
Fast Multi-labelling for Stereo Matching

Yuhang Zhang1, Richard Hartley12, and Lei Wang1

1The Australian National University
2NICTA

{yuhang.zhang,richard.hartley,lei.wang}@anu.edu.au

Abstract. We describe a new fast algorithm for multi-labelling prob-
lems. In general, a multi-labelling problem is NP-hard. Widely used algo-
rithms like α-expansion can reach a suboptimal result in a time linear in
the number of the labels. In this paper, we propose an algorithm which
can obtain results of comparable quality polynomially faster. We use the
Divide and Conquer paradigm to separate the complexities induced by
the label set and the variable set, and deal with each of them respec-
tively. Such a mechanism improves the solution speed without depleting
the memory resource, hence it is particularly valuable for applications
where the variable set and the label set are both huge. Another merit of
the proposed method is that the trade-off between quality and time effi-
ciency can be varied through using different parameters. The advantage
of our method is validated by experiments.

1 Introduction

Solving multi-labelling problems by way of Markov random field (MRF) opti-
mization has been a popular research topic in recent years due to its effectiveness.
Successful algorithms like α-expansion [1, 2] and FastPD [3, 4] can already pro-
vide high quality solutions in polynomial time. However, most existing work
involved images of relatively small size or with a limited number of labels. From
the perspective of practical applications, for example large-scale 3D reconstruc-
tion based on high resolution images, both the number of variables and the
number of labels involved in the optimization will be huge. Therefore, develop-
ing an even faster optimization method that is scalable to the size of the Markov
random field attracts our attention.

One important attribute of the variables in a Markov random field is that
their values (or labels) are generally smooth, whereas violent fluctuation only
happens in sparse boundary areas. Based on this assumption, we divide each
multi-labelling problem into two smaller multi-labelling problems, which handle
the huge variable set and the huge label set respectively. In the first subproblem,
we force some of the neighbour variables to share the same labels, so the number
of random variables is reduced. In the second problem, we fine tune the result
of the first subproblem, so that neighbouring pixels that were forced to share
identical labels can now have different labels. During this fine tuning we exclude
the possibility of violent variations, so the number of optional labels for each



2 Y. Zhang, R. Hartley, and L. Wang

variable is largely reduced. Through implementing these two steps recursively,
the original problem can be solved in a time sublinear in the number of labels.

High speed and low memory cost is the major contribution of our method.
However, rather than exclusively pursuing speed, a trade-off between efficiency
and quality can be tuned by varying the parameters in our method. Experiments
show that our method possesses strong advantages in efficiency over previous
algorithms.

2 Previous Work

Many low level computer vision tasks can be modelled as multi-labelling prob-
lems. Examples include stereo matching, image denoising and image segmenta-
tion. A multi-labelling problem can be solved by energy minimization. In partic-
ular, Markov Random Fields have been popular as a formulation for multi-label
energy minimization. The Hammersley-Clifford theorem makes the connection
between the probabalistic viewpoint of MRFs and minimization of an abstractly
defined cost-functions.

As optimizing a multi-label Markov random field is in general NP-hard [5],
all usable algorithms need to sacrifice optimality for time efficiency [1, 4, 6–8] or
generality. Among current approaches, α-expansion [1] is one of the most pop-
ular algorithms. The divide and conquer paradigm is utilized in α-expansion.
Specifically, instead of tackling the intractable full problem directly, α-expansion
assumes that the applicability of each label can be checked individually. There-
fore, each n-label problem is divided into n 2-label subproblems, each of which
determines whether a label α should be applied to variables currently having
other labels. Each 2-label problem can be solved with a max-flow algorithm in
polynomial time provided the edge costs satisfy a metric [1] or convexity [6]
condition. To reach a stationary point, or local minimum, multiple outer itera-
tions are required. One of the most popular max-flow algorithm, Push-relabel,
has a time complexity of O(M3), where M is the number of vertices (variables)
in the graph. Assuming the number of variables and the number of labels are
independent, and that the number of necessary outer iterations is a constant,
the time complexity of α-expansion is linear in the number of labels and the
time complexity of its max-flow subroutine, namely O(M3N), where N is the
number of labels.1 However, in applications like stereo matching, the number of
labels is usually proportional to the image resolution. Hence the processing time
of α-expansion increases rapidly as the image size grows. A restriction on using
α-expansion with max-flow is that the 2-label sub-problems must be submodu-
lar; this constrains its applicability to cost functions with metric or convex edge
costs. However, there is no need to restrict the method for solving the 2-label
problems to max-flow. Other algorithms such as roof-dual (QPBO) [10] or Lazy-
Elimination [7] can be used instead. Another method that handles more generic

1 Push-relabel is not the fastest max-flow algorithms. The fastest one so far was pro-
posed in [9] and has a time complexity of O(min(M2/3, E1/2)E log(M2/E+2) log C),
where C is the maximum capacity of the network and E is the number of edges.



Fast Multi-labelling for Stereo Matching 3

energy functions is Alphabet Soup [11], which can be viewed as a generalized
α-expansion.

FastPD [3] is another very successful multi-labelling algorithm. By relax-
ing the integrality constraint to a continuous positive constraint, it transforms
the original discrete optimization problem into linear programming and then
approaches the optimal solution through iteratively applying the primal-dual
schema. FastPD can handle quite general types of energy functions and also
obtains a convincing suboptimal results very rapidly. However, to pursue high
processing speed, the avaliable implementation of FastPD easily exhausts the
memory resource even dealing with a middle-sized stereo pair (e.g. 600 × 500
containing 64 labels). A more comprehensive review of relevant algorithms can
be found in [12, 13].

Earlier work on enhancing the speed of MRF optimization can be found in [8],
where the max-flow problem on a graph is efficiently solved using the known
solution for a similar graph. Approaches to accelerating stereo matching were
discussed in [14, 15], where higher speed (2.8 and 4 times speed-up respectively)
is obtained through reducing the search range during matching. Particularly,
an idea similar to our work was interpreted as search-range reduction through
downscaling, tested and reported to fail in [15]. However, that paper gave only a
sketchy description of their algorithm, with insufficient detail for us to distinguish
the cause of failure. In contrast, our work shows that through proper construction
and implementation, this method can handle MRF optimization with promising
increase in a speed significantly faster than the existing algorithms.

3 Dividing the Original Problem

Optimizing a Markov random field containing M variables and N labels can be
described as finding the optimal among NM discrete states. For positive integers
M and N both of which are larger than 1, and positive integers m and n which
are smaller than M and N respectively:

NM−m − 1 ≥ nM−m

⇒ nm(NM−m − 1) ≥ nM

⇒ Nm(NM−m − 1) > nM

⇒ NM − Nm > nM

⇒ NM > Nm + nM

Hence the complexity of the original problem can be reduced, if we can divide
the original problem, i.e. split M and N into separate subproblems and tackle
them respectively.

To construct the first subproblem, we need to reduce the number of random
variables. On a 4-connected Markov grid as shown in Figure 1, a minimum cycle
is composed of 4 vertices. Each vertex is directly related to 2 out of 3 of the
other vertices on the cycle. Hence the values of all vertices on the same cycle



4 Y. Zhang, R. Hartley, and L. Wang

Fig. 1. left: the original Markov grid; middle: four vertices on the same minimum

cycle are merged, their exterior edges are inherited by the super-vertex; right: merging

has been implemented with the rest vertices, some duplicate edges connecting the same

super-vertices are dropped off.

should generally be similar. Based on this prior, we favour vertices on the same
minimum cycle to share the same value. Note that we cannot force vertices on
all the minimum cycles to share the same value, otherwise all the vertices will
have identical value. Whereas each vertex participates in 4 minimum cycles, we
only force it to share the same value with neighbour vertices in 2 of the cycles.
In this way, vertices on the selected minimum cycles are merged into one vertex,
which inherits all the exterior edges of its component vertices. By merging all
vertices on selected minimum cycles, the number of vertices in the Markov grid
is reduced to a quarter of the original. At the same time, the number of edges is
also reduced to a quarter of the original. Half of the edges in the original rigid are
removed as interior edges, whereas a further quarter are eliminated as duplicate
exterior edges. The consequent Markov grid after merging inherits the general
structure of the original but loses the local details.

In the second subproblem, we retrieve the details lost due to merging vertices
in the first subproblem. Since the general structure of the Markov grid has
already been identified, only fine tuning within a small range is necessary for
each vertex. That is why we can reduce the number of labels in the second
subproblem. The fine tuning range depends on the nature of the problem and
the requirement of the user. The proposed method favors problems satisfying the
following criterion. Given the labels of surrounding vertices, the possible labels
for a vertex can be narrowed down to a subset of all labels. In many practical
problems, most of the vertices can be regarded as satisfying the above criterion.
In such cases, the loss in optimality is limited. Obviously, the loss in optimality
can be reduced through increasing the fine tuning range. The highest quality, as
well as the worst time efficiency, is achieved by using all labels in the fine-tuning.
In this case, however, the result obtained in the first subproblem is useless, and
the problem is solved in its original form in the second subproblem. At the other
end of the scale, the best time efficiency is obtained by using as few labels as
possible in the fine-tuning step, i.e {−1, 0, +1}.



Fast Multi-labelling for Stereo Matching 5

Fig. 2. the original problem as well as its time complexity are divided recursively along

the binary tree. The number of variables reduces as the tree branches.

4 Recursion and Solving

Rather than dividing the original problem into two subproblems, our ambition
really lies in recursively implementing the division. Theoretically, we can always
further divide both the subproblems, as long as they are still large enough. How-
ever, in implementation, we generally use a small fine tuning range in the second
subproblem for the purpose of time efficiency. Thus the second subproblem usu-
ally cannot be further divided. Therefore, the recursive division usually generates
a binary tree which only branches on the left children as in Figure 2.

After dividing the original problem according to the binary tree in Figure 2,
we solve the subproblems on the leaves and combine them together to gener-
ate the solution for the original problem. The time complexity of the proposed
algorithm is the sum of the time complexity on all the leaves:

T (M, N) = T (
M

4k
, N) +

k−1∑

i=0

T (
M

4i
, c) . (1)

Among all the leaves, only one of them is the left child of its parent and might
have a large number of labels. However, since the number of variables shrinks
rapidly as the tree branches, this single left leaf which is on the highest level of
the tree contains extremely few variables. The time needed to solve it can be
regarded as a small constant. All the other leaves are the right children of their
parent, hence have a very small number of labels, which can be solved efficiently
using any existing single-scale multi-labelling algorithm. In our work, we adopt
α-expansion as the default option. Therefore, (1) can be computed as:

T (M, N) = Θ(1) +

k−1∑

i=0

O((
M

4i
)3c)



6 Y. Zhang, R. Hartley, and L. Wang

Fig. 3. the image pyramid generated by the proposed method in stereo matching.

= Θ(1) +

k−1∑

i=0

64−iO(M3c)

< Θ(1) +
64

63
O(M3c)

= O(M3c)

which shows the time complexity of the proposed method is independent of
the number of labels N . As the fine tuning range c can be treated as a small
constant independent of the size of the original problem, the time complexity
of the proposed method is simply O(M3). Soon we will see that a dynamic c is
even more powerful than a constant c.

Particularly in stereo matching, the above recursive division can be inter-
preted as depth estimation over a Gaussian-pyramid as shown in Figure 3. The
bottom of the pyramid corresponds to the original image. Each division gener-
ates a higher level in the pyramid, where the numbers of variables and labels
are reduced to a quarter and a half respectively. Optimization starts from the
top level, where the number of variables and search range are both the smallest.
The solution for the bottom level, namely the original image, is reached through
hierarchical fine tuning.

5 Fine Tuning with α-expansion

As α-expansion calls max-flow algorithms as its subroutine, it is necessary for
the binary term in the energy function to be submodular as shown in (2):

E(0, 0) + E(1, 1) ≤ E(0, 1) + E(1, 0) . (2)

According to the original design of α-expansion [1], the above requirement is
interpreted as

E(p, q) + E(α, α) ≤ E(p, α) + E(α, q) . (3)



Fast Multi-labelling for Stereo Matching 7

In our problem the above interpretation is generalized to a more complex form:

E(p̂ + p, q̂ + q) + E(p̂ + α, q̂ + α) ≤ E(p̂ + p, q̂ + α) + E(p̂ + α, q̂ + q) , (4)

where p̂ and q̂ are the labels belonging to the two vertices before the fine tuning,
namely the labels obtained in the first subproblem. The original α-expansion can
be viewed as a special case in our problem, where p̂ = q̂ = 0. To show what (3)
really means, we discuss it in three complementary situations. To simplify the
discussion, we assume the range of fine tuning is {−1, 0, +1}, p̂− q̂ = d, and that
E(p, q) = f(p − q).

– When α = −1, p = 0, q = 1, equation (4) is converted to

f(d − 1) + f(d) ≤ f(d + 1) + f(d − 2) , (5)

requiring the energy function to be convex.
– When p = −1, α = 0, q = 1, equation (4) is converted to

f(d − 2) + f(d) ≤ f(d − 1) + f(d − 1) , (6)

requiring the energy function to be concave.
– When p = −1, q = 0, α = 1, equation (4) is converted to (5), requiring the

energy function to be convex again.

According to the above discussion, neither concave nor convex functions can
fulfill the requirement of submodularity in all situations. However, as has been
shown by many previous papers, the Potts model [2] can usually do the job. As
we can judge, it does fulfill the requirement of submodularity in all the three
conditions when d = 0. However, in our case, as d is no longer 0, the Potts
model as well as many other energy functions longer guarantee the submodular
requirement.

The solution lies in one particular function:

f(x) = |x| , (7)

which is globally convex as well as sectionally concave. It is globally convex,
hence (5) is naturally met. It is sectionally concave, when all points are sampled
from the same side of the origin. Thus (6) can be met as well if we can ensure
that the four terms lie on the same side of the origin. Obviously, if the two terms
on the left lie on the same side of the origin, the two terms on the right will do
so as well. The left two terms, to give their original form in (4), (m+p)− (n+ q)
and m− n, are the label difference between two neighbour variables, before and
after the fine tuning. Enforcing ((m + p) − (n + q)) (m − n) ≥ 0 indicates that
neighbouring variables should not invert their label orders in the fine tuning
step. Although such a constraint confines the fine tuning moves, the optimality
should not be affected much unless severe mistakes were made earlier, requiring
such an inversion in the label orders.

An alternative implementation of α-expansion was proposed in [6], which re-
quires the edge function to be convex in all the 3 situations. With this design,



8 Y. Zhang, R. Hartley, and L. Wang

more convex functions can be adopted in our problem. However in practical
usage, if we expect the label jumps to happen intensively at narrow edges in-
stead of loosely covering a wide area, concave functions are preferable to convex
functions. Thus we use (7) as the smooth term in our method. This is a convex
function by definition, but penalizes sharp edges the least among all the convex
functions.

Note that α-expansion is not the only option for single-scale MRF optimiza-
tion. We stick to it in this work because it is widely known. People familiar
with other single-scale MRF optimization methods like [3] and [7] can adapt our
methods into their work very easily without necessarily restricting to the cost
function (7).

6 Experiments

To examine the usefulness of the proposed method, we use it to estimate the
disparity between high resolution stereo image pairs. The machine is an average
PC, equipped with 2 GB RAM and 2.39 GHz Dual Core CPU. The images are
downloaded from the Middlebury stereo dataset [16, 17]. All the images are over
1000 × 1000 in size. The disparity range in each image pair is larger than 100
pixels, requiring more than 100 labels. We will use α-expansion as the subroutine
in our method, and compare its performance against the original single-scale α-
expansion. Both methods optimize the energy function given by (8), (9), (10),
where Il(i) is the normalized grey value of pixel i in the left image, Ir(i

′) is the
normalized grey value of its corresponding pixel in the right image, and L(i) and
L(j) are the labels of pixel i and j respectively. Certainly more sophisticated en-
ergy functions can be designed and used instead, which is an important research
topic by itself, but not our major concern in this work.

E =
∑

i

Ui +
1

100

∑

ij

Bij (8)

Ui = |Il(i) − Ir(i
′)| (9)

Bij = |L(i) − L(j)| (10)

We have also implemented our method with FastPD as the subroutine. However,
as the single-scale FastPD cannot be executed to solve a problem of this size
due to the memory limitation on a normal PC, we cannot conduct detailed
comparison with it, but only show our output.

Table 1 shows the processing time, peak memory usage and result quality for
the different methods. All values are the average over the 4 image pairs we used
in the experiments. We refer to the original single-scale α-expansion as 1-scale
in the table. 1-scale⋆ is equivalent to 1-scale except that it is optimized for speed
during programming and hence demands a much larger memory space than 1-
scale. The other rows in the table correspond to our method implemented over
different numbers of hierarchies. The tuning range in the second subproblems is



Fast Multi-labelling for Stereo Matching 9

{−1, 0, +1} in all cases. Figure 4 shows the left views of the four stereo pairs, the
ground truth and the results produced by different methods. The content of the
image are chosen to be different and representative. For example, the image in the
second column contains many slender objects, which cause frequent and sharp
discontinuities in depth value, whereas the image in the last column contains
generally smooth surfaces on which depth value varies only mildly.

Method Time Peak Memory Extra Energy(%)

1-scale 34m03s 270MB 0

1-scale⋆ 17m01s 2.3GB 0

2-scale 2m21s 540MB 4.33

3-scale 37s 540MB 7.63

4-scale 27s 540MB 11.63

5-scale 22s 540MB 18.50

Table 1. Performance comparison: 1-scale⋆ follows the original α-expansion algorithm,

except that it is optimized for speed during programming.

6.1 Time and Memory Efficiency

The proposed method is absolutely faster than single-scale α-expansion, no mat-
ter whether it is optimized for speed or not. The optimized α-expansion uses
arrays to store precomputed unary terms. Consequently, it requires 10 times the
memory of the original α-expansion. Nevertheless, it only becomes 2 times faster.
Moreover, when its memory occupancy exceeds the physical memory limit, vir-
tual memory swapping makes it even slower. That is also why FastPD cannot
be used here. On the other hand, the memory requirement of our method is only
moderately larger than that of the original α-expansion, but the boost in speed
is significant. With FastPD as the subroutine, the peak memory occupancy of
our method is 1.4GB, and the algorithm terminates within 15 seconds over 3
levels of hierarchy.

Significant decrease in processing time can be observed between 1-scale and
2-scale, as well as between 2-scale and 3-scale optimization, but as we further
increase the number of hierarchies, no further increase is observed. That is be-
cause, after merging the vertices once, the size of the first subproblem is still
quite huge, whereas after merging twice or three times, the size of the first sub-
problem is already small enough that further reducing its size will not save much
time.

After cutting the problem into small enough pieces, the peak memory occu-
pancy, as well as the processing time of our method is determined by the final
fine tuning on the original scale. That is why the peak memory occupancy of our
method remains the same irrespective of the number of hierarchy levels. It needs



10 Y. Zhang, R. Hartley, and L. Wang

Fig. 4. from the top to the bottom: left views of the stereo pairs, ground truth, result

produced by the original α-expansion, the proposed method over 3 levels of hierarchy,

using α-expansion and FastPD as subroutines respectively.

more memory than the original α-expansion because we have pre-computed the
unary term. However, since the number of labels in the fine tuning is small, the
additionally required memory space does not become a problem for a normal PC.



Fast Multi-labelling for Stereo Matching 11

That also suggests that on images of the same size but with increasing number
of labels, whereas the running time of α-expansion or the memory occupancy
of FastPD will increase accordingly, the cost of our method remains almost the
same, because the number of labels needed in the final fine tuning is not changed.

The time and memory efficiency of single-scale α-expansion and FastPD may
vary due to different implementations, however, that will not affect the compar-
ison here, because the proposed method calls them as the subroutine.

6.2 Quality

As shown in the second column in Figure 4, our method does not handle slender
objects particularly well. Slender objects correspond to a sequence of discon-
tinuities in depth values. This result is not surprising, as our assumption is
that neighbouring pixels have similar labels (depth values), and hence can be
merged. Such an assumption does not apply to slender objects, where adjacent
pixels may possess completely different labels. Merging in these areas leads to
severely wrong labelling which cannot be corrected by small range fine tuning.
That is why part of the stick is absorbed by the background, and the other
part becomes thicker through absorbing background pixels. However, as slender
objects are naturally difficult for graph cuts, even the original α-expansion does
not perform outstandingly well on them.

Despite the above defects, the proposed method performs quite well with
generally smooth surfaces like the cloth image in the last column, and sparse
edges like the aloe image on the first column. The extra energy in the MRF due
to hierarchical optimization, as shown in Table 1, is minor, as long as we do not
use too many hierarchies.

Figure 5 shows how the final result is reached through sequential fine tuning
from the coarse estimation. In particular, only the final three levels of recursion
are shown here. The total number of recursion levels is 5. The images in the first
row show the improvement as the disparity estimate becomes more and more
accurate with increasing resolution. The images in the second row reflect the fine
tuning operation on different pixels.

6.3 Trade-off between Efficiency and Quality

Table 1 shows that the trade-off between efficiency and quality can be tuned
by changing the number of hierarchy levels of optimization. Another parame-
ter affecting the trade-off is the range of fine tuning. As a rule of thumb, using
more labels during fine tuning over all hierarchies will significantly increase the
processing time. Consequently, we only increase the range of fine tuning in hier-
archies other than the final one. Recall that the processing time of our method
is mainly determined by the last fine tuning at the original scale. As long as
the problem size of this step remains the same, the time efficiency of the whole
algorithm will not be significantly changed.

Table 2 shows how time efficiency and result quality vary as we use different
numbers of levels of hierarchy and different tuning ranges. As one would expect,



12 Y. Zhang, R. Hartley, and L. Wang

Fig. 5. Refinement and convergence of depth values at different levels of resolution. The

first row shows depth values. The second row shows which pixels change their labels as

resolution is increased during the sequential fine-tuning operation. The pixels colored

black are to be decreased in disparity as resolution increases; the pixels colored white are

to be increased in disparity, and the pixels colored grey will keep their current disparity.

with the same number of levels, the wider the tuning range is, the better the qual-
ity will be, and the slower the algorithm will be. However, the opposite results can
be found when the tuning range is increased to 7, i.e. {−3,−2,−1, 0, +1, +2, +3}.
Not only the energy in the MRF but also the processing time is reduced. Again,
note that the processing time mainly depends on the last fine tuning in the orig-
inal scale, which is a single-scale α-expansion. The processing time of a single-
scale α-expansion algorithm depends not only on the size of the MRF but also
on the initial state. The closer the initial state is to the optimal state, the fewer
iterations the α-expansion algorithm needs to converge, hence the faster it ter-
minates. Although using a wider tuning range takes more time on the earlier
hierarchies, it also generates better initial estimation for the final hierarchy,
which is the payoff for previous loss. Figure 6 visually compares the difference
in quality due to different combinations of parameters.

7 Conclusion

The proposed method provides a mechanism for separating the complexity in-
duced by the variable set and the label set. This mechanism is able to obtain
satisfying optimization results in time much shorter than that of the other exist-
ing algorithms. This speed opens an opportunity for large scale MRF optimiza-
tion. The tunable parameters leads to the versatility of our method, which can



Fast Multi-labelling for Stereo Matching 13

Levels Tuning Range Time Extra Energy(%)

3
3 37s 7.63

5 40s 6.00

4

3 27s 11.63

5 37s 8.75

7 35s 7.53

5

3 22s 18.50

5 37s 10.62

7 32s 7.98

Table 2. Efficiency and quality with different combinations of parameters. As expected

the quality of the solution is improved by using a larger fine-tuning range. This is done

at all levels of hierarchy, except at the finest resolution level. This improvement in

quality is also at times accompanied by a decrease in run time. The table also shows

that increasing the number of levels can be counter-productive.

Fig. 6. Result produced with different parameters using α-expansion as the subroutine.

From left to right: 4 hierarchies, 3 tuning labels; 3 hierarchies, 3 labels; 3 hierarchies,

5 labels.

be applied to different applications through proper parameter selection. For fu-
ture work, we see the possibility of combining our method with Dynamic Graph
Cuts [8], where segmentation in previous frames can be used to guide the forma-
tion and fine-tuning in the hierarchy. In another approach, to avoid improperly
merging vertices of completely different values, mechanisms like backtracking
might be adopted into the proposed method. With these improvements, fast
algorithms producing results of even better quality are to be expected.

Acknowledgement

We acknowledge the support of NICTA, which is funded by the Australian Gov-
ernment in part through the Australian Research Council.



14 Y. Zhang, R. Hartley, and L. Wang

References

1. Zabih, R., Veksler, O., Boykov, Y.: Fast approximate energy minimization via
graph cuts. In: ICCV99. (1999) 377–384

2. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via
graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23 (2001) 1222–1239

3. Komodakis, N., Tziritas, G., Paragios, N.: Performance vs computational efficiency
for optimizing single and dynamic mrfs: Setting the state of the art with primal-
dual strategies. Comput. Vis. Image Underst. 112 (2008) 14–29

4. Komodakis, N., Tziritas, G.: Approximate labeling via graph cuts based on linear
programming. PAMI 29 (2007) 1436–1453

5. Boros, E., Hammer, P.L.: Pseudo-boolean optimization. Discrete Applied Mathe-
matics 123 (2002) 155–225

6. Carr, P., Hartley, R.: Solving multilabel graph cut problems using multilabel swap.
In: DICTA, Melbourne, Australia (2009)

7. Carr, P., Hartley, R.: Minimizing energy functions on 4-connected lattices using
elimination. In: ICCV, Kyoto, Japan (2009)

8. Kohli, P., Torr, P.: Dynamic graph cuts for efficient inference in markov random
fields. PAMI 29 (2007) 2079–2088

9. Goldberg, A.V., Rao, S.: Beyond the flow decomposition barrier. J. ACM 45

(1998) 783–797
10. Rother, C., Kolmogorov, V., Lempitsky, V., Szummer, M.: Optimizing binary mrfs

via extended roof duality. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). (2007)

11. Gould, S., Amat, F., Koller, D.: Alphabet SOUP: A framework for approximate
energy minimization. CVPR (2009)

12. Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A.,
Tappen, M., Rother, C.: A comparative study of energy minimization methods for
markov random fields with smoothness-based priors. IEEE Trans. Pattern Anal.
Mach. Intell. 30 (2008) 1068–1080

13. Scharstein, D., Szeliski, R., Zabih, R.: A taxonomy and evaluation of dense two-
frame stereo correspondence algorithms. SMBV ’01: Proceedings of the IEEE
Workshop on Stereo and Multi-Baseline Vision (SMBV’01) (2001) 131

14. Wang, L., Jin, H., Yang, R.: Search space reduction for mrf stereo. ECCV ’08:
Proceedings of the 10th European Conference on Computer Vision (2008) 576–588

15. Veksler, O.: Reducing search space for stereo correspondence with graph cuts.
BMVC06 (2006) II:709

16. Hirschmuller, H., Scharstein, D.: Evaluation of cost functions for stereo matching.
CVPR07 (2007)

17. Scharstein, D., Pal, C.: Learning conditional random fields for stereo. CVPR07
(2007)


