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ABSTRACT

Feature matching and transformation estimation are two
fundamental problems in computer vision research. These
two problems are often related and even interlocked, solving
one is solving the other’s precondition. Such makes them
hard to solve. In order to overcome such difficulty, this pa-
per presents a new and compact algorithm where less than
10 lines of matlab codes suffice. We show that the solu-
tions of correspondence and transformation are merely two
factors of two Grammian matrices, and can be worked out
with factorization method. A Newton-Schulz numerical it-
eration algorithm is used for such factorization. The two in-
terlocked problems are solved in an alternate(flip-flop) way.
The effectiveness and efficiency are illustrated by experi-
ments on both synthetic and real images. Global and fast
convergence attained even start from random chosen initial
guesses.

1. INTRODUCTION

In digital video processing and computer vision research,
ones often meet the problem of transformation estimation.
This problem can be formally stated as: given two feature
sets(for example, the interest point sets) drawn from two
images, which are related by a certain geometric transfor-
mation with unknown parameters (up to some noise), the
problem is to estimate these parameters.

Usually, this problem is solved by such scheme: first
establish point-wise features correspondences between the
two images, then establish a set of equations with those
transformation parameters as unknowns, solving them, and
you will get the proper answers.

This scheme is simple, straight-forwards, and has been
widely adopted. However, finding the correct correspon-
dences is by no means a trivial task [5][7].

It seems to be an interlock relationship between feature
correspondence and transformation estimation. On one
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side, transformation estimation requires good correspon-
dences given beforehand, while on the other side, many
traditional correspondence methods often fail if nothing is
known about the transformation. In other words, good
knowledge of transformation will reduce the difficulty of
correspondence.

This paper proposes a compact and efficient algorithm to
unlock this inter-lock. The two problems of correspondence
and estimation are solved simultaneously by using less than
10 lines of matlab codes. The main idea is to alternately
update their intermediate solutions represented by two ma-
trix factors of two Grammian matrices constructed from the
input feature sets. A Newton-Schulz numerical iteration
method is used at each iteration step for solving the matrix
factorization problem. Both experiments on synthetic and
real images have shown good results. Our algorithm is for-
mulated in matrix form, therefore it can be directly applied
to higher dimension problems without any modification.

In the sense of using an alternate iteration method
to solve the correspondence-and-estimation problem, the
proposed algorithm shares some features with SoftAssign
method[1], SoftPOSIT method[2] and Sparse Correspon-
dence method[3]. But ours much differs in either problem
formulation or solution technique. In their algorithms, con-
cave minimization or deterministic annealing procedures
were applied. In addition, experiments showed better per-
formance over the others in the sense of faster and globally
convergence.

2. PROBLEM FORMULATION

Given two images, image#1 and image#2, each has a fea-
ture(point) sets of size M and N, respectively. Let us for the
moment assume that (i) M=N and (ii) the correspondences
between the two feature sets exist and is bijective(one-to-
one). These assumptions will simplify algorithm explana-
tion, and are not too restrictive because we will relax them
later.

Each feature point is represented by a row feature vector
of dimension d, here d =2. Stacking all feature vectors of
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each image together, we get two feature matrices of size
Nxd.Denoting them feature matrix X and Y, of image#1
and image#2, respectively, we have:

X =

⎡
⎢⎢⎢⎢⎢⎢⎣

x11 x12

x21 x22

... ...
xi1 xi2

... ...
xN1 xN2

⎤
⎥⎥⎥⎥⎥⎥⎦

, Y =

⎡
⎢⎢⎢⎢⎢⎢⎣

y11 y12

y21 y22

... ...
yj1 yj2

... ...
yN1 yN2

⎤
⎥⎥⎥⎥⎥⎥⎦

(1)

Notice that so far we do not know whether or not the in-
dex of i of image#1 and the index j of image#2 are corre-
sponding, however, we can express the correspondences by
a permutation matrix P of size NxN. By definition, a per-
mutation matrix is a square discrete-valued matrix whose
entries are either zero or one, and the entries of each row
is added up to one, and so as to each columns. In our sce-
nario, the positions of entries 1s in P describe the correct
correspondences between X and Y, i.e, X↔PY.

If a geometric transformation exists between the two fea-
ture sets, though with unknown parameters, we can as well
represent the transformation by a parametric model. We use
a symbol R for this transformation. Most commonly used
image transformations are linear transformations, such as
the Euclidean transformation, the similarity transformation,
and the affine transformation, etc. Therefore we consider R
a linear transformation represented by a non-singular ma-
trix, and we describe the transformation in a linear form,
X↔YR , where X and Y are matched feature matrices.

Combining both transformation matrix R and correspon-
dence matrix P, we obtain:

X = PYR (2)

This equation expresses the relationship between two fea-
ture matrices under transformation R and correspondence P.
Similar equations have been suggested by [1][2][3][8]. Pa-
per[8]also gives a condition number analysis for such fea-
ture point-matching. The X and Y are two known matrices
that can be measured from two input images, the P and R
are two unknowns to be determined. This forms a matrix
factorization formulation, say, if by some means we can fac-
torize matrix X into the product of matrices P and Y and R
, where P is a NxN permutation and R is a 2x2 rotation,
then we solve the correspondence-and-estimation problem.
However, because there are two unknowns in one equation,
such problem is not easy to be solved. Our approach is to
construct two Grammian matrices, one outer product ma-
trix and one inner product matrix, denoted by G1 and G2,
respectively.

G1 = XYT,G2 = YTX (3)

Substitute (2) into (3), we obtain,

G1 = XYT = PYRYT,
G2 = YTX = YTPYR

(4)

Now consider two ideal cases:

(a) No transformation :

In this case, there is no geometric transformation between
two feature sets, so we can set R = I2 , where I2 is 2x2 iden-
tity matrix. If the two sets are matched, i.e, their coordi-
nates must be precisely superimposed, then we have, (the ∼
is used to denote ideal cases.)

G̃1 = XYT = PYYT (5)

It is obvious that the YYT is a symmetric positive-definite
matrix, therefore equation (5) is equivalent to the following
minimization problem:

min
P

∥∥∥G̃1 − PYYT
∥∥∥

2
= min

P

∥∥∥P − G̃1

∥∥∥
2

(6)

, where ‖•‖2is the 2-norm.

Eq.(6) states, if there is no transformation ( or approxi-
mately say, the transformation has been roughly estimated
and has been compensated), then the best correspondence
matrix P is the permutation matrix that is closest to G1.
In fact, the form of (5) is a matrix polar decomposition[6],
says, because YYT is symmetric, P is the unitary polar
factor of G̃1.

(b) Known correspondence:

In this case, because the correspondences are already
known, we can re-arrange one of the feature matrices (by
row reordering) such that X and Y have identical row order.
Thus we have P = IN and in such case let

G̃2 = YTPYR = YTYR (7)

Similar to (a), we know that (7) is equivalent to:

min
R

∥∥∥G̃2 − YTYR
∥∥∥

2
= min

R

∥∥∥R − G̃2

∥∥∥
2

(8)

Eq.(8) states, if correspondences are known ( or approxi-
mately say, has been roughly estimated ), then the transfor-
mation matrix R is the closest rotation matrix to G2. In fact,
the form of eq.(7) is a matrix polar decomposition, says, R
is the unitary polar factor of G̃2.

Here, (a) and (b) have shown a symmetry or duality rela-
tionship in correspondence matrix P and transformation ma-
trix R. Solved one of them, the other is easily solved through
a polar factorization procedure or closest matrix finding pro-
cedure.
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However, remember that neither P nor R is known in
practice, and they are interlocked. This makes the prob-
lem difficult. To our knowledge, no analytic closed form
solution available now. Therefore in this paper, we propose
an alternating(flip-flop) iterative algorithm to solve it. The
algorithm will be detailed in section-3. Section-4 will give
some experimental results to show the effectiveness and ef-
ficiency of our algorithm.

3. THE PROPOSED ALGORITHM

For N features, there are in total N! numbers of possible per-
mutations, an exhaust combinatory discrete searching pro-
cedure is obvious impractical. The resolvent is to relax the
original discrete problem to a continuous equivalent form.
There are two distinct continuous equivalent forms that a
permutation matrix may take. One is a doubly stochastic
form, and the other is an orthogonal form. Paper [1][2][3]
employed Lagrange multiplier method to impose the doubly
stochastic constraints via a (continues) deterministic anneal-
ing procedure. Notice that in general a doubly stochastic
matrix may not be orthogonal, while any permutation must
hold orthogonality. Therefore, rather than applying the dou-
bly stochastic property, we apply the orthogonal property to
guide the searching procedure. More specifically, a permu-
tation matrix must be an orthogonal matrix, or,

PPT = IN (9)

We found that this property is so strong that we can
directly derive our continuous iteration procedure merely
depending upon it. In other words, the permutation matrix
that we seek is the square-root-matrix of IN that also sat-
isfies (6). Such effort results in an elegant Newton-Schulz
iterative root-finding method.

3.1 Newton-Schulz iteration

Higham[4]suggested several numerical iteration methods
for matrix square root problem, which are simply ana-
logues from the original scalar Newton root–finding method
(i.e.,the tangent-line method) to matrix form. Among them,
the Newton-Schulz iteration is as follows:

Pk+1 = Pk(3IN − PT
k Pk)/2 (10)

This method has good theoretic properties and it con-
verges quadratically for

∥∥P0PT
0 − I

∥∥
2

< 1.0 (11)

Thus, the minimization of (6) can be realized by the
iteration of (10) with exp(G1) as its starting point. The
exp() is an exponential function acting on each entries
of G1, whose purpose is to ensure that all the entries are

positive,therefore the Newton root-finding algorithm may
start from a reasonable point. And, of a little surprise,
experiments showed that the final P is very likely to have
entries that are very close to zero or one and sum to one (in
rows and columns), notice that no discrete value constraint
has ever been imposed. When the transformation matrix
R is a rotation (hence orthogonal), it can also be solved
by another Newton iteration, as the duality suggested.
However, for the sake of computation simplicity, in our
implementation, R is approximated from the current P, i.e.,
R ≈ G2 = YTPX, rather than Newton Schulz iteration.

3.2 The proposed algorithm

The whole algorithm is thus summarized as:

Algorithm: Flip-flop Newton-Schulz Algorithm

BEGIN.
Guess R0

For k = 0 to K, do

Pk = exp(XRT
k YT)

For j = 1 to J, do

Pk = Pk/
∥∥PT

k Pk

∥∥
2

Pk+1 = Pk(3IN − PT
k Pk)/2

End do
Rk = YTPkX

End do
END.

Note, less than 10 lines matlab codes are sufficient to
fully implement our algorithm.

In practice, when the two set sizes are un-
equal,say,M�=N,or there are unmatchable outliers matrix
P is no longer a square and orthogonal matrix, but it’s
columns or rows’ orthonormality still hold. In this case,
we augmented P with one row and one column. The
newly added row or column corresponds to a so-called
slack feature, a term being used in linear programming
techniques, that can match any other features or outliers.
Therefore, our algorithm is still applicable.

4. EXPERIMENTS

We have carried out several experiments on both synthetic
data and real images to test the performances of our algo-
rithm.

In the first experiment we tested on synthetic datasets.
We drew a planar shape that has N =79 discrete points, and
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used them as feature set#1. Feature set#2 were generated
by Gaussian random perturbing and geometric transforming
of the coordinates of feature set#1. The perturbations(with
standard deviation of 2.0∼3.0 pixel) are relatively large with
respect to the minimum distance between un-perturbed fea-
ture points (only about 3∼4 pixel). In other words, large
shape distortions exist in feature set#2. This is rather chal-
lenge for most conventional correspondence methods that
are based on local search and correlation.

Figure-1 gives the result on the synthetic data. Note that
the estimated parameters are very accurate, and robust to
noise. A more important fact is that: for all the experiments
we conducted (including those on real imagery), though we
did not use any special guess of the parameters as initial
condition, the algorithm always converged. Moreover, the
converge speed is rather fast. A typical setting is: for outer
loop K, 7∼10 is enough; for inner loop J , 30∼50 suffices.

Figure-2 (a) and (b) show the results on real images.
We used image pairs of House sequence and Building se-
quences of CMU-RI VASC dataset. The feature points were
detected by a Harris corner detector, and manually selected
a subset. Here, the feature vectors are of dimension 11. Be-
sides coordinates, we added the nine gray values of its 3x3
neighborhood of each feature point. The two images were
drawn from two different frames of the video sequence;
therefore their viewpoints and feature point coordinates are
all different. These differences are regarded as noise. Note
that the matching results are still very good. Figure1(c)
gives the pictures of matrix G1 before and after iteration
(using the House sequence). Note that when the iteration
converged, G1 really becomes a permutation matrix.

5. CONCLUSIONS

We have proposed a compact algorithm that is able to si-
multaneously match two feature sets and estimate transfor-
mation parameters using less than 10 lines of codes. We
achieved this by considering two Grammian matrices from
two feature sets. A Newton-Schulz numerical algorithm
is proposed to solve the problem. Matching and estima-
tion are updated in an alternate way, and finally converge to
their correct solutions. The convergence is faster, and more
global, in the sense that it is less easily get trapped into local
minima. This algorithm can directly be applied to higher-
dimensional problems(such as 3D mesh model alignment,
molecular structure conformation,etc.) without modifica-
tion.
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