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Abstract. Modeling videos and image-sets as linear subspaces has proven
beneficial for many visual recognition tasks. However, it also incurs chal-
lenges arising from the fact that linear subspaces do not obey Euclidean
geometry, but lie on a special type of Riemannian manifolds known
as Grassmannian. To leverage the techniques developed for Euclidean
spaces (e.g ., support vector machines) with subspaces, several recent
studies have proposed to embed the Grassmannian into a Hilbert space
by making use of a positive definite kernel. Unfortunately, only two
Grassmannian kernels are known, none of which -as we will show- is
universal, which limits their ability to approximate a target function ar-
bitrarily well. Here, we introduce several positive definite Grassmannian
kernels, including universal ones, and demonstrate their superiority over
previously-known kernels in various tasks, such as classification, cluster-
ing, sparse coding and hashing.
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1 Introduction

This paper introduces a set of positive definite kernels to embed Grassman-
nians (i.e., manifolds of linear subspaces that have a nonlinear Riemannian
structure) into Hilbert spaces, which have a more familiar Euclidean structure.
Nowadays, linear subspaces are a core representation of many visual recognition
techniques. For example, several state-of-the-art video, or image-set, matching
methods model the visual data as subspaces [5, 7, 22, 23, 10]. Linear subspaces
have also proven a powerful representation for many other computer vision ap-
plications, such as chromatic noise filtering [21] and domain adaptation [4].

Despite their success, linear subspaces suffer from the drawback that they
cannot be analyzed using Euclidean geometry. Indeed, subspaces lie on a special
type of Riemannian manifolds, the Grassmann manifold, which has a nonlin-
ear structure. As a consequence, popular techniques developed for Euclidean
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spaces do not apply. Recently, this problem has been addressed by embedding
the Grassmannian into a Hilbert space. This can be achieved either by tan-
gent space approximation of the manifold, or by exploiting a positive definite
kernel function to embed the manifold into a reproducing kernel Hilbert space
(RKHS). In either case, any existing Euclidean technique can then be applied to
the embedded data, since Hilbert spaces obey Euclidean geometry. Recent stud-
ies, however, report superior results with RKHS embedding over flattening the
manifold using its tangent spaces [5, 23, 9]. Intuitively, this can be attributed to
the fact that a tangent space is a first order approximation to the true geometry
of the manifold, whereas, being higher-dimensional, an RKHS has the capacity
of better capturing the nonlinearity of the manifold.

While RKHS embeddings therefore seem preferable, their applicability is
limited by the fact that only very few positive definite Grassmannian kernels are
known. Indeed, in the literature, only two kernels have been introduced to embed
Grassmannians into RKHS: the Binet-Cauchy kernel [24] and the projection
kernel [5]. The former is a homogeneous second order polynomial kernel, while
the latter is a linear kernel. As simple (low-order) polynomial kernels, they are
limited in their ability to closely approximate arbitrary functions. In contrast,
universal kernels provide much better generalization power [19, 13].

In this paper, we introduce a set of new positive definite Grassmannian ker-
nels, which, among others, includes universal Grassmannian kernels. To this
end, we start from the perspective of the two embeddings from which the Binet-
Cauchy and the projection kernels are derived: the Plücker embedding and the
projection embedding. These two embeddings yield two distance functions. We
then exploit the properties of these distances, in conjunction with several theo-
rems analyzing the positive definiteness of kernels, to derive the ten new Grass-
mannian kernels summarized in Table 1.

Our experimental evaluation demonstrates the benefits of our Grassmannian
kernels for classification, clustering, sparse coding and hashing. Our results show
that our kernels outperform the Binet-Cauchy and projection ones for gender
and gesture recognition, pose categorization and mouse behavior analysis.

2 Background Theory

In this section, we first review some notions of geometry of Grassmannians
and then briefly discuss existing positive definite kernels and their properties.
Throughout the paper, we use bold capital letters to denote matrices (e.g ., X)
and bold lower-case letters to denote column vectors (e.g ., x). Ip is the p × p
identity matrix. ‖X‖F =

√
Tr
(
XTX

)
indicates the Frobenius norm, with Tr(·)

the matrix trace.

2.1 Grassmannian Geometry

The space of p-dimensional linear subspaces of Rd for 0 < p < d is not a Eu-
clidean space, but a Riemannian manifold known as the Grassmannian G(d, p) [1].
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Table 1: The proposed Grassmannian kernels and their properties.

Kernel Equation Cond. Properties

Polynomial
kp,bc(X,Y ) =

(
β +

∣∣ det
(
XTY

)∣∣)α β > 0 pd

kp,p(X,Y ) =
(
β +

∥∥XTY
∥∥2
F

)α
β > 0

pd

RBF
kr,bc(X,Y ) = exp

(
β
∣∣ det

(
XTY

)∣∣) β > 0 pd, universal

kr,p(X,Y ) = exp
(
β
∥∥XTY

∥∥2
F

)
β > 0

pd, universal

Laplace
kl,bc(X,Y ) = exp

(
− β

√
1−

∣∣ det(XTY )
∣∣) β > 0

pd, universal

kl,p(X,Y ) = exp

(
− β

√
p−

∥∥XTY
∥∥2
F

)
β > 0

pd, universal

Binomial
kbi,bc(X,Y ) =

(
β −

∣∣ det
(
XTY

)∣∣)−α β > 1
pd, universal

kbi,p(X,Y ) =
(
β −

∥∥XTY
∥∥2
F

)−α
β > p pd, universal

Logarithm
klog,bc(X,Y ) = − log

(
2−

∣∣ det
(
XTY

)∣∣) − cpd

klog,p(X,Y ) = − log

(
p+ 1−

∥∥XTY
∥∥2
F

)
− cpd

We note that in the special case of p = 1, the Grassmann manifold becomes the
projective space Pd−1, which consists of all lines passing through the origin. A
point on the Grassmann manifold G(p, d) may be specified by an arbitrary d× p
matrix with orthogonal columns, i.e., X ∈ G(d, p)⇒XTX = Ip

1.

On a Riemannian manifold, points are connected via smooth curves. The dis-
tance between two points is defined as the length of the shortest curve connecting
them on the manifold. The shortest curve and its length are called geodesic and
geodesic distance, respectively. For the Grassmannian, the geodesic distance be-
tween two points X and Y is given by

δg(X,Y ) = ‖Θ‖2 , (1)

where Θ is the vector of principal angles between X and Y .

Definition 1 (Principal Angles). Let X and Y be two matrices of size d× p
with orthonormal columns. The principal angles 0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θp ≤ π/2
between two subspaces span(X) and span(Y ) are defined recursively by

1 A point on the Grassmannian G(p, d) is a subspace spanned by the columns of a
d × p full rank matrix and should therefore be denoted by span(X). With a slight
abuse of notation, here we call X a Grassmannian point whenever it represents a
basis for a subspace.
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cos(θi) = max
ui∈span(X)

max
vi∈span(Y )

uTi vi (2)

s.t. ‖ui‖2 = ‖vi‖2 = 1

uTi uj = 0, j = 1, 2, · · · , i− 1

vTi vj = 0, j = 1, 2, · · · , i− 1

In other words, the first principal angle θ1 is the smallest angle between any two
unit vectors in the first and the second subspaces. The cosines of the principal
angles correspond to the singular values of XTY [1]. In addition to the geodesic
distance, several other metrics can be employed to measure the similarity be-
tween Grassmannian points [5]. In Section 3, we will discuss two other metrics
on the Grassmannian.

2.2 Positive Definite Kernels and Grassmannians

As mentioned earlier, a popular way to analyze problems defined on a Grassman-
nian is to embed the manifold into a Hilbert space using a valid Grassmannian
kernel. Let us now formally define Grassmannian kernels:

Definition 2 (Real-valued Positive Definite Kernels). Let X be a nonempty
set. A symmetric function k : X × X → R is a positive definite ( pd) kernel on
X if and only if

∑n
i,j=1 cicjk(xi, xj) ≥ 0 for any n ∈ N, xi ∈ X and ci ∈ R.

Definition 3 (Grassmannian Kernel). A function k : G(p, d)× G(p, d)→ R
is a Grassmannian kernel if it is well-defined and pd. In our context, a function
is well-defined if it is invariant to the choice of basis, i.e., k(XR1,Y R2) =
k(X,Y ), for all X,Y ∈ G(d, p) and R1,R2 ∈ SO(p), where SO(p) denotes the
special orthogonal group.

The most widely used kernel is arguably the Gaussian or radial basis function
(RBF) kernel. It is therefore tempting to define a Radial Basis Grassmannian
kernel by replacing the Euclidean distance with the geodesic distance. Unfor-
tunately, although symmetric and well-defined, the function exp(−βδ2g(·, ·)) is
not pd. This can be verified by a counter-example using the following points on
G(3, 2)2:

X1 =

1 0
0 1
0 0

 , X2 =

−0.0996 −0.3085−0.4967 −0.8084
−0.8622 0.5014

 , X3 =

−0.9868 0.1259
−0.1221 −0.9916
−0.1065 −0.0293

 , X4 =

0.1736 0.0835
0.7116 0.6782
0.6808 −0.7301

 .
The function exp(−δ2g(·, ·)) for these points has a negative eigenvalue of −0.0038.

Nevertheless, two Grassmannian kernels, i.e., the Binet-Cauchy kernel [24]
and the projection kernel [5], have been proposed to embed Grassmann manifolds
into RKHS. The Binet-Cauchy and projection kernels are defined as

k2bc(X,Y ) = det
(
XTY Y TX

)
, (3)

kp(X,Y ) =
∥∥XTY

∥∥2
F
. (4)

2 Note that we rounded each value to its 4 most significant digits.
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Property 1 (Relation to Principal Angles). Both kp and kbc are closely
related to the principal angles between two subspaces. Let θi be the ith principal
angle between X,Y ∈ G(p, d), i.e., by SVD, XTY = UΓV T , with Γ a diagonal
matrix with elements cos θi. Then

kp(X,Y ) =
∥∥XTY

∥∥2
F

= Tr
(
UΓV TV ΓUT

)
= Tr

(
Γ 2
)

=

p∑
i=1

cos2(θi) .

Similarly, one can show that k2bc(X,Y ) =
p∏
i=1

cos2(θi).

3 Embedding Grassmannians to Hilbert Spaces

While kp and k2bc have been successfully employed to transform problems on
Grassmannians to Hilbert spaces [5, 7, 23], the resulting Hilbert spaces them-
selves have received comparatively little attention. In this section, we aim to
bridge this gap and study these two spaces, which can be explicitly computed.
To this end, we discuss the two embeddings that define these Hilbert spaces,
namely the Plücker embedding and the projection embedding. These embed-
dings, and their respective properties, will in turn help us devise our set of new
Grassmannian kernels.

3.1 Plücker Embedding

To study the Plücker embedding, we first need to review some concepts of exte-
rior algebra.

Definition 4 (Alternating Multilinear Map). Let V and W be two vector
spaces. A map g : V × · · · × V︸ ︷︷ ︸

k copies

→ W is multilinear if it is linear in each slot,

that is if

g(v1, · · · , λvi+λ′v′i, · · · ,vk) = λg(v1, · · · ,vi, · · · ,vk)+λ′g(v1, · · · ,v′i, · · · ,vk) .

Furthermore, the map g is alternating if, whenever two of the inputs to g are the
same vector, the output is 0. That is, if g(· · · ,v, · · · ,v, · · · ) = 0, ∀v.

Definition 5 (kth Exterior Product). Let V be a vector space. The kth ex-

terior product of V , denoted by
∧k

V is a vector space, equipped with an alter-

nating multilinear map g : V × · · · × V︸ ︷︷ ︸
k copies

→
∧k

V of the form g(v1, · · · ,vk) =

v1 ∧ · · · ∧ vk, with ∧ the wedge product.

The wedge product is supercommutative and can be thought of as a general-
ization of the cross product in R3 to an arbitrary dimension. Importantly, note
that the kth exterior product

∧k
V is a vector space, that is

k∧
V = span ({v1 ∧ v2 ∧ · · · ∧ vk}) , ∀vi ∈ V .
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The Grassmannian G(d, p) can be embedded into the projective space P(
∧pRd)

as follows. Let X be a point on G(p, d) described by the basis {x1,x2, · · · ,xp},
i.e., X = span ({x1,x2, · · · ,xp}). The Plücker map of X is given by:

Definition 6 (Plücker Embedding). The Plücker embedding P : G(p, d) →
P(
∧pRd) is defined as

P (X) = [x1 ∧ x2 ∧ · · · ∧ xp] , (5)

where X is the subspace spanned by {x1,x2, · · · ,xp}.

Example 1. Consider the space of two-dimensional planes in R4, i.e., G(2, 4). In
this space, an arbitrary subspace is described by its basis B = [w1|w2]. Let ei
be the unit vector along the ith axis. We can write wj =

∑4
i=1 aj,iei. Then

P (B) =
( 4∑
i=1

a1,iei

)
∧
( 4∑
i=1

a2,jej

)
= (a1,1a2,2 − a1,2a2,1)(e1 ∧ e2) + (a1,1a2,3 − a1,3a2,1)(e1 ∧ e3)

+ (a1,1a2,4 − a1,4a2,1)(e1 ∧ e4) + (a1,2a2,3 − a1,3a2,2)(e2 ∧ e3)

+ (a1,2a2,4 − a1,4a2,2)(e2 ∧ e4) + (a1,3a2,4 − a1,4a2,3)(e3 ∧ e4) .

Hence, the Plücker embedding of G(2, 4) is a 6-dimensional space spanned by
{e1∧e2, e1∧e3, · · · , e3∧e4}. A closer look at the coordinates of the embedded
subspace reveals that they are indeed the minors of all possible 2×2 submatrices
of B. This can be shown to hold for any d and p.

Proposition 1. The Plücker coordinates of X ∈ G(d, p) are the p × p minors
of the matrix X obtained by taking p rows out of the d possible ones.

Remark 1. The space induced by the Plücker map of G(p, d) is

(
p
d

)
-dimensional.

To be able to exploit the Plücker embedding to design new kernels, we need
to define an inner product over P(

∧pRd). Importantly, to be meaningful, this
inner product needs to be invariant to the specific realization of a point on G(p, d)
(recall that, e.g ., swapping two columns of a specific realization X ∈ G(d, p) still
corresponds to the same point on G(d, p)). Furthermore, we would also like this
inner product to be efficient to evaluate, thus avoiding the need to explicitly
compute the high-dimensional embedding. Note in particular that, for vision
applications, the dimensionality of P(

∧pRd) becomes overwhelming and hence
explicitly computing the embedding is impractical. To achieve these goals, we
rely on the following definition and theorem:

Definition 7 (Compound Matrices). Given a d × p matrix A, the matrix
whose elements are the minors of A of order q arranged in a lexicographic order
is called the qth compound of A, and is denoted by Cq(A).
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Theorem 1 (Binet-Cauchy Theorem). Let A and B be two rectangular ma-
trices of size d×p1 and d×p2, respectively. Then, Cq(A

TB) = Cq(A)TCq(B).

Therefore, for X,Y ∈ Rd×p, we have Tr
(
Cp(X)TCp(Y )

)
= Tr

(
Cp(X

TY )
)

=

det
(
XTY

)
.

Since, for X ∈ G(p, d), Cp(X) stores all p × p minors and hence conveys
the Plücker coordinates of X, this would suggest defining the inner product
for the Plücker embedding as det(XTY

)
. This is indeed what was proposed

in [5, 24] where det(·) was used as a linear kernel. However, while det(XTY
)

is
invariant to the action of SO(p), it is not invariant to the specific realization of
a subspace. This can be simply verified by permuting the columns of X, which
does not change the subspace, but may change the sign of det(·). Note that
this sign issue was also observed by Wolf et al . [24]. However, this problem was
circumvented by considering the second-order polynomial kernel k2bc.

In contrast, here, we focus on designing a valid inner product that satisfies
this invariance condition. To this end, we define the inner product in P(

∧pRd)
as 〈X,Y 〉P = |P (X)TP (Y )| =

∣∣det
(
XTY

)∣∣. This inner product induces the
distance

δ2bc(X,Y ) = ‖P (X)− P (Y )‖2 = 2− 2
∣∣det

(
XTY

)∣∣ . (6)

Clearly, if {θi}pi=1 is the set of principal angles between two Grassmannian points
X and Y , then 〈X,Y 〉P =

∏p
i=1 cos(θi), which is invariant to the specific real-

ization of a subspace since 0 ≤ θi ≤ π/2.
In the following, we show that the Plücker embedding has the nice property

of being closely related to the true geometry of the corresponding Grassmannian:

Theorem 2 (Curve Length Equivalence). The length of any given curve is
the same under δbc and δg up to a scale of

√
2.

Proof. Given in supplementary material. ut

3.2 Projection Embedding

We now turn to the case of the projection embedding. Note that this embedding
has been better studied than the Plücker one [8].

Definition 8 (Projection Embedding). The projection embedding Π : G(p, d)→
Sym(d) is defined as

Π(X) = XXT . (7)

The projection embedding Π(·) is a diffeomorphism from a Grassmann man-
ifold onto the idempotent symmetric matrices of rank p, i.e., it is a one-to-one,
continuous, differentiable mapping with a continuous, differentiable inverse [3].
The space induced by this embedding is a smooth, compact submanifold of
Sym(d) of dimension d(d − p). Since Π(X) is a symmetric d × d matrix, a

natural choice of inner product is 〈X,Y 〉Π = Tr
(
Π(X)TΠ(Y )

)
=
∥∥XY

∥∥2
F

.
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This inner product can be shown to be invariant to the specific realization of a
subspace, and induces the distance

δ2p(X,Y ) =
∥∥Π(X)−Π(Y )

∥∥2
F

= 2p− 2
∥∥XTY

∥∥2
F
.

Due to space limitation, we do not discuss the properties of the projection
embedding, such as isometry [3] and length of curves [6]. We refer the reader
to [8] for a more thorough discussion of the projection embedding.

4 Grassmannian Kernels

From the discussion in Section 3, k2bc and kp, defined in Eq. 4 and Eq. 3, can be
seen to correspond to a homogeneous second order polynomial kernel in the space
induced by the Plücker embedding and to a linear kernel in the space induced by
the projection embedding, respectively. In this section, we show that the inner
products that we defined in Section 3 for the Plücker and projection embeddings
can actually be exploited to derive many new Grassmannian kernels, including
universal kernels and conditionally positive definite kernels. In the following,
we denote by k·,bc and k·,p kernels derived from the Plücker embedding (Binet-
Cauchy kernels) and from the projection embedding, respectively.

4.1 Polynomial Kernels

Given an inner product, which itself defines a valid linear kernel, the most
straightforward way to create new kernels is to consider higher degree poly-
nomials. Such polynomial kernels are known to be pd. Therefore, we can readily
define polynomial kernels on the Grassmannian as

kp,bc(X,Y ) =
(
β +

∣∣ det
(
XTY

)∣∣)α , β > 0 , (8)

kp,p(X,Y ) =
(
β +

∥∥XTY
∥∥2
F

)α
, β > 0 . (9)

Note that the kernel used in [24] is indeed the homogeneous second order kp,bc
with α = 2 and β = 0.

4.2 Universal Grassmannian Kernels

Although often used in practice, polynomial kernels are known not to be uni-
versal [19]. This can have a crucial impact on their representation power for a
specific task. Indeed, from the Representer Theorem [16], we have that, for a
given set of training data {xj}, j ∈ Nn, Nn = {1, 2, · · · , n} and a pd kernel k,
the function learned by any algorithm can be expressed as

f̂(x∗) =
∑
j∈Nn

cjk(x∗, xj) . (10)
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Importantly, only universal kernels have the property of being able to approx-
imate any target function ft arbitrarily well given sufficiently many training
samples. Therefore, kp and k2bc may not generalize sufficiently well for certain
problems. In the following, we develop several universal Grassmannian kernels.
To this end, we make use of negative definite kernels and of their relation to pd
ones. Let us first formally define negative definite kernels.

Definition 9 (Real-valued Negative Definite Kernels). Let X be a nonempty
set. A symmetric function ψ : X ×X → R is a negative definite ( nd) kernel on
X if and only if

∑n
i,j=1 cicjk(xi, xj) ≤ 0 for any n ∈ N, xi ∈ X and ci ∈ R with∑n

i=1 ci = 0.

Note that, in contrast to positive definite kernels, an additional constraint of the
form

∑
ci = 0 is required in the negative definite case.

The most important example of nd kernels is the distance function defined
on a Hilbert space. More specifically:

Theorem 3 ([9]). Let X be a nonempty set, H be an inner product space, and
ψ : X → H be a function. Then f : (X × X ) → R defined by f(xi, xj) =

‖ψ(xi)− ψ(xj)‖2H is negative definite.

Therefore, being distances in Hilbert spaces, both δ2bc and δ2p are nd kernels.
We now state an important theorem which establishes the relation between pd
and nd kernels.

Theorem 4 (Theorem 2.3 in Chapter 3 of [2]). Let µ be a probability
measure on the half line R+ and 0 <

∫∞
0
tdµ(t) < ∞. Let Lµ be the Laplace

transform of µ, i.e., Lµ(s) =
∫∞
0
e−tsdµ(t), s ∈ C+. Then, Lµ(βf) is positive

definite for all β > 0 if and only if f : X × X → R+ is negative definite.

The problem of designing a pd kernel on the Grassmannian can now be cast
as that of finding an appropriate probability measure µ. Below, we show that this
lets us reformulate popular kernels in Euclidean space as Grassmannian kernels.

RBF Kernels. Grassmannian RBF kernels can be obtained by choosing µ(t) =
δ(t− 1) in Theorem 4, where δ(t) is the Dirac delta function. This choice yields
the Grassmannian RBF kernels (after discarding scalar constants)

kr,bc(X,Y ) = exp
(
β
∣∣det

(
XTY

)∣∣) , β > 0 , (11)

kr,p(X,Y ) = exp
(
β
∥∥XTY

∥∥2
F

)
, β > 0 . (12)

Note that the RBF kernel obtained from the projection embedding, i.e. kr,p, was
also used by Vemulapalli et al . [23]. However, the positive definiteness of this
kernel was neither proven nor discussed.



10 Harandi et al .

Laplace Kernels. The Laplace kernel is another widely used Euclidean ker-
nel, defined as k(x,y) = exp(−β‖x − y‖). To obtain Laplace kernels on the
Grassmannian, we make use of the following theorem for nd kernels.

Theorem 5 (Corollary 2.10 in Chapter 3 of [2]). If ψ : X × X → R is
negative definite and satisfies ψ(x,x) = 0 then so is ψα for 0 < α < 1.

As a result, both δp(·, ·) and δbc(·, ·) are nd by choosing α = 1/2 in Theorem 5.
By employing either δp(·, ·) or δbc(·, ·) along with µ(t) = δ(t− 1) in Theorem 4,
we obtain the Grassmannian Laplace kernels

kl,bc(X,Y ) = exp

(
− β

√
1−

∣∣ det
(
XTY

)∣∣) , β > 0 , (13)

kl,p(X,Y ) = exp

(
− β

√
p−

∥∥XTY
∥∥2
F

)
, β > 0 . (14)

As shown in [19], the RBF and Laplace kernels are universal for Rd, d > 0.
Since the Plücker and projection embeddings map to Euclidean spaces, this
property clearly extends to the Grassmannian RBF and Laplace kernels.

Binomial Kernels. By choosing µ(t) = exp(−β0t)u(t), where u(t) is the unit

(or Heaviside) step function, i.e., u(t) =
∫ t
−∞ δ(x)dx, we obtain the Grassman-

nian binomial kernels

kb,bc(X,Y ) =
1

β −
∣∣ det

(
XTY

)∣∣ , β > 1 , (15)

kb,p(X,Y ) =
1

β −
∥∥XTY

∥∥2
F

, β > p . (16)

Note that the generating function µ is a valid measure only for β0 > 0. This
translates into the constraints on β given in Eq. 15 and Eq. 16.

A more general form of binomial kernels can be derived by noting that, if
k(·, ·) : X × X → R+ is pd, then so is kα(·, ·), α > 0 (see Proposition 2.7 in
Chapter 3 of [2]). This lets us define the Grassmannian kernels

kbi,bc(X,Y ) =
(
β −

∣∣det
(
XTY

)∣∣)−α , β > 1, α > 0 , (17)

kbi,p(X,Y ) =

(
β −

∥∥XTY
∥∥2
F

)−α
, β > p, α > 0 . (18)

To show that the binomial kernels are universal, we note that

(1− t)−α =

∞∑
j=0

(
−α
j

)
(−1)jtj , with

(
α
j

)
=

j∏
i=1

(α− i+ 1)/i .

It can be seen that

(
−α
j

)
(−1)j > 0, which implies that both kbi,bc and kbi,p

have non-negative and full Taylor series. This, as was shown in Corollary 4.57
of [19], is a necessary and sufficient condition for a kernel to be universal.
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4.3 Conditionally Positive Kernels

Another important class of kernels is the so-called conditionally positive definite
kernels [2]. Formally:

Definition 10 (Conditionally Positive Definite Kernels). Let X be a nonempty
set. A symmetric function ψ : X × X → R is a conditionally positive definite
( cpd) kernel on X if and only if

∑n
i,j=1 cicjk(xi, xj) ≥ 0 for any n ∈ N, xi ∈ X

and ci ∈ R with
∑n
i=1 ci = 0.

The relations between cpd kernels and pd ones were studied by Berg et al . [2]
and Schölkopf [15] among others. Before introducing cpd kernels on the Grass-
mannian, we state an important property of cpd kernels.

Proposition 2 ([15]). For a kernel algorithm that is translation invariant, one
can equally use cpd kernels instead of pd ones.

This property relaxes the requirement of having pd kernels for certain types of
kernel algorithms. A kernel algorithm is translation invariant if it is independent
of the position of the origin. For example, in SVMs, maximizing the margin of
the separating hyperplane between two classes is independent of the position of
the origin. As a result, one can seamlessly use a cpd kernel instead of a pd kernel
in SVMs. To introduce cpd kernels on Grassmannians, we rely on the following
proposition:

Proposition 3 ([2]). If f : X × X → R+ is nd then − log(1 + f) is cpd.

This lets us derive the Grassmannian cpd kernels

klog,bc(X,Y ) = − log

(
2− det

(
XTY

))
, (19)

klog,p(X,Y ) = − log

(
p+ 1−

∥∥XTY
∥∥2
F

)
. (20)

The ten new kernels derived in this section are summarized in Table 1.
Note that given the linear Plücker and projection kernels, i.e., klin,bc(X,Y ) =

|det(XTY )| and klin,p(X,Y ) = ‖XTY ‖2F , it is possible to obtain the polyno-
mial and Gaussian extensions via standard kernel construction rules [17]. How-
ever, our approach lets us derive many other kernels in a principled manner
by, e.g ., exploiting different measures in Theorem 4. Nonetheless, here, we con-
fined ourselves to deriving kernels corresponding to the most popular ones in
Euclidean space, and leave the study of additional kernels as future work.

5 Experimental Evaluation

In this section, we compare our new kernels with the baseline kernels k2bc and
kp using three different kernel-based algorithms on Grassmannians: kernel SVM,
kernel k-means and kernelized Locality Sensitive Hashing (kLSH). Additional
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Fig. 1: GEI samples from CASIA [26].

Table 2: Gender recognition. Accuracies on the CASIA gait dataset [26].

kernel k2
bc kp,bc kr,bc kl,bc kbi,bc klog,bc

SVM 76.8%± 9.1 84.1%± 7.2 85.8%± 4.6 84.5%± 4.5 86.4%± 4.4 82.7%± 7.4
GGDA[7] 83.7%± 3.7. 89.0%± 3.7 88.3%± 3.6 88.0%± 3.6 89.4%± 3.1 84.9%± 3.5

kernel kp kp,p kr,p kl,p kbi,p klog,p

SVM 83.7%± 4.3 89.3%± 5.8 88.2%± 5.8 87.6%± 5.5 88.7%± 5.1 85.8%± 8.3
GGDA[7] 90.3%± 4.7 93.5%± 2.7 91.3%± 3.8 91.0%± 3.8 91.1%± 3.1 89.7%± 3.6

results using kernel sparse coding are given in supplementary material. In our
experiments, unless stated otherwise, we obtained the kernel parameters (i.e., β
for all kernels except the logarithm ones and α for the polynomial and binomial
cases) by cross-validation.

5.1 Gender Recognition from Gait

We first demonstrate the benefits of our kernels on a binary classification prob-
lem on the Grassmannian using SVM and the Grassmannian Graph-embedding
Discriminant Analysis (GGDA) proposed in [7]. To this end, we consider the
task of gender recognition from gait (i.e., videos of people walking). We used
Dataset-B of the CASIA gait database [26], which comprises 124 individuals (93
males and 31 females). The gait of each subject was captured from 11 view-
points. Every video is represented by a gait energy image (GEI) of size 32× 32
(see Fig. 1), which has proven effective for gender recognition [25].

In our experiment, we used the videos captured with normal clothes and
created a subspace of order 3 from the 11 GEIs corresponding to the different
viewpoints. This resulted in 731 points on G(3, 1024). We then randomly se-
lected 20 individuals (10 male, 10 female) as training set and used the remaining
individuals for testing. In Table 2, we report the average accuracies over 10 ran-
dom partitions. Note that for the SVM classifier, all new kernels derived from
the Plücker embedding outperform k2bc, with highest accuracy obtained with the
binomial kernel. Similarly, all new projection kernels outperform kp, and the
polynomial kernel achieves the overall highest accuracy of 89.3%. For GGDA,
bar the case of klog,p, all new kernels also outperform previously-known ones.

5.2 Pose Categorization

As a second experiment, we evaluate the performance of our kernels on the task
of clustering on the Grassmannian using kernel k-means. To this end, we used
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Fig. 2: Sample images from CMU-PIE.

Fig. 3: Sample images from the
mouse behavior dataset [11].

Table 3: Pose categorization. Clustering accuracies on the CMU-PIE dataset.

kernel k2
bc kp,bc kr,bc kl,bc kbi,bc klog,bc

accuracy 70.3% 72.2% 78.9% 74.8% 78.5% 72.2%
NMI 0.763 0.779 0.803 0.786 0.798 0.772

kernel kp kp,p kr,p kl,p kbi,p klog,p

accuracy 77.1% 79.9% 80.9% 79.8% 82.9% 74.4%
NMI 0.810% 0.817 0.847 0.843 0.853 0.812

the CMU-PIE face dataset [18], which contains images of 67 subjects with 13
different poses and 21 different illuminations (see Fig. 2 for examples). From
each image, we computed a 2 × 2 spatial pyramid of LBP [14] histograms and
concatenated them to form a 232 dimensional descriptor. For each subject, we
collected the images acquired with the same pose, but different illuminations, in
an image set, which we then represented as a linear subspace of order 3. This
resulted in a total of 67× 13 = 871 Grassmannian points on G(3, 232). We used
10 samples from each pose to compute the kernel parameters.

The goal here is to cluster together image sets representing the same pose. To
evaluate the quality of the clusters, we report both the clustering accuracy and
the Normalized Mutual Information (NMI) [20], which measures the amount
of statistical information shared by random variables representing the cluster
distribution and the underlying class distribution of the data points. From the
results given in Table 3, we can see that, with the exception of klog,p, the new
kernels in each embedding outperform their respective baseline, kp or k2bc. For
the Binet-Cauchy kernels, the maximum accuracy (and NMI score) is reached
by the RBF kernel. The overall maximum accuracy of 82.9% is achieved by the
projection-based binomial kernel.

We also evaluated the intrinsic k-means algorithm of [22]. This algorithm
achieved 67.7% accuracy and an NMI score of 0.75. Furthermore, intrinsic k-
means required 9766s to perform clustering on an i7 machine using Matlab.
On the same machine, the runtimes for kernel k-means using kr,bc and kbi,p
(which achieve the highest accuracies in Table 3) were 3.1s and 2.5s, respectively.
This clearly demonstrates the benefits of RKHS embedding to tackle clustering
problems on the Grassmannian.



14 Harandi et al .

10%

15%

20%

25%

30%

35%

40%

45%

50%

5 10 15 20 25 30

R
e

c
o

g
n

it
io

n
 a

c
c
u

ra
c

y
 (

%
) 

Number of bits 

k_bc^2 k_bc,log

k_bc,p k_bc,l

k_bc,bin k_bc,rbf

𝑘𝑏𝑐
2  

𝑘𝑝,𝑏𝑐 𝑘𝑙,𝑏𝑐 

𝑘𝑟,𝑏𝑐 

𝑘𝑙𝑜𝑔,𝑏𝑐 

𝑘𝑏𝑖,𝑏𝑐 

10%

20%

30%

40%

50%

60%

70%

5 10 15 20 25 30

R
e

c
o

g
n

it
io

n
 a

c
c
u

ra
c

y
 (

%
) 

Number of bits 

kp k_p,log

k_p,p k_p,rbf

k_p,l k_p,bin

𝑘𝑝 

𝑘𝑝,𝑝 

𝑘𝑏𝑖,𝑝 

𝑘𝑙𝑜𝑔,𝑝 

𝑘𝑟,𝑝 

𝑘𝑙,𝑝 

Fig. 4: Video hashing. Approximate nearest-neighbor accuracies for kernels derived

from (left) the Plücker and (right) the projection embeddings.

5.3 Mouse Behavior Analysis

Finally, we utilized kernelized Locality-Sensitive Hashing (kLHS) [12] to perform
recognition on the 2000 videos of the mice behavior dataset [11]. The basic idea of
kLSH is to search for a projection from an RKHS to a low-dimensional Hamming
space, where each sample is encoded with a b-bit vector called the hash key. The
approximate nearest-neighbor to a query can then be found efficiently in time
sublinear in the number of training samples.

The mice dataset [11] contains 8 behaviors (i.e., drinking, eating, grooming,
hanging, rearing, walking, resting and micro-movement of head) of several mice
with different coating colors, sizes and genders (see Fig. 3 for examples). In
each video, we estimated the background to extract the region containing the
mouse in each frame. These regions were then resized to 48× 48, and the video
represented with an order 6 subspace, thus yielding points on G(6, 2304). We
randomly chose 1000 videos for training and used the remaining 1000 videos for
testing. We report the average recognition accuracy over 10 random partitions.

Fig. 4 depicts the recognition accuracies of the new and baseline kernels as
a function of the number of bits b. For the Plücker embedding kernels, the gap
between our RBF kernel and k2bc reaches 23% for a hash key of size 30. For the
same hash key size, the projection-based heat kernel outperforms kp by more
than 14%, and thus reaches the overall highest accuracy of 67.2%.

6 Conclusions and Future Work

We have introduced a set of new positive definite kernels to embed Grassman-
nian into Hilbert spaces, which have a more familiar Euclidean structure. This
set includes, among others, universal Grassmannian kernels, which have the abil-
ity to approximate general functions. Our experiments have demonstrated the
superiority of such kernels over previously-known Grassmannian kernels, i.e., the
Binet-Cauchy kernel [24] and the projection kernel [5]. It is important to keep
in mind, however, that choosing the right kernel for the data at hand remains
an open problem. In the future, we intend to study if searching for the best
probability measure in Theroem 4 could give a partial answer to this question.
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