Visual Odometry for Non-Overlapping Views Using Second-Order Cone

ACCV, Tokyo, Japan, 22nd Nov 2007

What is the motion of non-overlapping views?

- they do not share view each other.
- Can we find a motion (R and t with SCALE) of them?
- Visual Odometry Problem

Related Work

- The Pless equation for generalized camera [Pless]
- Linear solution for non-overlapping views [Marc] **Cone Programming**

Problem

• Given *m* calibrated cameras P_i , i = 1...m and $(m \ge 2)$ where \mathbf{c}_i is the centre of the *i*-th camera.

$$\mathbf{M} = \begin{bmatrix} \mathbf{R} & -\mathbf{R}\mathbf{t} \\ \mathbf{0}^{\top} & \mathbf{1} \end{bmatrix}$$

An essential matrix is

$$\mathbf{E}_{i} = \mathbf{R}^{\top} [\mathbf{C}_{i} + \mathbf{R} (\mathbf{t} - \mathbf{C}_{i})]_{\times} \mathbf{I}$$
$$= [\mathbf{R}^{\top} \mathbf{C}_{i} + (\mathbf{t} - \mathbf{C}_{i})]_{\times} \mathbf{R}^{\top}$$

Considering that the decomposition of \mathbf{E}_i is $\mathbf{E}_i = \mathbf{R}_i [\mathbf{v}_i]_{\times}$,

Jae-Hak Kim 1, Richard Hartley 1, Jan-Michael Frahm 2 and Marc Pollefeys 2 ¹ The Australian National University / NICTA, ² University of North Carolina at Chapel Hill

Programming

Experiments

experiments.

LadyBug SDK library.

Rotations at key frames 0, 3 Rotation True rotation Axis Angle pair (*R*₀, *R*₁) [0 0 -1] 85.5 (*R*₀, *R*₂) [0 0 -1] 157.0 [(*R*₀, *R*₃) [0 0 -1] 134.0 [Scale Translation True value Est pair 0.6757 (t₀₁, t₀₂) 0.4386 (t₀₁, t₀₃)

Paths (Front and Side view)

Path (Top view and Compar

► Point Grey's Ladybug[™] camera unit consists of six 1024x768 CCS color sensors with small overlap of their field of view is used for real

▶ 139 frames of image are captured by each camera. Feature tracking is performed by the KLT tracker, and the lens distortion is corrected by

80, 57 and 80, and translations			
Estimated rotation			
Axis			Angle
-0.008647 -0.015547 0.999842]			85.15
-0.022212 -0.008558 0.999717]			156.18
0.024939 -0.005637 -0.999673]			134.95
ratio	/		
imated value	e True value Estimat		ed value
0.7424	28.5	28.04	
1.3406	42.5	84	.01
rison with Ground Truth)			
0.1 0.08 frame 0	f	rame 30 frame 30	