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Abstract
This paper describes an approach of representing 3D shape by using a set of invariant Spherical Harmonic (SH)
coefficients after conformal mapping. Specifically, a genus-zero 3D mesh object is first conformally mapped onto
the unit sphere by using a modified discrete conformal mapping, where the modification is based on Möbius Fac-
torization and is aimed at obtaining a canonical conformal mapping. Then a Spherical Harmonic Analysis is
applied to the resulting conformal spherical meshes. The obtained SH coefficients are further made invariant to
translation and rotation, while at the same time retain their completeness, so that the original shape information
has been faithfully preserved.
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1. Introduction

3D object recognition is one of the central top-
ics in computer vision and pattern recognition
research. A good shape representation scheme is
at the heart of any practical shape recognition
systems. This paper aims at developing a new
3D shape representation and recognition method
for general mesh objects. It is well known that in
2D shape recognition the 2D Fourier Descriptor
(2D-FD) is an elegant and powerful technique
possessing many desirable properties, such as be-
ing easy to compute, robust to noise, invariant to
rotations, mathematically complete and having
good discriminative ability. Our strategy here is
to extend the technique to 3D.

Although it is conceptually straightforward, in

∗A preliminary version of the paper was presented on
ACCV 2006 [26]. NICTA is funded through the Aus-
tralia Government’s Backing Australia’s Ability Initiative,
in part through the ARC.

practice such an extension is somewhat non-
trivial. The main challenges arise from two tasks:
(1) spherical parametrization; and (2) invariant
computation.

We propose the use of a new discrete confor-
mal mapping (DCM) in conjunction with the in-
variant Spherical Harmonics (SH) for the solu-
tion. To our knowledge, this paper represents the
first demonstration of such techniques to provide
a general shape description for mesh surfaces. As
the results of the paper will show, the method
performs excellently in providing shape descrip-
tors that can be used to represent 3D shapes. In
principle, the shape descriptors are complete, in
that they can be used to reconstruct the original
surface.

In 2D-FD processing, the 2D shape (contour) is
mapped onto a unit circle, by using an arc-length
parametrization. This is followed by Fourier anal-
ysis on this circle. Analogously in 3D, the 3D ob-
ject (surface) should first be mapped onto a unit
sphere, followed by Fourier analysis on the sphere.
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Fourier analysis on a sphere is not a difficult
task; Spherical Harmonic analysis (SH) is such
a technique ([7]) and had been introduced to
computer vision for 3D representation decades
ago. But the real difficulty comes from surface
parametrization. Unlike in 2D where arc-length
is a natural parametrization, there is no natu-
ral way of doing surface parametrization for a
general 3D surface, even though it does have a
spherical-topology. Some conventional spherical
parameterizations techniques exist, but seldom
do they provide satisfactory results (as will be
explained later). This paper provides a new
method to tackle this difficulty. Our method is
based on the discrete conformal mapping (DCM),
which is a recently technique mainly developed
in computer graphics area. So far, no systematic
result has been reported on using DCM to study
the separability of different 3D shapes.

We propose several key improvements to the
DCM computation, to make it more suitable
and more applicable for shape description and
recognition. Among others, a new initialization
scheme and a Möbius normalization method
are the most notable ones, which substantially
improve the efficiency of the computation. The
Möbius normalization is very important to guar-
antee the uniqueness of the parametrization.
This idea was actually inspired by the well-known
method of projective stratification in vision re-
construction[19].

After DCM mapping, we then apply the spher-
ical harmonics (SH) expansion to derive a com-
plete and invariant shape representation. We
recognize that both the invariance (w.r.t. irrel-
evant transformations) and the completeness
are equally important issues for a good shape rep-
resentation. Most existing SH-invariants methods
have, however, overlooked the second issue. As
a result, using conventional SH invariants often
lead to significant information loss, which conse-
quently degrade the performance. We therefore
propose a new method here to construct truly
complete SH invariants, basing on a recent paper
of SH computation[12]. By this method the

SH coefficients are made invariant to irrelevant
transformations, while at the same time retain
the completeness.

We confine our analysis to genus-0 (i.e., spher-
ical topology) mesh objects. This does not com-
promise the goal of the paper at this stage.
The reasons are: apart from apparent theoretic
value of genus-0, (1) a large portion of com-
monly encountered objects have spherical topolo-
gies. Some visually very complex objects, though
look weird, have spherical topologies; (2) other
object that does not have a spherical topology can
be approximated by a genus-0 object using some
recent graphics tools (eg., alpha-shape or topolog-
ical surgery); (3) furthermore, higher genus ob-
jects can often be broken into genus-0 objects in
some canonical ways.

We conducted experiments on a small set
of meshes of complex geometries and different
classes. Results show these 3D-FD descriptors
are invariant to rotation/translation/scale, and
robust to different tessellation, triangulation and
resolution, and noise. In addition, they com-
pletely preserve the geometric information of the
original shape. Shape comparison and recogni-
tion experiments have given encouraging results.

2. Shape Representation

3D shape representation (description) has a
rich history in computer vision and pattern recog-
nition research. There has been a large number
of methods existing for 3D shape representations.
They can be roughly classified into two categories:
discriminative and complete. The former one is
designed to obtain a set of features in order to
compare, retrieve, classify, and distinguish be-
tween different shapes. For example, a sphereness
feature is sufficient to distinguish between an ap-
ple and a banana. While, the second one is a
faithful and invertible representation of the orig-
inal shape. It serves as a congruent coordinates
system. This paper is devoted to this category,
a complete representation. Our new 3D-FDs are
truly complete in that all necessary information
to describe and reconstruct the original shape is
fully retained.
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3. Previous Work

3.1. Spherical parametrization
Because SH is defined on a sphere domain, it is

vitally important to find an appropriate spherical
parametrization for general 3D objects. A spher-
ical parametrization is a bijective mapping from
the object surface to the unit sphere. Most con-
ventional SH-based surface representation often
use naive parametrization method, such as use
center-emitted rays to intersect the object sur-
face, they therefore can only process convex ob-
jects or star-like objects ([1]).

Horn’s EGI (and its many extensions) is a
well-known and nice method for shape descrip-
tion[2][3]. It is based on the theory of Gauss map,
hence has a solid theoretical ground. But, in gen-
eral the Gauss map is not one-to-one for a concave
object, therefore its many useful properties only
enjoyed by convex objects.

Recent attempts at spherical parametrization
of complex (e.g., concave, non-star-like, con-
volved, folded) 3D objects provided many other
interesting approaches. A popular scheme is to
gradually deform a surface until it maps onto the
sphere (,or conversely deform a sphere to the sur-
face). Herbert, Ikeuchi and Delingette’s SAI [2],
and Sijbers and Dyck’s 3D-Fourier [4] are exam-
ples of the kind. A shortcoming with them lies in
the hardness to analyze the results, due to their
heuristic nature. Brechbuhler, et.al proposed an
interesting method based on solving a heat con-
duction equation inside the 3D object volume
[11]. However, the computation burden is very
heavy and the final result depends on some user
specified landmark positions.

In 3D model retrieval area some intuitive
methods have been proposed. Kazhdan and
Funkhouser et al partitioned a 3D object volume
into concentric spherical shells ([7]). Similar ideas
have been used by Saupe and Vranic [1]. X.Liu,
et al designed a Radon-like Directional Histogram
Model for 3D shape comparison [5]. The au-
thors also extended the Haar-invariant method to
3D discrete structures [10]. The above methods,
though may be capable of describing arbitrary-
genus objects, are mainly discriminative, there-
fore are not suited to the object of the paper.

3.2. Discrete conformal mapping
Discrete conformal mapping (DCM) is a newly

developed technique mainly in computer graphics
and CAD area. Although the underlying math-
ematical principle was known centuries ago, how
to apply them to modern digital meshes is still
unfamiliar to many practitioners. Recently, sev-
eral researchers have made remarkable progress
along this direction. ([16][21][23][14]).

DCM has many nice properties that make it
especially suited to the application of surface
parametrization. The most notable one is that it
preserves angles, and hence local geometries. In
addition, it depends only on the surface geometry
(the Riemann metric), and therefore is robust to
changes of data triangulation, resolution (level-
of-detail) and noise. A recent paper provides a
method for general 3D shape classification using
conformal invariants [22].

However, when try to apply the DCM to 3D
shape recognition, existing methods have several
difficulties: Firstly, many methods were designed
for the applications where human interventions
are acceptable or even preferable. For example,
some methods require doing ’cuttings’ on the sur-
face, some need to specify some landmarks. Such
interaction is obvious not suitable for automatic
shape recognition; Secondly, the uniqueness of the
mapping is not always guaranteed, which subse-
quently causes ambiguity in shape representation;
Thirdly, many methods are computationally ex-
pensive. Some take hours to get a single mapping.

In order to better enjoy the nice properties of
DCM in shape description, while avoid the short-
comings, we propose a new and efficient DCM
algorithm to overcome most of these problems.
The efficiency of our new DCM algorithms comes
from three innovative procedures: (1) initializa-
tion by planar-graph-drawing; (2) diffusion with
exponential maps; (3) normalization based on
Möbius factorization.

4. New Spherical Parametrization

Our new method of spherical parametrization
is based on the DCM computation. We first give
a brief introduction to some mathematical back-
grounds, then explain the new method in detail.
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4.1. Mathematical backgrounds
Suppose M1 and M2 are two regular surfaces.

A bijective differentiable mapping f : M1 → M2

between the two surfaces is said to be conformal
if it leaves the angle between curves on the surface
invariant. A mapping between two surfaces is a
conformal mapping if and only if it re-scales the
first fundamental forms everywhere.

According to the celebrated Riemann Mapping
Theorem, there always exists a conformal map-
ping between any two genus-zero surfaces. In par-
ticular, there exists a conformal mapping from
any genus-0 surface to the unit sphere S2—a
spherical parametrization of the surface.

However, such a conformal mapping is not
unique since two such maps may differ by a fur-
ther conformal mapping of S2 to itself. The
set of such mappings form S2 to S2 forms a 6-
dimensional Lie group, the Möbius group, as will
be explained now.

We identify the 2-dimensional sphere S2 with
the one-point-compactified complex plane lC ∪
{∞} via the stereographic mapping

ϕ(x, y, z) = (x/(1− z) + iy/(1− z)) (1)

where (x, y, z) are the Euclidean coordinates of
a point on the unit sphere. The conformal map-
pings S2 to itself are then simply the group of
Möbius transforms of the complex plane given
by

m(z) =
az + b

cz + d
with ad− bc 6= 0, (2)

where z, a, b, c and d ∈ lC. This transform has 3
complex (6 real) parameters, since multiplication
of a, b, c and d by a complex number does not
change the transform.

To be precise, the set of conformal mappings of
S2 are those mappings of the form ϕ−1 ◦m ◦ ϕ.
Another way of thinking of this is to identify
lC∪{∞} with the one-dimensional complex projec-
tive plane P lC1. Points in P lC1 are represented by
complex 2-vectors. The space P lC1 has the topol-
ogy of a real 2-sphere S2, and the stereographic
mapping ϕ : (x, y, z) 7→ (x + iy, 1 − z) provides

the homeomorphism between these spaces. The
Möbius transforms acting on P lC1 are simply
the group of projective transforms, represented
by non-singular 2× 2 complex matrices.

4.2. Harmonic mapping
In practice, the conformal mapping is often ap-

proximated by a harmonic mapping, denoted by
f . Namely, it satisfies the following harmonic
(Laplace) equation:

4f = div grad f = 0 . (3)

For three-dimensional genus-0 surfaces, these
two mappings are essentially the same. There-
fore, the problem of finding a spherical confor-
mal parametrization is reduced to a Laplace-
on-Manifold problem, where the target manifold
is the unit sphere S2. Usually this is imple-
mented by minimizing the following harmonic en-
ergy function ([23][16]):

EH(f) =
1
2

∫

M1

‖grad f‖2. (4)

The overall procedure is: first find a spherical
homeomorphic initialization for the given shape,
then iteratively modify this initial mapping by
minimizing the above energy function, till it con-
verges to a conformal mapping. The later stage
is known as diffusion.

Our computation procedures basically follow
[21], but made several unique contributions:

1. We introduce a new initialization method
based on planar graph-drawing which effec-
tively saves much computation, and allevi-
ates fold-over problems.

2. We use the exponential map in solving
the Laplace-on-manifold diffusion problem,
thus enlarging the valid convergence basin,
and improving convergence.

3. We introduce a Möbius factorization algo-
rithm for Möbius normalization. This al-
gorithm is simple, effective and much faster
than other algorithms.
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4.3. Initialization by planar graph drawing
We start from a triangulated closed mesh ob-

ject homeomorphic to a sphere. The minimiza-
tion of the harmonic energy is based on an itera-
tive updating procedure. It thus requires a good
initialization which serves as the starting point
for the iteration. This initialization should be an
approximation of the final conformal mapping.

Paper [21] provides an initialization method us-
ing the Spherical Tutte Embedding, where the
Tutte Embedding itself is computed by iterating
from a Gauss map. Two shortcomings can be
identified with it:

1. The spherical Tutte embedding, though
having a good convergence property, has a
computational requirement as great as that
required by the subsequent harmonic diffu-
sion. In other words, computation cost is
doubled.

2. It does not converge correctly for some com-
plex meshes, or gives rise to some fold-over
triangles. Although theoretically the Tutte
embedding should not yield fold-overs, here
the reason is due to the use of the Gauss
map, which is in general neither one-to-one
nor orientation-preserving.

Based on the fact that the connectivity (adja-
cency) graph of any genus-0 3D object is always
a 2D planar graph (which by definition is graph
that can be drawn on a plane in such a way
that there are no edge crossings), we propose a
simple method for spherical initialization. Since
our diffusion algorithm (described in the next
subsection) has a relatively large convergence
neighborhood, we do not require the initial map-
ping to be very close to the final result, as long
as it is a homeomorphism.

There exist a number of constructive algo-
rithms that are able to actually draw a graph on
a plane without edge crossing. This is the process
of planar graph embedding. Such a planar graph
embedding is obvious a homeomorphism of the
original mesh. In fact, every planar graph can be
drawn so that all edged are straight, a so-called
straight-line planar embedding. In addition, very

Figure 1. Initialization of a mesh from planar-
graph-drawing.

efficient linear time algorithms for straight line
embedding are available now [17].

Our initialization procedure is: first choose an
arbitrary surface triangle as the boundary, then
apply a straight-line planar graph embedding to
the graph, followed by an inverse stereographic
mapping to get the initial spherical mapping.
Figure 1 illustrates an example of a wolf mesh.
Although the result depends on the specific choice
of boundary triangle, this specialization is soon
relaxed by the subsequent diffusion process.

4.4. Harmonic diffusion with exp-map
Having a homeomorphic spherical embedding

as the initialization, the next step is to diffuse it
to a conformal mapping. We accomplish this by
solving a diffusion equation on the unit sphere,
namely the Laplace-Beltrami equation:

4S2 f = divS2gradS2 f = 0. (5)

Note that the the Laplacian is defined here in
terms of the local geometry of the target man-
ifold. Instead of directly solving this equation
in Cartesian coordinates, which could be very
involved, we advocate the use of the tangent-
plane-projection method, whereby the Laplace
equation remains in its simple form, but acting
on the tangent planes. To do this, it is necessary
to cover the manifold (S2) with charts and work
locally in these charts. This idea has been used
by Gotsman et al([23]) by an orthogonal map.
The disadvantage of using the orthogonal map is
that the resultant charts are quite small (in fact
have radius π/4 measured in geodesic distance).
Thus several charts are required to cover the
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Figure 2. The orthogonal map p and exponential
(logarithm) map p′ of vertex v.

whole surface.

Instead, we found that creating a chart using
the exponential map (or inversely, the logarithm
map) gives significantly better results in terms
of convergence, and independence of the initial
function. The exp-map on a manifold intuitively
corresponds to expanding geodesic curves to the
tangent plane (See figure 2). Using the exponen-
tial map, all mesh vertices be mapped one-to-one
onto a single chart. The actual computation of
such exp-map on the sphere is also very simple
thanks to the Rodrigues’ formula of matrix expo-
nential ( cf. [18][19]).

4.5. Normalization by Möbius factoriza-
tion

After the previous step, a conformal mapping
f from the surface M1 to S2 is obtained. How-
ever, this mapping is not unique, since it may be
followed by another arbitrary conformal mapping
of the sphere to itself. Such a conformal map-
ping can be represented by a Möbius transform.
Thus, there exists a 6-parameter family of such
mappings. In the current section, we focus on
normalizing the mapping from M1 to S2 so that
the remaining ambiguity consists only of 3D ro-
tations of the sphere, a 3-parameter family.

A nested-iteration algorithm is suggested for
simultaneous diffusion and normalization [21].
However, this is computationally extremely ex-
pensive, especially for large scale meshes. A sim-
plified version by centering the mesh barycenter
is thus further proposed, but still very inefficient
and sometimes produces degenerate solution as

pointed out by Gotsman [23]. Gotsman suggests
using anchor points to solve it, but his results
depend on particular choice of the anchors.

We propose a new method here, which ac-
complishes the Möbius normalization task very
efficiently, only at the expense of negligible com-
putation. This is done by a process that balances
the surface area (or “weight”) distribution on the
sphere by a Möbius factorization. Unlike [21][14],
we carry out this normalization step after the dif-
fusion process, rather than simultaneously. This
leads to significant save of computation.

Consider a surface element dA located at a
point x on M1. For the purpose of gaining an
intuitive understanding of our method, we as-
sume that this surface element has a “weight”
proportional to area, and so the surface element
may be thought of as having weight dA. Now,
the mapping f maps this to an element of weight
dA at point f(x) on the sphere S2. The centre of
gravity of the surface mapped on to S2 is given
by

∫
M1

f(x)dA. What we want to do is adjust
the mapping f so that this centre of gravity is at
the origin (centre of the sphere).

If f0 is an initial conformal mapping to S2,
then the most general conformal mapping f :
M1 → S2 is of the form ϕ−1 ◦m ◦ ϕ ◦ f0, where
m is a Möbius transform. We want to find a
Möbius transform m such that

∫

M1

ϕ−1 ◦m ◦ ϕ ◦ f0(x)dA = 0 . (6)

This could be done by searching over the 6-
parameter family of all Möbius transforms. Note,
however that applying a rotation to S2 results in
a rotation of the centre of gravity

∫
M1

f(x)dA,
and hence does not change the truth or falsehood
of the condition (6). Rotations form a subgroup
of the Möbius transforms of the sphere, and in
seeking to enforce (6) we may factor out the rota-
tions, thus reducing the search to a 3-parameter
search.

Formally, it is verified that rotations of S2
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correspond precisely to those Möbius transforms
represented by matrices of the form

Q =
[

q1 q2

−q2 q1

]
. (7)

An arbitrary Möbius transform can be factored
as

M = Q · R =
[

q1 q2

−q2 q1

]
·
[
k zt

0 1

]
, (8)

where k ∈ IR and zt ∈ lC. Thus, in enforcing (6),
we may ignore the left-hand rotation matrix Q,
and constrain our search to Möbius transforms
of the form given by the right-hand matrix above.
Such a transformation is of the type z 7→ kz + zt,
which represents a scaling, followed by a complex
translation (by zt) in the complex plane. Trans-
formations of this type form a 3-parameter family.

The above discussion was in terms of continu-
ous surfaces. In the case of a triangulated mesh
surface M1, we may consider just the vertices vi

of the mesh, and to each one assign a weight equal
to the area of the corresponding region in a dual
tessellation. We then seek the solution to

∑

i

wi ϕ−1 ◦m ◦ ϕ ◦ f0(vi) = 0 (9)

over all Möbius transforms of the form

m(z) = kz + zt. (10)

At first sight, this equation is nonlinear. By
some elementary algebras, however, one soon re-
duces it to an equivalent linear system, for which
a least square technique suffices.

Once this is solved, applying the corresponding
spherical affine transformation R to the diffused
result will give us a unique solution up to rotation.
For example, for the Stanford “bunny” mesh, one
of our experiments obtained the following affine
factor:

R =
[
0.21491 −0.00932 + 0.00583i
0.00000 1.00000

]
,

whose effect (as can be directly ascertained) is
approximately re-scaling in the radial direction.

5. Construct Complete SH Invariants

Any bounded L2 continuous function (real or
complex) f(θ, ϕ) defined on a sphere can always
be decomposed into a finite set of SH coefficients
Cm

` , where |m| ≤ `, ` = 0, 1, 2, 3, . . . `max, ` is
called the degree (or frequency) of the SH expan-
sion.

The key equation for spherical harmonic expan-
sion is the following, where f(θ, φ) is any smooth
function defined on the unit sphere (0 ≤ θ ≤
π, 0 ≤ φ ≤ 2π):

f(θ, φ) =
∞∑

`=0

∑̀

m=−`

Cm
` Y m

` (θ, φ). (11)

For these assumptions, the spherical expansion
exists and converges. The function Y m

` (θ, φ) is
called a spherical harmonic function, and is given
by:

Y m
` (θ, φ) =

√(
(2` + 1)(`−m)!

4π(` + m)!

)
Pm

` ( cos(θ) ) eimφ

The functions Pm
` (x) are called associated Leg-

endre functions, and are a set of orthogonal poly-
nomials (i.e., associated Legendre polynomials).

The computed surface points are then used to
calculate the coefficients Cm

` , which depend on
both n and m according to the following defini-
tion:

Cm
` =

∫ 2π

0

∫ π

0

dφ dθ sin(θ) f(θ, φ) Y m∗
` ,

where the asterisk denotes the complex conjugate.
The SH expansion has been employed in many

different areas. Its definition and fast computa-
tion can be found elsewhere. In this paper we
mainly address the issue of how to construct com-
plete SH invariants in the context of 3D shape
representation.

As its 2D counterpart of Fourier transform,
3D SH also has the nice property that the co-
efficients can be made invariant with respect to
translation, rotation, and scale change. We are
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most interested in the rotational invariance, be-
cause others can be easily eliminated by a trivial
pre-alignment operation, whereas eliminating the
rotation is not so easy. The PCA-pre-alignment
technique [1], though has been popularly adopted,
proves to be unstable for noisy cases or shapes
with high-order symmetries.

Previously, many authors suggest the follow-
ing Energy SH-Invariants (EIs) [7][8]:

EI(`) =
∑

|m|≤`

||Cm
` ||2, (12)

which is based on the fact that the squared mag-
nitude of the SH coefficients at every frequency
` is independent of rotation. This method has
drawbacks:

1. These invariants are not complete. This re-
sults in difficulty in discriminating shapes.
For example, distinct shapes may have the
same descriptors, and similar shapes may
not be distinguishable. Moreover, it may
not be possible to reconstruct the original
shape from the invariants.

2. There is not only information loss but se-
rious computation waste. For SH coeffi-
cients up to degree `max, there should be
((`max + 1)2) independent complex invari-
ants. However, only (`max + 1) real energy
invariants are obtained by the conventional
method.

5.1. Our complete SH invariants
This paper provides a method of constructing

a complete set of SH invariants. Completeness
implies that the shape descriptors suffer no ambi-
guity in shape classification and recognition. We
make use of a recent algorithm of estimating ori-
entation from SHs [12]. The principle is the fact
that SH coefficients at every frequency `, ` ≥ 1,
form an irreducible representation of the SO(3)
group. In other words, when a rotation is applied
to the original function, the resulting SH coeffi-
cients will transform among themselves in exactly
the same way.

Specifically, if we apply a rotation denoted by
the Euler angles (α, β, γ), we get new Cm

` from
the original Cm′

` defined by:

Cm
` = e−im(α+π/2) ·

∑

|m′|<`

e−im′(γ+π/2)Cm′
`

·
∑

|k|<`

Pm′k
` (0)Pmk

` (0)e−ik(β+π) ,(13)

where the two P`(·) are the generalized Legendre
polynomials.

Specifying some of the SH coefficients with
some canonical values, we can estimate a canon-
ical rotation R(α?, β?, γ?) by which the SH co-
efficients are transformed into complete rotation
invariants. For instance, when ` = 2, we can use
the following canonical values [13]:

C1
2 (α?, β?, γ?) = 0 ,

C2
2 (α?, β?, γ?)real, positive and maximal,

Re(C1
1 (α?, β?, γ?)) ≥ 0 ,

Im(C1
1 (α?, β?, γ?)) ≥ 0 .

We use ` = 2, 3, 4, 5 in a least square fashion
in our experiments for robust rotation-estimation.
The subspace ` = 1 is discarded as it is equivalent
to the PCA-pre-alignment.

The use of such invariant definition is theoreti-
cally not entirely satisfactory, because it relies on
identifying a canonical rotation and we suspect if
this leads to a 2-fold ambiguity. Nevertheless, it
has given good results in our experiments. We
continue to look for better ways of defining rota-
tionally invariants SH coefficients.

5.2. Shape functions in use
Now that we know how to compute a set of

rotation-invariant SH coefficients of shape func-
tions, we need to specify which function to use.
One choice is the density, or area ratio func-
tion on S2 induced by the conformal mapping
f : M1 → S2. Let T ′ be a facet in the dual
mesh of M1, corresponding to a vertex v of the
triangulation, and let f(T ′) be the corresponding
facet on S2. We define a function g on S2 facet
by facet on the mesh. The value assigned to
each point of a facet f(T ′) is equal to the area
ratio Area(T ′)/Area(f(T ′)). Note that this is
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essentially independent of the triangulation of
the surface M1. For computational purposes, a
delta-function of weight Area(T ′) placed at f(v)
may be used instead.

Other functions are possible, such as the radius
function, in which each point x on S2 is assigned
the value of the radial distance of f−1(x) from
the centroid of the surface M1. Yet another pos-
sibility is the mean-curvature function, whereby
each point x on S2 is assigned the value of the
mean-curvature of the surface M1 at the point
f−1(x). Since M1 is a mesh surface, it is neces-
sary to consider the mean curvature of a smooth
approximation to the mesh. In studying the
general 3D shape similarity, the EGI/SAI family
gave some valuable suggestions [2][3].

We are interested in a more rigorous and deep
result based on the following theorem, also noted
by [15][24]:

Theorem : A closed surface f(u, v) in IR3 with
parameter (u, v) is determined by its conformal
factors and its mean curvatures uniquely up to
rigid motions.

Therefore, by using the density ratios and
mean-curvature as the shape functions, the resul-
tant SH invariants are indeed complete.

Nevertheless, in the future we will pursue
a more ambitious target as follows. It seems
that specifying both the density-ratio and mean-
curvature functions on the sphere provides re-
dundant information for a global genus-0 closed
surface. We are not aware, however, how to spec-
ify a minimal amount of information to determine
the surface. We think it an interesting inverse
problem, where we argue that a regularization
approach might help.

6. The Proposed 3D-FD Algorithm

The overall 3D-FD algorithm proceeds as:

Input: a genus-zero 3D mesh object.
Output: a complete set of 3D Fourier descrip-
tors.

1. Pre-normalize the object with respect to
translation and scale.

2. Get initial spherical parametrization by
planar-graph-drawing and inverse stereo-
graphic mapping.

3. Harmonic diffuse on the unit sphere with
exp-map by minimizing formula (4).

4. Solve the normalization equation (9) by
Möbius factorization, and apply the result-
ing spherical affine transformation.

5. Compute the complete SH invariants for the
chosen shape functions on the sphere.

7. Reconstruction Algorithm

Theoretically, the descriptors we have devel-
oped here are complete descriptors of the surface,
from which it should be possible to reconstruct
the surface, within accuracy limited by the de-
gree of the SH expansion. Figure 3 illustrates the
processing stages of our method.

Here we give a preliminary reconstruction al-
gorithm. In essence, the reconstruction is no
other than Graph-Embedding. A graph embed-
ding is a particular drawing of a graph, so that
the embedding has no crossing edges. In other
words, the graph is planar. Here we adopt the
Spring-based Embedding Algorithm [9]. We use
it to draw (embed) the mesh in 3D Euclidean
space. For our application, the graph to be em-
bedded is guaranteed to be planar because it
has a spherical topology. What we have now
are all the neighboring distances (i.e., the edge
lengthes) and second order distances, which are
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Figure 3. The processing flow-chart of our 3D-FD algorithm.

in fact computed from the conformal factors and
mean curvatures of the mesh (which can be re-
covered from the FD coefficients for proper shape
functions).

The total Springs Energy is written as:

W =
n−1∑

i=1

∑

j∈Ni

1
2
kij (|vi − vj | − lij)

2 (14)

where the vi, vj are vertex coordinate vectors,
and lij represent both the edge lengthes and
second order distances, n is the total number of
vertices, Ni represents the up to second order
nationhood. kij is the spring constant—here we
set it to the inverse of the corresponding distance.

We use a Gauss-Newton method to solve this
minimization problem of eq.(7). Our experiments
show that the convergence is very fast. The itera-
tion finishes usually within 10 steps for a meshes
with about 2,000 edges.

Recently, the authors are considering modify-
ing the semi-definite embedding (SDE) algorithm
[25], which could be adopted here and may result
in a more efficient algorithm.

8. Experimental Results

8.1. Spherical DCM embedding
We test our method on 26 genus-0 meshes of

different classes. Some of them have complex ge-
ometries. These meshes are verified to have valid
genus-zero topology. A topological checking and
editing procedure can be employed if it is not the
case.

Figure 4. Some results of spherical conformal
mapping.

We implement the algorithm in C++, and test
it on an Intel-P4 3Ghz PC using win-XP OS. The
experiments show that all the 26 meshes converge
quickly with little human interaction.

We have verified that the results of our spheri-
cal conformal mappings are indeed unique up to
rotation, by applying the algorithm to other ran-
domly rotated versions of the same object. Fig-
ure 4 gives the conformal spherical parametriza-
tion results for some mesh objects used in our
experiments.
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Figure 5. This figure show some mesh ob-
jects, their corresponding energy-invariants (row-
2) and our 3D-FD shape descriptors (row-3, mag-
nitude part only). For better illustration, we only
depict the first 36 coefficients. The actual number
is about 200.

8.2. Compute the new invariants
The shape function we use in experiments is a

complex-valued function with the real and imag-
inary parts given by the radius and area-ratios,
resp. Figure 5 gives some resulting SH invari-
ants. The first row shows the original meshes.
The second row shows the obtained EI invariants
up to degree 15. The bottom row shows our com-
plete invariant shape descriptors (magnitude part
only). Note the similarity between alike shapes
and the difference between unalike ones. While
the EI descriptors also capture the shape geome-
try, ours retains more information due to its com-
pleteness nature.

Figure 6. Obtained 3D-FD shape descriptors of
the same object but with different triangulations
and resolutions. Here the two horses have 1000
facets and 800 facets respectively. The two rabbits
have 2000 facets and 5000 facets and with differ-
ent levels of noise added.

We test the robustness of our algorithm to dif-
ferent triangulations, resolution and noise. This
was done by first perform both subdivision-based
refinement and edge-collapse-based simplification
on the original meshes, to alter the resolution
and tessellation, then introduce isotropic Gaus-
sian noise to the vertex coordinates. Apply our al-
gorithm again to the distorted meshes, the newly
obtained 3D-FD descriptors are still very stable,
which indicates that both the parametrization
process and the invariant computation are sta-
ble. These results are more robust than that by
[24] in term of degenerate handling.

Figure 6 gives results on the horse and the
“bunny” meshes. Note that even the phase parts
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of the new descriptors are rather consistence.
Table-1 gives the Euclidean distance matrix for
classifying several objects.

Table 1
Euclidean distance matrix

8.3. Reconstruction experiment: com-
pleteness

In order to test the completeness of the ob-
tained shape invariants, we conduct shape recon-
struction experiment. The algorithm we use is
the spring-embedding. In fig-7 we show some re-
sults of shape reconstruction, where the inputs
are the mean curvatures and conformal factors,
and the outputs are 3D vertex coordinates. It
clearly shows the reconstructions are almost iden-
tical to the original versions. The residual errors,
in term of the spring’s energy at convergency, are
very small (e.g., 4.23e-8, 0.00873, and 0.02412 for
the pawn, bunny and horse meshes, resp.).

We also test the relationship between the recon-
struction error with the degree of the SH expan-
sions. In other words, we want to find how many
shape invariants are needed in order to achieve
a prescribed representation error. Figure-8 show
the reconstruction error curve of the bunny mesh
(2000 facets). The y-axis shows the RMS error
in the recovered 3D coordinates at each vertex,
and x-axis gives the degree of the SH expansion.
It is clear that when the SH degree is greater
than 10 the RMS reconstruction error is very

small. Figure-9 gives a comparison of the orig-
inal and the reconstructed bunny mesh at degree
10. There is visually little difference.

Figure 7. Shape reconstruction from spring-
embedding ([20]). (row-1: ground-truth meshes;
row-2: reconstructed meshes; W is the resulting
minimal springs energy.)

8.4. Computation time
Our software code have not been carefully

optimized. In this test the intention is only
to compare the time used for the diffusion and
the normalization. For the wolf meshes with
308 facets, the diffusion cost 12.1 seconds, while
the normalization costs only 0.002 seconds. For
computing the horse-2k and bunny-2k meshes,
which has 2k facets each, cost about 86s and
62s respectively in diffusion, but the time spent
on normalization are 0.006 and 0.005 seconds,
respectively.

The following table shows the overall com-
putation time for some of the meshes used in
experiments. All the trials are repeated 10 times
to get average estimations.

Because both the planar graph drawing and the
SH expansion have fast algorithmic implementa-
tions (e.g.,[17] [12]), it is expected our algorithm
will run more efficiently after appropriate opti-
mization.
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Figure 8. Shape reconstruction RMS error vs. SH
degree. The size of the original shape is normal-
ized to within a bounding box of side-length 1.0.

9. Conclusion and Future Work

The method of using Spherical Harmonics ap-
plied to a new conformal spherical parametriza-
tion, proposed in this paper, works well in dis-
criminating mesh objects of different shape, while
being invariant to rotation, robust to triangula-
tion and noise in the model description.

The proposed new algorithm provides prac-
tical improvements over existing methods, and
already shows good results. All these have added
to the confidence of applying the DCM to various
vision problems. Of course, more work still need
to be done for many real-world applications, for
example, medical anatomic shape comparison
or 3D model retrieval. For the purpose of gen-
eral 3D model retrieval, we do not recommend
our method, as it does not work for non-genus-
zero object, while in practice 3D meshes almost
never satisfy the strong topological condition. To
solve it, one would used some re-meshing tools,
but such procedures are generally computational
expensive and involve laborious operations. How-
ever, for the application of medical shape com-
parison, our method is promising. Currently,
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Figure 9. Shape reconstruction RMS error vs. SH
degree.

the proposed DCM model is under investigation
for designing a new shape representation of 3D
brain anatomical structure (e.g., hippocampus)
for aiding medical diagnosis.

One of the benefits of the discrete confor-
mal mapping is that it gives a unique spherical
parametrization. An alternative scheme could
be the spherical equiareal mapping (a.k.a., area-
preserving mapping) [16], which is more appro-
priate for the computation of the discrete SH
expansion because the discrete SH expansion of-
ten implicitly assumes a uniform distribution of
the vertices. However, because of the multiplic-
ity of the equiareal mapping, without non-trivial
modification this mapping can not be used for
shape parametrization.

Another fascinating and challenging problem is
to represent shapes using minimal information.
This can find valuable applications in geometric
compression, and will be a priority in our future
work in this area.

International Journal,  Pattern Recognition



14 H.Li and R.Hartley

Table 2
Time used for computing the invariant conformal
mapping (execution time = diffusion time plus
normalization time, V,E,F are the number of ver-
tices,edges and facets, respectively).

Mesh V E F time (s)
bunny-1k 502 1500 1000 35.2
horse-500 252 750 500 23.1
fish-800 402 1200 800 28.5
pawn-304 154 456 304 16.0
wolf-534 269 801 534 26.8
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