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Abstract

There is considerable current interest in deriving
accurate dimensional measurements of the internal ge-
ometry of complex manufactured parts, particularly
castings. This paper describes an approach to the re-
construction of 3D part geometry from multiple dig-
ital X-ray images. A novel approach to radiographic
stereo is decribed which takes into account the special
imaging geometry of the digital X-ray sensor which
is modeled by a linear moving array, or pushbroom,
camera. The 3D construction algorithm employs a
nominal geometric model which is perturbed by X-
ray image constraints. Manufacturing applications are
discussed and illustrated by experimental results on
actual casting images.

1 Introduction

Investment casting designs, particularly airfoils for
aircraft engines and gas turbines, are rapidly evolv-
ing in complexity. In order to reduce the development
cycle for a new design it is necessary to monitor and
control the critical dimensions of the casting and as-
sociated cores and molds. In addition, detailed knowl-
edge of the casting geometry is necessary to plan the
drilling of cooling holes during airfoil manufaturing. A
new approach to dimensional control of castings cast-
ing machining operations based on X-ray metrology
will be described. Precise measurements of casting di-
mensions and hole geometry can be acheived using a
new algorithm for radiographic stereo.

1.1 Related X-ray Work

The most common form of X-ray image is a 2D dig-
ital radiographic (DR) image which is formed as the
projection of rays from an x-ray point source on to a
linear array of detectors, figure ??. The 3D material
density is projected to a 2D image as a line integral.
Intensity can be directly related to material thickness
assuming that factors such as the point spread func-
tion of the imaging system and beam-hardening cor-

rection are known and can be corrected for. However,
in practice these parameters are not known and to-
date industrial inspection from single DR images has
largely been restricted to defect detection and part
screening applications where the focus is on locating
(usually local) abnormalities in a part [1, 2].
A widely used method for internal dimensional

measurement is 2D computed tomography (CT) re-
cionstruction from X-ray sources which provides a
slice-by-slice view of the internal geometry of a part
[3, 4, 5]. CT slices can be stacked on top of each other
to provide a volumetric representation of a part (typ-
ically with interpolation between the slices to give a
smoother object appearance). However, from a prac-
tical standpoint volumetric reconstruction remains a
thing of the future due to the large amounts of data
that have to be analyzed and the fact that data acqui-
sition is slow. Further in many applications, a full vol-
umetric (voxel) analysis of an object (industrial or hu-
man) is not necessarily the desired final output. This
is particularly true when the goal is to perform dimen-
sional analysis and/or control where analysis typically
only involves boundaries of the object.
One can, in theory, measure 3D object geometry

from a limited number of views of the object using
assumptions about the geometry of the features being
reconstructed, X-ray imaging distortions, and feature-
based stereo reconstruction techniques. In the med-
ical domain, this approach has been applied to es-
timate artery structure from biplane angiograms (2
views taken at 90 degrees apart). Here the focus to
date has been on evaluating the precision of boundary
extraction techniques from 2D X-ray images to provide
the features for matching and reconstruction [10, 8, 7]
modelling arteries (including bifurcations) and, recov-
ering the 3D medial axes of arterial structures [6, 9].
In this paper we present a novel approach to 3D

reconstruction from multiple views based on a linear
pushbroom camera which is a simplified version of the
pushbroom camera often used in photogrammetry to
analyze satellite imagery. In most previous multiple
view x-ray reconstruction work, a parallel (affine) pro-



Figure 1. Scanning geometry.

Figure 2. Feature projection.

jection geometry has been assumed which is only a
valid apporximation if the source-to-object distance
is much larger than the size of the object. A linear
pushbroom camera, however, generates an image that
can be considered as a projective image in one direc-
tion and an orthographic image in the other. This
more accurately captures the imaging geometry of a
real X-ray system than an affine or perspective camera
model.

2 Approach

2.1 X-ray Imaging Scanning Geometry

The scanning geometry is depicted in Fig 1. A
source of X-rays projects X-rays through the part onto
a linear X-ray. The plane defined by the X-ray source
and the sensor array is known as the sensor plane. A
complete image is captured by moving the part by a
series of step motions in a direction perpendicular to
the sensor plane and capturing a new line of image
data at each step. Subsequent images are captured by
in the same way after rotating the part through known
angles about an axis perpendicular to the sensor plane.

2.2 Feature/Intensity Modeling

See figure 2.

2.3 Object Reconstruction

The imaging geometry is shown in Fig 3. We define
a Euclidean coordinate frame as follows. The source is

Figure 3. Imaging geometry.

located at the origin of the reference frame. The y and
z axes lie in the sensor plane, the z-axis (or principal
axis) being perpendicular to the sensor array, and the
y axis parallel to it. The x axis is perpendicular to
the sensor plane, completing a right-handed coordi-
nate system.
A mathematical model has been developed for this

sort of imaging geometry, the linear-pushbroom model
([11]). Let (x, y, z)T be the coordinates of a point in
the part at time t = 0, the time when the zeroth image
line is captured. The coordinates of the corresponding
image point are (u, v) = (u′, v′/w′) where
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1. f is the focal length, that is the distance from
origin to the sensor array along the z axis.

2. pv is the coordinate of the principal point.

3. (Vx, Vy, Vz) is the motion vector of the part be-
tween lines of the image. Components Vz and Vy
will nominally equal zero, corresponding to mo-
tion perpendicular to the sensor plane.

Separate Views For each separate image the part
is rotated about an axis nominally perpendicular to
the sensor plane. This rotation may be parametrized
by the following parameters :

1. The rotation angle θx;

2. The coordinates (ty, tz) of the point where the
rotation axis meets the sensor plane;

3. Two angles φy and φz determining the orientation
of the rotation axis with respect to the perpen-
dicular to the view plane. Nominally, these two
angles are zero.



In terms of these parameters, it is possible to com-
pute a 4 × 4 matrix R such that (x′, y′, z′, 1)� =
R(x, y, z, 1), where (x′, y′, z′)� are the coordinates of
a point in the rotated part, and (x, y, z)� are coodi-
nates of the same point prior to rotation. Putting this
together 1, we find that

(u, vw, v) =M(x, y, z, 1)�

whereM =Mf,pv,Vx,Vy,Vz,θx,ty,tz,φy,φz is a 3×4 matrix
depending on all the parameters.

Constraints : Though parameters Vy, Vz , φy and
φz are nominally zero, there may be slight inaccuracies
which cause them to deviate from their ideal values. In
modelling the imaging process we model these parame-
ters as gaussian random variables with zero mean and
a small variance. The other model parameters have
known values. They will similarly be modelled as ran-
dom variables with approriately chosen variances re-
flecting the degree of confidence in their nominal val-
ues. All model parameters except the rotation angle
θx may be assumed to take the same values for all the
images.

3 Estimation of Point Positions

Suppose we know the coordinates ui of the image
of a point x in a part being inspected, as seen as seen
in several views. As long as the camera modelling
parameters are known, point x may in principle be
computed as the intersection of the rays correspond-
ing to all the image points ui. If there are errors in the
measurements of the ui, then the rays will not inter-
sect exactly, and it will be necessary to compute a best
fit to the ray intersection. Commonly, however, there
may also be uncertainties in the modelling parame-
ters. In this case, to find the point x it is necessary
to weigh the uncertainties in the modelling parame-
ters against the uncertainties in the image coordinate
measurements to estimate the most likely point posi-
tion.
As seen in the section 2.3, the mapping from 3D

points x to image points u may me expressed as a
function Fp1p2...pN from R3 (the 3D object space) to
R2 (the image), parametrized by a set of model param-
eters p1, p2, . . . , pN . Suppose we are given measured
matching points uij , each of which is the image of an
unknown point xj as seen in image number i. We are
required to estimate the point coordinates xj and the
parameters pik of each of the views so as to minimize
a certain penalty function. Here pik is the k − th pa-
rameter of the i − th view. Let ûij = Fpi1pi2...piN (xj),

which is the image of the point xj as seen in the i-th
view with the given calibration. Furthermore, let p̂ik
be a priori estimations of the values of the modelling
parameters. The penalty function to be minimized is

∑
i,j

wij ||uij − ûij ||2 +
∑
i,k

vik(p
i
k − p̂ik)2 (2)

where (wij)
−1 is the variance in the measurement of uij

and (vik)
−1 is the variance associated with the a priori

estimates of the parameters pik.
This estimation problem is solved using the

Levenberg-Marquardt ([?]) parameter estimation pro-
gram. In this method, an initial guess at the values of
the parameters is refined by iteration to reach a final
least-squares estimate optimizing (2). At each step, of
the iteration, an adjustment to the values of the active
variables is computed under an assumption of local
linearity. If the modelling parameters are known with
moderate accuracy, as is the case with the turbine-
blade imaging setup, then the convergence is rapid
from any initial estimate of the points xj .

4 Registering two 3D point sets

Given two point sets {xj} and {x′j} in R3 we ad-
dress here the problem of registering these two point
sets. In particular, we assume that the points are re-
lated by an unknown 3D similarity transformation, T ,
that is, the composition of a rotation, translation and
isotropic scaling. The goal is to compute T . Since in
the presence of noise one can not expect an exact fit,
one seeks instead an optimal least-squares solution. In
particular, we seek a similarity transformation T that
minimizes the error∑

j

||xj − Tx′j ||2 (3)

An efficient algorithm for computing the T that min-
imizes this term was given by Horn ([?]). This al-
gorithm uses quaternions to represent the unknown
rotation, leading to a non-iterative rapid solution.

5 Results

Three x-ray images from the sequence used in the
experiments are shown in figure 4.

5.1 Synthetic Phantom

Experiment to determine the accuracy of the linear
pushbroom camera.



Figure 4. Images from the sequence.

5.2 Example Reconstruction for Blade 1

5.3 Varying the number of blade views

5.4 Statistics for a suite of blades

5.5 Varying the camera model

Perspective vs. Affine vs Linear Pushbroom.

6 Future Work

• Use of statistics -¿ tolerancing.

• improved intensity model - Accomodate realistic
point spread function and non-Gaussian (Pois-
son) noise model.

• Nonlinear optimization - Combined intensity and
geometry approach to refine geometry-based 3D
reconstruction.

• Other imaging geometries such as conebeam ge-
ometry (area detectors).

References

[1] H.Boerner, and H. Strecker. Automated X-Ray In-
spection of Aluminum Castings. PAMI, vol 10, no. 1,
pages 79-91, 1988.

[2] A. Noble, V.D. Nguyen, C. Marinos, et al. Template
Guided Visual Inspection. ECCV, Santa Margherita,
Italy, pages 893-901, 1992.

[3] H.J. Scudder. Introduction of Computer Aided To-
mography. Proc. IEEE, vol. 66, pages 628-637, 1978.

[4] A. Kak. Computerized Tomography with X-rays,
Emission, and Ultrasound Sources. Proc. IEEE, vol.
67, pages 1245-1272, 1979.

[5] A.C. Kak and M. Slaney. Principles of Computerized
Tomographic Imaging. IEEE Press, New York NY,
1988.

[6] K. Kitamura, J. Tobis, and J. Sklansky. Estimating
the 3D Skeletons and Transverse Areas of Coronary
Arteries from Biplane Angiograms. IEEE Trans. Med.
Imaging, vol 7, no 3, pages 173-187, 1988.

[7] L.V. Tran and R.C. Bahn and J. Sklansky. Re-
constructing the Cross Sections of Coronary Arteries
from Biplane Angiograms. IEEE Trans. Med. Imag-
ing, vol. 11, no. 4, pages 517-529, 1992.

[8] T.N. Pappas and J.S. Lim. A New Method for
Estimation of Coronary Artery Dimensions in An-
giograms. IEEE Trans. Acoust. Sig., vol. 36, no. 9,
pages 840-858, 1988.

[9] Y. Bresler and J.A. Fessler and A. Macovski. A
Bayesian Approach to Reconstruction from Incom-
plete Projections of a Multiple Object 3D Domain.
IEEE PAMI, vol. 11, no. 8, pages 840-858, 1989.

[10] K. Shmueli, W.R. Brody, A. Macovski. Estimation
of Blood Vessel Boundaries from X-ray Images. Opt.
Eng., vol. 22, no. 1, pages 110-116, 1983.

[11] R. Hartley and R. Gupta. Linear Pushbroom Cam-
eras. Submitted for publication.


