlηµ, µ}, l = 1, · · · , L− 1.

2: for µ = µ1, µ2, · · · , µL do
3: while Not converged do
4: Update U as U(k+1) = (Φ� M)V(VT V + µI)−1;
5: Update V as V(k+1) = (Φ� M)T U(UT U + µI)−1;
6: Update W as W(k+1) = U(k+1)V(k+1)T ;
7: Update the projective depth element-wisely as

φ
(k+1)
ij = (wT

ijmij)/(m
T
ijmij);

8: Normalize the projective depth matrix Φ(k+1) to
satisfy the column-sum and row-sum constraints
Φ1n = n1m and ΦT 1m −m1n.

9: Compute stopping criteria
ε(k+1) = ‖W(k+1)−W(k)‖F

max{1,‖Wk‖F } .

10: if ε(k+1) < ε then
11: Inner iteration converged;
12: end if
13: end while
14: end for

Algorithm 1: Radial camera factorization via alternating
direction continuation.

2. Missing data handling with MALM
Under incomplete measurements case, through the intro-

duction of mask matrix Ω, the imaging process for radially-
symmetric cameras with missing data can be compactly ex-
pressed Φ � M = Ω � W. In this section, we extend the
implementation for complete measurements case to han-
dling missing data. Under incomplete measurements case,
Hadamard factorization formulation for radially-symmetric
cameras becomes:

min
U,V,Φ

1

2
‖Ω� (UVT )− Φ� M‖2F +

µ

2
(‖U‖2F + ‖V‖2F )

s.t. ΦT 1m = m1n,
Φ1n = n1m,
φij > 0,

The corresponding Augmented Lagrangian Multiplier for-
mulation is stated as:

L(U, V,Φ,Γ,Υ) =
1

2
‖Ω� (UVT )− Φ� M)‖2F

+
µ

2
(‖U‖2F + ‖V‖2F )

+ 〈Γ,ΦT 1m −m1n〉+ 〈Υ,Φ1n − n1m〉

+
β

2
(‖ΦT 1m −m1n‖2F + ‖Φ1n − n1m‖2F ),

(1)

Obviously, cost function Eq.-(1) is not jointly convex
over U, V,Φ, therefore we propose to minimize it with re-
spect to U, V and Φ one at a time while fixing the others.
The partial derivation of L(Φ, U, V) with respect to Uij is
computed as:

∂L(Φ, U, V)

∂Uij
=

N∑
n=1

(Ωin

4∑
k=1

UikVnk−φinMin)ΩinVnj+µUij

(2)
We can obtain a linear equation on the variable Uij by

setting ∂L(Φ,U,V)
∂Uij

= 0,

N∑
n=1

4∑
k=1

Ω2
inVnjVnkUik + µUij =

N∑
n=1

φinΩinMinVnj .

(3)

1



Similarly, we can obtain a linear equation of Vji as:

M∑
m=1

4∑
k=1

Ω2
mjUmjUmkVjk+µVji =

M∑
m=1

φmjΩmjMmjUmi.

(4)
From these linear equations, we can update Uij and Vij in
sequel. φij can be updated in a similar way as under com-
plete measurements case except that we have to normalize
the projective depth matrix with missing data. Complete
algorithm is presented in Algorithm 2.

1: Initialization: Given Φ(0), set W(0) = Φ(0) � M,
compute U(0), V(0) through low rank projection, select
ε, µ̄ and ηµ, fix the sequence of µl as
µl+1 = max{µlηµ, µ̄}, l = 1, 2, . . . , L− 1.

2: for µ = µ1, µ2, · · · , µL do
3: while Not converged do
4: Update U(k+1) by solving Eq.-(3);
5: Update V(k+1) by solving Eq.-(4);
6: Update W as W(k+1) = U(k+1)V(k+1)T ;
7: On the visible position, update φij as

φ
(k+1)
ij = (wT

ijmij)/(m
T
ijmij);

8: Normalize Φ(k+1) to satisfy the column-sum and
row-sum constraints.

9: Compute stopping criteria
ε(k+1) = ‖W(k+1)−W(k)‖F

max{1,‖Wk‖F } .

10: if ε(k+1) < ε then
11: Inner iteration converged;
12: end if
13: end while
14: end for

Algorithm 2: Radial camera factorization via alternating
direction continuation under incomplete measurements
case.
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