
Handling Significant Scale Difference for Object Retrieval in a Supermarket

Yuhang Zhang∗, Lei Wang∗, Richard Hartley∗† and Hongdong Li∗†
∗The Australian National University

†NICTA
Email: {yuhang.zhang, lei.wang, richard.hartley, hongdong.li}@anu.edu.au

Abstract—We propose an object retrieval application which
can retrieve user specified objects from a big supermarket.
Significant and unpredictable scale difference between the
query and the database image is the major obstacle encoun-
tered. The widely used local invariant features show their
deficiency in such an occasion. To improve the situation, we
first design a new weighting scheme which can assess the
repeatability of local features against scale variance. Also,
another method which deals with scale difference through
retrieving a query under multiple scales is also developed. Our
methods have been tested on a real image database collected
from a local supermarket and outperform the existing local
invariant feature based image retrieval approaches. A new
spatial check method is also briefly discussed.

Keywords-image retrieval; local feature; scale invariance.

I. INTRODUCTION

Recent years have seen quite some successful content
based image retrieval systems which can find objects from
video or image set [1], [2], [3]. One salient general character
of these applications is to describe images with local invari-
ant features. Local invariant features hold many appealing
advantages. One of them is the scale invariance which has
demonstrated excellent performance in the existing image
retrieval systems. In this work we conduct an object retrieval
in a supermarket. Differently, we show the deficiency of lo-
cal invariant features in handling significant scale difference
in image retrieval, and introduce our multi-scale methods
to improve the situation. As shown in Figure 1, our query
image contains the query object generally under a very large
scale. In contrast, the corresponding database image contains
the queried object under a much smaller scale together with
many clutters. Moreover, since the query is to be submitted
by a user, the retrieval system cannot know the exact scale
of queries in advance and thus cannot down sample each
query image with a predefined ratio.

We choose supermarket as our object retrieval context
since it provides a comprehensive test for the capability of an
object recognition system. Nowadays a typical supermarket
carries around 50, 000 different products [4]. This diversity
provide a critical challenge to the discriminative capability
of an object recognition system. Moreover, in a supermarket

We thank the Coles store located in Woden Plaza, ACT. Their under-
standing and support make this work possible and are highly appreciated.

each individual object presents itself among strong clutters.
The illumination on different objects varies as they are
located on different level of shelf. A big variety also lies in
the viewing directions towards different objects. Occlusion
and scale difference is also possible.

We analyze the deficiency of local invariant features
and review the general framework of visual word based
image retrieval in the section of literature review. A brief
introduction to our previous work will also be conducted.
We then introduce our new proposed methods and compare
its performance with existing methods in experiments. The
proposed methods tackle significant scale difference with
two tactics. The first is through adaptively assigning the
weight of local features (visual words) according to their
repeatability over different scales. The second is through
describing a query under different scales and retrieving
each version of the query independently. The final retrieval
result is then constructed by combining the retrieval results
obtained under multiple scales. A new spatial check mech-
anism will also be briefly introduced before the conclusion.

II. LITERATURE REVIEW

To handle scale variance, Harris-Laplace detector [5],
[6] works in two steps: firstly, a scale-space representation
of the Harris function is created and the initial interest
points are detected by selecting the local maxima in each
3×3 co-scale neighborhood under each scale; secondly, the
extrema of the LoG (Laplacian of Gaussian) are searched
for each initial interest point in the scale space within a
variance range between [0.7, 1.4], namely the identification
of the characteristic scale. The location of the extrema of
the LoG, or the characteristic scale of the initial interest
point is determined by the image pattern but not the scale
in which the image pattern is presented. Thus identical
features can be extracted from an image even though the
image is presented in different scales. This scale invari-
ance mechanism is inherited by Harris-Affine detector and
Hessian-Affine detector [5]. However, as mentioned in their
work the repeatability of Harris-Laplace feature is no more
than 70% even after a scale change of merely 1.4. That is
because many points as well as information in the image
disappears after a reduction in resolution. For SIFT (Scale
Invariant Feature Transform) feature [7], the image is firstly

Figure 1. Query and database image example: the top is the query image
containing the query object in a very large scale; the bottom is one of
the database image containing the queried object in a much smaller scale
together with much clutters.

down-sampled into sequential octaves. Then within each
octave the image is convolved with a Gaussian kernel to
build the scale space representation, from which the local
extrema of the DoG (Difference of Gaussian) is detected.
By resampling images at each octave, features are extracted
under all possible resolutions and a large range of scales
can be covered. However, SIFT still bears the problem of
dropping off features as the scale of the original image
declines. Figure 2 gives an intuitive illustration of above
discussion. The original image (top) is down-sampled at the
rate of 2 : 1 (middle) and 4 : 1 (bottom) respectively. Harris-
Affine features are then detected under each scale. Let us
now assume that the top image is the query and the images
at the middle and the bottom are to be retrieved from the
database. Obviously, the number of features extracted from
the query is much larger than that extracted from the two
relevant images in the database. Does it hurt? The extra
features from the query will not only find no true match
but also generate a considerable number of false matches
with irrelevant images (In the framework of visual word
based image retrieval, through clustering a feature is always
matched to some others). Hence an irrelevant image may
accumulate a higher score than a relevant image does. In our
experiments this problem forms the bottleneck of retrieval
performance.

The general framework of visual word based image
retrieval [2] is as follows. First, local invariant features
are extracted from each image. The extracted features are
then clustered to generate visual words [8]. Features in

Figure 2. Local feature extraction under different scales: From top to
bottom are the original image, 2:1 down sampled image and 4:1 down
sampled image. Hessian-Affine features marked as yellow ellipses are
extracted from each of the tree images individually. As the scale of the
image goes down, the number of extracted features declines sharply.

the same cluster are treated as matched and assigned the
same label, namely the same visual word ID. Each image
is then described by the visual words that it contains, in
the form of a high-dimensional vector. Each dimension
of the vector corresponds to one type of visual word. To
achieve high retrieval accuracy, each dimension of the vector
can be assigned a tf-idf (term frequency–inverse document
frequency) weight [2] as shown in Equation 1. w ij is the
weight of visual word i in image j. nj is the number of
visual words in image j. nij is the number of occurrences
of visual word i in image j. Ni is the number of images
in the database that contain visual word i. N is the number
of images in the database. The more a visual word appears
in the database, the less important it is in describing an
image; the more it appears in an individual image, the more
important it is in describing this image. During retrieval,
the similarity between two images is computed as the
Lp-norm distance between their corresponding vectors. A
larger distance indicates a smaller similarity. As shown in
Equation 2, dmn is the Lp-norm distance between image m
and n. vm and vn are the two vectors corresponding to the
two images. To achieve high retrieval speed, invert file is
used to index the images in the database. That is, for each
visual word the invert file records all the images that contain
this visual word. Given a query, only images in the database
sharing the same visual words with the query are assessed.
Our work generally follows above framework but develops
new mechanisms to handle large scale difference which will
be discussed in the next section.

wij =
nij

nj
log

N

Ni
(1)

dmn =
∥∥∥∥ vm

‖vm‖p
− vn

‖vn‖p

∥∥∥∥
p

(2)

The work in this paper is an extension of our previous
work [9]. In [9] we showed that the Lp-norm distance
does not perform well when retrieving objects from strong
background clutters. Instead, an inner-product in Equation 3
was proposed in [9] to measure the similarity between the
query and each database image. Note that the similarity
between two images is proportional to the inner-product
between their corresponding vectors. That is to say, instead
of measuring the difference between the two images, we
assess the similarity between them directly. Moreover, Equa-
tion 1 has been modified to Equation 4 in [9]. According to
Equation 1 the weight of each visual words is affected by not
only the number of itself but also the number of other visual
words in the same image. In such a manner the existence
of irrelevant clutters will affect the matching score between
identical visual words. Besides, in a supermarket multiple
copies of one product are often placed together on a shelf.
According to Equation 1, the existence of multiple copies
will also change the weight of visual words. In this way,
a relevant image containing a single true match in strong
clutters may be beaten by an irrelevant image containing
multiple copies of false match in weak clutters. Therefore,
Equation 1 was replaced by Equation 4, in which the weight
of a visual word is only determined by its occurrence
frequency in the database.

d′mn = 〈vm,vn〉 (3)

w′
ij =

{
log N

Ni
, if nij > 0

0, otherwise
(4)

In [9], to avoid the problem of large scale difference each
query was manually down sampled to a similar scale to
the true matches in the database. This drawback has to be
removed in order to handle practical retrieval tasks, so in this
work we avoid the manually down sampling and propose
new methods to handle the large scale difference.

III. MULTI-SCALE IMAGE RETRIEVAL WITH LOCAL

INVARIANT FEATURES

As stated above, scale difference leads to the imbalance
in feature numbers between the query and its true matches
in the database. The extra features from the larger scale
generate mismatches and cause retrieval to fail. We handle
this deficiency in the following two ways.

A. Adaptively Assigning Weight before Retrieval

The first way is through adaptively assigning weights to
different visual words. Weighting visual words is not a new
mechanism in the literature, however, previous works do
not pay sufficient attention to the repeatability of visual

words over scale variance [2], [3]. Based on our previous
discussion, a proper weighting scheme should depress the
weight of extra words produced by larger scale and increase
the weight of consistent words that can be found under a
sequence of scales. To check the repeatability of a visual
word with regard to a query object, we resize the query
image into multiple scales and then describe each scale of
the query with the same vocabulary. As we can imagine,
some of the visual words can survive multiple scales whereas
some cannot. We then assign weight to each visual word
through Equation 5. w̃ij is the weight of visual word i in
query image j. qijk is the number of occurrences of visual
word i in image j under scale k. qjk is the total number
of visual words in query image j under scale k. Through
Equation 5, a visual word surviving more scales becomes
more important for a query. Note that the usage of q jk

indicates that a visual word appearing under a scale where
few visual words can be found has higher weight. This is
reasonable because these visual words are more consistent
against scale change.

w̃ij =
∑

k

qijk

qjk
log

N

Ni
(5)

Note that we only resize the query image but not the
database images, because resizing all images in the database
and extract features under all possible scales not only
demand enormous computation time but also require huge
storage space. For the database images, we still weight each
visual word according to Equation 4, which can effectively
handle background clutters and multiple copies of the same
object.

Besides assessing the repeatability of each visual word,
Equation 5 also gives each query a more comprehensive
description because it brings features extracted from multiple
scales into one bag. Building an expanded description of the
query image is not a new idea in the literature. Whereas
the work in [10] expands the query description based on
the images in the database, our expansion focuses on the
scale aspect and does not require additional images. In latter
sections we will refer this method as A.

B. Combine Matching Scores after Retrieval

In Section III-A we assign weights to visual words accord-
ing to its repeatability over different scales. Parallel to that
method, we can simply treat the query under different scales
as independent queries. After performing retrieval with each
of them individually, we combine the results from different
scales to form a final result for the original query. Both
methods in current section and the next section follow this
idea.

Denote the matching score obtained by the query m under
scale k with database image n as d̃mkn. Since the combina-
tion is implemented over multiple scales, we cannot compute
the matching score d̃mkn simply using Equation 3. That is

because a query under a larger scale usually has more visual
words. However, through Equation 3, having more visual
words tends to generate higher matching score. If so, the
query under the largest scale will dominate the combination.
We modify Equation 3 to Equation 6. vmk represents the
query image m under scale k. vn represents the database
image n. The denominator 〈vmk,vmk〉 computes the inner-
product between the query image m under the scale k and
itself. Through Equation 6, possessing more visual words
no longer results in a higher matching score. Hence a query
image under a larger scale does not hold a dominating
position any more.

d̃mkn =
〈vmk,vn〉
〈vmk,vmk〉 (6)

Define that d̃mkn reaches its maximum at the scale k ′.
Obviously, d̃mk′n suggests the highest matching score that
the database image n can obtain with the query image m
under all scales. If they are true match, k ′ indicates the
scale under which the database image n can match most
of the visual words possessed by the query image m. In
other words, the feature imbalance between the two relevant
images is approximately removed. If they are not true match,
k′ only indicates a scale under which the query looks most
similar to an irrelevant database image n. Two relevant
images under the same scale are more similar than two
irrelevant images under their most similar scales are. Thus
we construct the final retrieval result by sorting all database
images according to its d̃mk′ , namely the highest matching
score between itself and the query under all scales. We label
this method as B1.

In our problem, a relevant database image cannot always
obtain a higher matching score than an irrelevant database
image does under all scales. Hence, we pick the scale under
which the database image can obtain the highest score in
Method B1 for comparison. Actually, it is even less likely
for an irrelevant database image to always beat a relevant
image under all scales. That is so say, if we accumulate
the total matching score between a database image and the
query image under all scales, relevant images should more
likely obtain higher total scores than irrelevant images do.
Hence, in Method B2 we construct the final matching score
for each database image by summing up the matching scores
under all possible scales and then sort.

C. Combine Sorting Ranks after Retrieval

Besides matching scores, each database image also gets
multiple sorting ranks when being retrieved against the query
under multiple scales. Like combining matching scores, we
can also combine these ranks to construct a final result. We
cannot sort the database images according to their best rank,
because there are more than one “first” which we cannot
distinguish. We cannot simply sum up all ranks of each
database image either, otherwise the final rank of a database

Figure 3. Similar but not identical objects: the same bottle, the same brand
and the same cup on the labels but different coffee for customers. We treat
them as two different objects during retrieval, although many identical local
features can surely be extracted from them.

image will be dominated by its lower ranks (note that lower
ranks are represented as large numbers). Instead we only
sum up the best sequential n ranks of each database image
as shown in Equation 7, where R denotes rank. The value of
n is to be determined experimentally. We label this method
as C.

Rfinal = min
i

(Ri + Ri+1 + ... + Ri+n−1) (7)

IV. EXPERIMENTAL RESULT

Our images are collected from a local Coles supermar-
ket. Totally, eighteen 30-meter-long shelves and all the
products on them have been captured by 3, 153 images
as the database1. 300 additional images of the objects on
the shelves have been taken and used as query images. As
illustrated by Figure 1, each query image contains a single
object under quite large a scale and each database image
contains three or more levels of a market shelf including all
the objects on the shelf. All the 3, 153 database images and
300 query images are used in our experiments. Each image is
either 2, 272×1, 704 or 2, 592×1, 944 in size which is much
larger than most known image database [11], [12]. This high
resolution is necessary to hold sufficient information for each
object appearing in the image. The ground truth is built by
manually checking the query image against each database
image. Only completely identical objects are treated as true
matches. That is to say, retrieving NESCAFÉ BLEND 43
out when NESCAFÉ DECAF (see Figure 3) is queried is
wrong!

From all the 3, 153 database images, we detected
51, 537, 169 Hessian-Affine features in total. Some of the
Hessian-Affine features are shown in Figure 4. These
Hessian-Affine features are then described with SIFT de-
scriptors [13], each of which is a 128 dimensional unit
vector. We then use hierarchical k-means to cluster the
51, 537, 169 unit vectors into 1,000,000 clusters (over 3
levels, the branch factor k = 100 on each level). Thus
we obtain a visual vocabulary containing 1,000,000 visual
words. Each image is then described with these visual words.

1this image set together with the queries and the ground truth has been
made available on web: http://yuhang.rsise.anu.edu.au/

Figure 4. Some Hessian-Affine features detected from one of the database
images: the top is the database image and the bottom are some of the
Hessian-Affine feature detected.

Invert file is used to index the database images, which
reduces the retrieval time to no more than 0.025 seconds per
query on a Linux server equipped with Dual Core 2.8GHz
CPU and 4G RAM. We also implement the retrieval on other
machines and find the retrieval speed is mainly constrained
by the size of RAM.

To show how the scale of query images impacts the
retrieval performance, we resize each query image into
10 different scales with a scale step factor of 1.25 and
implement retrieval under each scale. Figure 6 shows the
retrieval performance with local invariant features given the
queries under 10 different scales. The horizontal axis is
the number of returned images. The vertical axis is the
percentage of queries that have found at least one true
match (ALOT) among the retrieved images. According to
the descending order of retrieval performance, the ten scales
are ranked as 6 5 7 4 3 8 2 1 9 0. Scale-6 gives the
best performance because most true matches happen around
this scale. However we cannot know this scale in advance,
and scale-6 may not perform best if we use another set of
queries or retrieve in another database. Giving the worst
performance, scale-0 corresponds to the original scale of
the query image. It performs worst because it suffers most
from the problem of feature number imbalance. This will
be the retrieval result if we solely rely on local features to

Figure 5. Visual word example: in this graph we show 4 different visual
words. The number in front of each row is the word ID. The thumbnail
images following the word ID are some of the Hessian-Affine features
clustered to the same visual word. As expected, the Hessian-Affine features
that belongs to the same visual word are quite similar. Note that their color
can be different because the features are extracted from grey-value images.
Besides, the visual word 10267 and 10269 are slightly similar to each other.
That is also reasonable. Their word ID should be read as 1− 02− 67 and
1−02−69, which suggests that they were ever in the same cluster during
hierarchical k-means. Only at the bottom level of the hierarchy were they
separated.

0 5 10 15 20
30

40

50

60

70

80

90

The number of retrieved images

A
LO

T
 (

in
 p

er
ce

nt
ag

e)

scale−0
scale−1
scale−2
scale−3
scale−4
scale−5
scale−6
scale−7
scale−8
scale−9

Figure 6. Retrieval with local invariant features under a single scale: From
scale-0 to scale-9, the query images are down sampled to 1.250 to 1.25−9

times of their original scales. Although local invariant features are used, the
retrieval performance varies dramatically as the scale of the query changes.
ALOT stands for At Least One True match.

handle scale difference as in [1], [2], [3]. Scale-7, scale-8
and scale-9 do not perform well either because the queries
are down sized to too small scales, which cannot provide
sufficient information about the query.

This paper proposes four methods to tackle the scale
difference. Method A is to assign weight to visual words
according to its repeatability over scale variance. Method
B1 is to sort all database images according to its high-
est matching score with the query under different scales.
Method B2 is to sort all database images according to its

total matching score. Method C is to sort all database images
according to the sum of its best sequential n ranks. We
empirically set n = 4 in method C. Figure 7 shows the
performance of all the proposed methods when implemented
with 10 different scales. The four proposed methods achieve
comparable results and all of them outperform scale-0 in
Figure 6 which solely relies on local invariant features to
handle scale difference.

To achieve fast retrieval speed, it is preferable to retrieve
on few scales only. Thus we test our methods on a smaller
number of scales. Scale step is increased to 1.5 and the
retrieval is implemented on 5 different scales. Note that the
scale range is kept as it was (1.2510 ≈ 1.55). Under such a
configuration, n = 3 optimizes the performance of method
C. The performance of all methods is presented in Figure 8.
Compared with the result in Figure 7, the performance
of Method A, B1 and B2 slightly declines. In contrast,
the performance of Method C not only holds up but also
rises 3 percents at the first returned image. Moreover, when
retrieval is implemented under 5 different scales, Method
C performs almost as good as scale-6, the best one in
Figure 6. Over 60% of the queries find true matches in
the first returned image. Over 75% of the queries find true
matches in the top 5 returned images. The four proposed
methods constantly achieve better results than scale-0 in
Figure 6. Figure 9 and Figure 10 show some of the queries
and the top 2 database images retrieved by method C.
Figure 11 particularly demonstrates our system’s capability
in distinguishing similar objects.

V. SPATIAL CHECK ON VISUAL WORD

Spatial check has been a popular post-verification mecha-
nism in the literature of local invariant feature based image
retrieval [14], [2], [15]. By checking the spatial consistency
between the p-nearest neighbors of the two matched local
features, false matches are removed. However, the spatial
check method used in the literature usually checks the
position of affine features corresponding to each visual word
after retrieval, which not only requires recording the on-
image-position of each visual word but also consumes much
computation during runtime. Here we shift the spatial check
from feature level to visual word level. When building the
invert file, following the entry of each visual word there
are not only all the images containing this word but also
the 15 spatial nearest visual words (precomputed) in each
image. In this manner, we could implement the spatial
check simultaneously as retrieving. That is, only those visual
words which not only have identical word ID but also
have at least two identical neighbors out of the 15 nearest
ones are treated as matched. As shown in the top row of
Figure 12, two images (left and right) containing common
regions are captured. The common area between them is
cropped out with yellow rectangle. The second row shows
all the matched features based on visual word ID only. False

0 5 10 15 20
30

40

50

60

70

80

90

The number of retrieved images

A
LO

T
 (

in
 p

er
ce

nt
ag

e)

A
B1
B2
C

Figure 7. Retrieval under 10 different scales with the four proposed meth-
ods: A-assign the weight of visual words according to their repeatability
over different scales; B1-retrieve the query in multiple scales independently
and sort the database images according to their highest matching scores;
B1-retrieve the query in multiple scales independently and sort the database
images according to their total matching scores; C-retrieve the query in
multiple scales independently and sort the database images according to
their best sequential 4 ranks. The performance of the four proposed methods
are comparable. ALOT stands for At Least One True.

0 5 10 15 20
30

40

50

60

70

80

90

The number of retrieved images

A
LO

T
 (

in
 p

er
ce

nt
ag

e)

A
B1
B2
C

Figure 8. Retrieval under 5 different scales with the four proposed
methods: whereas the other three methods suffer a decline in performance,
Method C slightly goes up and becomes the obvious best. ALOT stands
for At Least One True.

Figure 9. Retrieval Examples: the left column are the queries, the middle
and the right columns are the first and the second returned images by
Method C

Figure 10. Retrieval Examples: the left column are the queries, the middle
and the right columns are the first and the second returned images by
Method C

Figure 11. Finding NESCAFÉ of the particular type: we enlarge the
corresponding region in the database image to show that we have found
exactly the same object.

Figure 12. Visual word based spatial check: first row - original images;
second row - matches based on visual word ID; third row - matches
approved by visual word based spatial check; fourth row - remaining false
matches.

matches out of the common area are observed. The third
row shows the matches approved by the visual word based
spatial check. After removing those false matches, only 7
matches out of the common area are left. They are actually
true matches. As the bottom row shows, these 7 matches
are caused by different objects manufactured by the same
corporation, thus sharing the same brand.

VI. CONCLUSION

We proposed an object retrieval application in the environ-
ment of a supermarket. Our methods successfully make up
the deficiency of local invariant features in dealing with large
scale difference and improve the retrieval performance. With
the invert file, even the query is retrieved under 10 different
scales, the retrieval time for each query does not exceed 0.25
seconds. The major increased computation time is caused by
the feature extraction under multiple scales. Future work can
be devoted to boosting the speed of feature extraction under
multiple scales.

REFERENCES

[1] J. Sivic, F. Schaffalitzky, and A. Zisserman, “Efficient object
retrieval from videos,” in EUSIPCO ’04, 2004.

[2] J. Sivic and A. Zisserman, “Video google: A text retrieval
approach to object matching in videos,” in ICCV ’03, 2003.

[3] D. Nister and H. Stewenius, “Scalable recognition with a
vocabulary tree,” in CVPR ’06, 2006, pp. 2161–2168.

[4] M. Nestle, “The soft sell: how the food industry shapes our
diets,” Nutrition Action Healthletter, 2002.

[5] K. Mikolajczyk and C. Schmid, “Scale & affine invariant
interest point detectors,” IJCV, vol. 60, no. 1, pp. 63–86, 2004.

[6] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman,
J. Matas, F. Schaffalitzky, T. Kadir, and L. V. Gool, “A
comparison of affine region detectors,” IJCV, vol. 65, no. 1-2,
pp. 43–72, 2005.

[7] D. G. Lowe, “Distinctive image features from scale-invariant
keypoints,” IJCV, vol. 60, no. 2, pp. 91–110, 2004.

[8] F. Jurie and B. Triggs, “Creating efficient codebooks for
visual recognition,” in ICCV, 2005, pp. 604–610.

[9] Y. Zhang, L. Wang, R. I. Hartley, and H. Li, “Where’s the
weet-bix?” in ACCV (1), vol. 4843, 2007, pp. 800–810.

[10] O. Chum, J. Philbin, J. Sivic, M. Isard, and A. Zisserman,
“Total recall: Automatic query expansion with a generative
feature model for object retrieval,” in ICCV, 2007.

[11] L. Fei-Fei, R. Fergus, and P. Perona, “Learning generative
visual models from few training examples: An incremen-
tal bayesian approach tested on 101 object categories,” in
CVPRW ’04, 2004, p. 178.

[12] A. Torralba, K. P. Murphy, W. T. Freeman, and M. A.
Rubin, “Context-based vision system for place and object
recognition,” in ICCV ’03, 2003, p. 273.

[13] K. Mikolajczyk and C. Schmid, “A performance evaluation
of local descriptors,” PAMI, vol. 27, pp. 1615–1630, 2005.

[14] C. Schmid and R. Mohr, “Local grayvalue invariants for
image retrieval,” PAMI, vol. 19, no. 5, pp. 530–535, 1997.

[15] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman,
“Object retrieval with large vocabularies and fast spatial
matching,” in CVPR, 2007.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

