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Abstract. Detecting pedestrians in images plays a very important role6

in many computer vision applications such as video surveillance, smart7

cars and robotics. Feature extraction is the key for this task. Promis-8

ing features should be discriminative, robust and easy to compute. This9

paper presents a novel and efficient feature, termed pyramid center-10

symmetric local binary\ternary patterns (pyramid CS-LBP\LTP), for11

pedestrian detection. The CS-LBP feature combines the desirable prop-12

erties of the standard LBP, which can be viewed as texture-based fea-13

tures, and the gradient based feature. Moreover, the pyramid CS-LBP\LTP14

is easy-to-implement and computationally efficient. Experiments on the15

INRIA pedestrian dataset show that the proposed feature outperforms16

Histograms of Oriented Gradients (HOG) feature and comparable with17

the start-of-the-art pyramid HOG(PHOG) features, when using the In-18

tersection Kernel SVM classifier. Our experiments also show that the19

combination of our pyramid LBP feature and the PHOG feature could20

improve the detection performance significantly.21

1 Introduction22

The ability to detect pedestrians in images has deep impact to applications such23

as video surveillance, smart vehicles, robotics and so on. Large variations in hu-24

man body, pose and clothing, combined with varying cluttered backgrounds and25

environmental conditions, make this problem far from being solved. In the past26

few years, there has been a surge of interest in pedestrian detection [1–9]. One27

of the leading approaches in pedestrian detection is based on sequentially ap-28

plying a classifier at all the possible subwindows, which are obtained by entirely29

scanning the input image in different scales and positions. For each sliding win-30

dow, certain feature sets are extracted and fed to the classifier, which is trained31

beforehand using a set of labeled training data of the same type of features. The32

classifier then determines whether the sliding window contains a pedestrian [1].33

Inspired by the development of object detection and classification, higher34

and higher performance of pedestrian detection has been achieved by: (1) using35

highly discriminative and robust image features, such as Haar wavelets [1], region36

covariance [5, 7] ,HOG [3, 4] and PHOG [10] (2) using the combination of multiple37

complementary features [9] (3) including spatial information [10] (4) the choices38
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of classifiers, such as SVM [3, 10], AdaBoost [11]. Feature extraction plays a39

critical role here. The features should be robust, discriminative, compact and40

efficient. The HOG feature is one of the best and most popular features used for41

pedestrian detection [3]. One of its drawbacks is the heavy computation. Maji42

et al. [10] introduced the PHOG feature into pedestrian detection, and their43

experiment showed that the new features can lead better classification accuracies44

than the HOG and much computational simpler and have smaller dimensions.45

However, these HOG like features, which capture the edge or the local shape,46

could perform poorly when the background is cluttered with noisy edges [9].47

Our goal here is to develop a feature extraction method for pedestrian detec-48

tion that, in comparison to the state-of-the-art, is comparable in performance49

and faster to compute. A conjecture is that, if both the shape and texture in-50

formation are extracted and used in the feature for pedestrian detection, the51

detection accuracy is likely to increase. The Center-symmetric local binary pat-52

terns feature(CS-LBP) [12], which is a modified version of the famous texture53

feature LBP, inherit the desirable properties of both the texture feature and54

the gradients feature, and is computationally simple. In this paper, we propose55

the pyramid center-symmetric local binary\ternary patterns(Pyramid CS-LBP56

\LTP) features for pedestrian detection. The experiments on INRIA dataset57

show that our new features outperform HOG and comparable with the state58

of art PHOG, when using the Intersection Kernel SVM(IKSVM) classifier [10].59

We also found that the detection performance can be improved significantly by60

combining our feature with the PHOG feature.61

The rest of the paper is organized as follows. In Section 2, we briefly de-62

scribe the LBP\LTP operator, the CS-LBP\LTP features and the pyramid CS-63

LBP\LTP features. In Section 3, we give the details of our approach. The ex-64

perimental evaluation is carried out in section 4. Section 5 concludes the paper.65

2 Preliminaries66

2.1 LBP and LTP features67

LBP is a texture descriptor which codifies local primitives (such as curved edges,68

spots, flat areas) into a feature histogram. LBP and its extensions outperform69

existing texture descriptors both with respect to performance and to computa-70

tional efficiency [13].71

The basic version of LBP feature of a pixel is assigned by thresholding the72

3×3-neighborhood of each pixel with the center pixel’s value . Let gc be the center73

pixel graylevel and gi (i = 0, 1, · · · , 7) be the graylevel of each surrounding pixel.74

If gi is smaller than gc, the binary result of the pixel is set to 0, otherwise to 1.75

All the results are combined to a 8-bit binary value. The decimal value of the76

binary is the LBP feature. See Fig. 1 for an illustration of computing the basic77

LBP feature.78

In order to be able to deal with textures at different scales, the original79

LBP has been extended to arbitrary circular neighborhoods [14] by defining the80
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neighborhood as a set of sampling points evenly spaced on a circle centered at a81

pixel to be labeled. It allows any radius and number of sampling points. Bilinear82

interpolation is used when a sampling point does not fall in the center of a pixel.83

Let LBPp,r denote the LBP feature of a pixel’s circular neighborhoods, where r84

is the radius of the circle and p is the number of sampling points on the circle.85

The LBPp,r can be computed as Eq. (1):86

LBPp,r =

p−1
∑

i=0

S(gi − gc)2
i, S(x) =

{

1 if x ≥ 0,

0 otherwise.
(1)

Here gc is the center pixel’s graylevel and gi (i = 0, 1, · · · , 7) is the graylevel of87

each sampling pixel on the circle. See Fig. 1 for an illustration of computing the88

LBP feature of a pixel’s circular neighborhoods with r = 1 and p = 8.89

Ojala et al. [14] proposed “uniform pattern” to reduce the original LBP90

pattern numbers while keeping its discrimination power. An LBP pattern is91

called uniform if the binary pattern contains at most two bitwise transitions from92

0 to 1 or vice versa when the bit pattern is considered circular. For example,93

the bit pattern 11111111 (no transition), 00001100 (two transitions) are uniform94

whereas the pattern 01010000 (four transitions) is not. Uniform pattern reduces95

the LBP pattern number from 256 to 58 and is successfully applied to face96

detection in [15].97

(a) Illustration of the basic LBP opera-
tor.
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(b) The LBP operator of a pixel’s circu-
lar neighborhoods with r = 1, p = 8.

Fig. 1. The LBP operator

LBP tends to be sensitive to noise, particularly in near-uniform image regions,98

and to smooth weak illumination gradients, Tan and Triggs [16] extended LBP to99

3-valued codes, called local trinary patterns(LTP). If each surrounding graylevel100

gi is in a zone of width ±t around the center graylevel gc, the result value is101

quantized to 0. The value is quantized to +1 if gi is above this and is quantized102

to −1 if gi is below this. The LTPp,r can be computed as :103
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LTPp,r =

p−1
∑

i=0

S(gi − gc)2
i, S(x) =











1 if x ≥ t,

0 if |x| < t,

−1 if x ≤ t,

(2)

Here t is a user-specified threshold. Fig. 2(a) illustrates the encoding pro-104

cedure of LTP. For simplicity, Tan and Triggs [16] used a coding scheme that105

splits each ternary pattern into its positive and negative halves as illustrated106

in Fig. 2(b), treating these as two separate channels of LBP codings for which107

separate histograms are computed, combining the results only at the end of the108

computation.109

(a) Illumination of the basic LTP oper-
ator.

(b) Splitting the LTP code into positive
and negative LBP codes

Fig. 2. The LTP operator

2.2 The CS-LBP/LTP patterns110

The CS-LBP is another modified version of LBP. It is originally proposed to111

alleviate some drawbacks of the standard LBP. For example, the original LBP112

histogram could be very long and the original LBP feature is not robust on flat113

images. As illustrated in Fig. 3, instead of comparing graylevel of each pixel with114

the center pixel, the center-symmetric pairs of pixels are compared. The CS-LBP115

features can be computed by:116

CS-LBPp,r,t =

N/2−1
∑

i=0

S(gi − gi+(N/2))2
i,

S(x) =

{

1 if x ≥ t,

0 otherwise.

(3)

Here gi and gi+N/2 correspond to the graylevel of center-symmetric pairs of117

pixels of N equally spaced on a circle of radius r. t is a small value and is used to118
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threshold the graylevel difference to increase the robustness of CS-LBP feature119

on flat image regions. From the computation of CS-LBP, we can see that the120

CS-LBP is closely related to the gradient operator, because, like some graident121

operators, it considers graylevel differences between pairs of opposite pixels in a122

neighborhood. This way the CS-LBP feature take advantage of both the prop-123

erties of the LBP and the gradient based features. In [12], the authors used the124

CS-LBP descriptor to describe the region around an interest point and their ex-125

periments show that the performance is almost equally promising as the popular126

SIFT descriptor. The authors also compared the computational complexity of127

the CS-LBP descriptor with the SIFT descriptor and it has been shown that128

the CS-LBP descriptor is on average 2 to 3 times faster than the SIFT. That is129

because the CS-LBP feature needs only simple arithmetic operations while the130

SIFT requires time consuming inverse tangent computation when computing the131

gradient orientation.132
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Fig. 3. The CS-LBP features for a neighborhood of 8 pixels.

Similarly as “uniform LBP pattern”, we propose “uniform CS-LBP pattern”133

to reduce the original CS-LBP pattern numbers. A CS-LBP pattern is called134

uniform if the binary pattern contains at most one bitwise transition from 0 to 1135

or vice versa. For example, the pattern 0000(no transition) and 0111(one tran-136

sition) are uniform whereas the pattern 0010(two transitions ) and 1010(three137

transitions) are not. We computed the CS-LBP patterns of 741 images in INRIA138

dataset( 288 images containing pedestrains and 453 images without dedestrians)139

and found that 87.82% of the patterns are uniform, shown in Table 1.140

The CS-LTP and the uniform CS-LTP can be developed similarity as the141

CS-LBP and the uniform CS-LBP.142

2.3 Pyramid CS-LBP/LTP features and pyramid uniform143

CS-LBP/LTP features144

Inspired by the image pyramid representation in [17] and the HOG [3], Bosch145

et al. [18] proposed the PHOG descriptor, which consists of a pyramid of His-146

tograms of orientation gradients, to represent an image by its local shape and the147
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Table 1. The distribution of the CS-LBP pattern

Uniform 0000 0001 0011 0111 1000 1100 1110 1111
Percentage(%) 8.93 11.80 8.72 10.22 8.31 9.27 10.99 19.57 total(87.82)

Non-uniform 0010 0100 0101 0110 1001 1010 1011 1101
Percentage(%) 1.24 1.14 1.52 1.28 1.86 1.31 1.73 2.11 total(12.18)

spatial layout of the shape. Experiments showed that PHOG feature together148

with the histogram intersection kernel can bring significant performance to ob-149

ject classification and recognition. Maji et al. [10] introduced the PHOG feature150

into pedestrian detection and led to the current state of the art on pedestrian151

detection.152

In this study, we propose the pyramid CS-LBP\LTP features. Because the153

LTP patterns can be divided into two LBP patterns, we only illustrate the154

computation of the pyramid CS-LBP features. The details of our features are155

illustrated as follows:156

1) We compute the CS-LBP value and the norm of each pixel of the input157

image. The LBP value is computed as Eq. 3 and the norm of the pixel located at158

(x, y) is computed as: norm(x, y) =
√

G2
x(x, y) + G2

y(x, y), where Gx(x, y) and159

Gy(x, y) are the horizontal gradient and vertical gradient of the pixel. Then we160

obtain 16 layers of norm images corresponding to each CS-LBP pattern. We call161

them edge energy responses of the input image .162

2) Each layer of the response image is L1 normalized in non overlapping cells163

of fixed size yn × xn.164

3) At each level l ∈ {1, 2, ...L}, the response image is divided into non over-165

lapping cells of size yl × xl, and a histogram feature is constructed by summing166

up normalized response within the cell.167

4) The histogram feature of each level is normalized to sum to unity. This168

normalization ensures that the edge or texture rich images are not weighted more169

strongly than others.170

5)The features at a level l are weighted by a factor wl, and the features at171

all the levels are combined to form a vector, which is called pyramid CS-LBP172

features. Fig. 4 shows the first three steps of computing the features.173

The precess of computing pyramid uniform CS-LBP is almost same as pyra-174

mid CS-LBP. The only difference lies in the first step. In the first step, the edge175

energy responses of different uniform patterns are count into different layers and176

the edge energy response of all the non-uniform patterns are count into one layer.177

So we obtain 9 layers of edge energy responses of the input image.178
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Fig. 4. Pyramid CS-LBP features.

3 Pedestrian detection based on pyramid CS-LBP\LTP179

features180

We use the sliding window approach. The first major component of our approach181

is feature extraction. We perform the graylevel normalization of the input image182

to deduce the illumination variance. After the normalization is performed, all183

the input image have the same intensity ranged from 0 to 1. Then,the detection184

window slides on the input images in all positions and scales, with a fixed scale185

factor and a fixed step size. we follow the steps in Sec. 2.3 to compute the186

pyramid CS-LBP\LTP features of each detection window.187

The second major component of our approach is the employed classifier. We188

use the histogram intersection kernel SVM(IKSVM) [10] as classifier. The his-189

togram intersection kernel, kHI(ha, hb) =
∑n

i=1 min(ha(i), hb(i)) is often used as190

a measurement of similarity between histogram ha and hb and it can be used as a191

kernel for discriminate classification using SVMs. Compared to linear SVMs, his-192

togram intersection kernel requires great computational expense. Maji et al. [10]193

approximated the histogram intersection kernel for faster execution. Their ex-194

periments showed that the approximate IKSVM consistently outperforms linear195

SVM at a modest increase in running time.196

The third major component of our approach is the merging of the multiple197

overlapping detections using non maximal suppression(NMS). After the merging,198

detections with bounding boxes and confidence scores are obtained.199

Detecting pedestrians on the INRIA human dataset, our approach has the200

following parameters: 128× 64 detection windows, detection window slides with201

a step size 8 × 8 and a scale factor 1.0905, block normalization window size of202

16×16, 4 pyramid levels, cell size of 64×64,32×32,16×16,6×6 at levels 1,2,3 and203

4 respectively, the weights to the features of levels are 1,2,4 and 9 respectively.204

4 Experiments205

4.1 Experiment setup206

Datasets. We perform the experiments on INRIA human dataset [3], which207

is the most popular publicly available dataset and has helped drive recent ad-208
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vances in pedestrian detection. The dataset consists of training set and test set.209

The training set contains 1208 images of size 96 × 160 pixels (a margin of 16210

pixels around each side) of human samples (2416 mirrored samples) and 1218211

pedestrian-free images. The test set contains 288 images with human samples212

and 453 human free images. The human samples are cropped from a varied set of213

personal photos and vary in pose, clothing, illumination, background and partial214

occlusions, what make the dataset is very challenge.215

Methodology. Per-window performance is accepted as the methodology for216

evaluating pedestrian detectors by most authors. But this evaluating methodol-217

ogy is flawed. As mentioned in [8], per-window performance can fail to predicted218

per-image performance. There may be at least two reasons: first, per-window219

evaluation does not measure errors caused by detections at incorrect scales or220

positions or arising from false detections on body parts, nor does it take into221

account the effect of NMS. Second, the per-window scheme uses cropped pos-222

itives and uncropped negatives for training and testing: classifiers may exploit223

window boundary effects as discriminative features leading to good per-window224

but poor per-image performance. In this paper, we use per-image performance,225

plotting detection rate versus false positives per-image(FPPI).226

We select the 2416 mirrored human samples from the training set as positive227

training examples. A fixed set of 12180 patches sampled randomly from 1218228

pedestrian-free training images as initial negative set. Same as [3], a preliminary229

IKSVM detector is trained and the 1218 negative training images are searched230

exhaustively for false positives. The classifier is then retrained using the aug-231

mented set combined by the initial training set and the found false positives.232

The SVM tool we used is the fast intersection kernel SVMs proposed by Maji et233

al. [10] and it can be download from: http://www.cs.berkeley.edu/~smaji/234

projects/fiksvm/.235

We detect pedestrian on each test images (both positive and negative) in all236

positions and scale. Multiscale and nearby detections are merged using NMS and237

a list of detected bounding boxes are given out. Evaluation on the list of detected238

bounding box is done using the PASCAL criterion which counts a detection to be239

correct if the overlap of the detected bounding box and ground truth bounding240

box is greater than 0.4.241

4.2 Performance of the pyramid CS-LBP/LTP feature based242

detector243

In this section, we study the performance of our approach by comparing with244

the state of art PHOG feature based approach. We obtain the PHOG based245

detector from its author and the PHOG’s level number and cell size in each level246

are same as our features. The results are shown in Fig. 5. The performance of247

pyramid CS-LTP based detector performs best, with detection rate over 80% at248

0.5 FPPI. Then followed by the pyramid uniform CS-LTP based detector, which249

is slightly better than the PHOG based detector. The pyramid CS-LBP based250

detector performs almost as good as the PHOG. Though the pyramid uniform251

CS-LBP based detector performs slightly worse than PHOG basd detector, it252
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outperforms the HOG features with linear SVM based detector proposed by253

Dalal and Triggs [3].254
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Fig. 5. Detection rate versus false positive per-image curves for detectors based on
different features.

4.3 Detection results with features combined by PHOG and255

pyramid CS-LBP256

We explore the performance of augmented features combined by the PHOG257

and the pyramid CS-LBP (PHOG + pyramid uniform CS-LBP) in Fig. 6. The258

detection rate versus FPPI curves show that the augmented feature can signif-259

icantly improve the detection performance, especially when the FPPI is small.260

The detection rate raises about 6% at 0.25 FPPI and raises about 1.5% at 0.5261

to 1 FPPI. Fig. 7 shows pedestrian detection on some example test images.262

The three rows show the bounding boxes detected by PHOG based detector,263

pyramid uniform CS-LBP based detector and the PHOG + pyramid uniform264

CS-LBP based detector, respectively.265

5 Conclusions266

We have presented pyramid CS-LBP\LTP features for pedestrian detection prob-267

lems. The experimental results on the INRIA dataset show that the pyramid268
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Fig. 6. Performance of detector

Fig. 7. Some examples of detections on test images for the detectors using PHOG,
pyramid uniform CS-LBP and augmented features( combined by HOG and pyramid
uniform CS-LBP). First row: detected by the PHOG based detector. Second row: de-
tected by the pyramid uniform CS-LBP based detector. Third row: detected by the
PHOG + pyramid uniform CS-LBP based detector.
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CS-LTP features using IKSVM classifier outperform the PHOG using IKSVM269

classifier and the pyramid CS-LBP features perform as good as the HOG. Further270

experiments show that a pedestrian detector based on the augmented features271

combined by the PHOG and the pyramid CS-LBP can achieve significantly bet-272

ter performance.273

There are many directions for further research. To make the conclusion more274

convincing, the performance of the pyramid CS-LBP\LTP features based pedes-275

trian detector needs to be further evaluated on other dataset, e.g. the Caltech276

Pedestrian Dataset [8]. Another further study will be to compare the compu-277

tational complexity of the pyramid CS-LBP\LTP features with PHOG both278

theoretically and experimentally. Thirdly, it is worthy to study how to combine279

our features with PHOG or other features more efficiently. We are also interested280

in implement the new feature in the boosting framework.281
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