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Abstract. We present a method for calibrating the rotation between
two cameras in a camera rig in the case of non-overlapping fields of view
and in a globally consistent manner. First, rotation averaging strate-
gies are discussed and an L1-optimal rotation averaging algorithm is
presented which is more robust than the L2-optimal mean and the di-
rect least squares mean. Second, we alternate between rotation averaging
across several views and conjugate rotation averaging to achieve a global
solution. Various experiments both on synthetic data and a real camera
rig are conducted to evaluate the performance of the proposed algorithm.
Experimental results suggest that the proposed algorithm realizes global
consistency and a high precision estimate.

1 Introduction

Multiple-camera systems have recently received much attention from the com-
puter vision community. Two typical scenarios of applying multi-camera sys-
tems are (1) multi-camera networks for surveillance and (2) multi-camera rigs
for motion recovery and geometry reconstruction. This paper is exclusively con-
cerned with the latter case of multiple individual cameras rigidly mounted on a
rig. Example applications of multi-camera rigs include camera tracking, 3D city
modeling or creation of image panoramas and structure from motion [1–3].

Multi-camera systems use a set of cameras which are placed rigidly on a
moving object like a vehicle with possibly non-overlapping or only slightly over-
lapping fields of view. In this case, images captured by different cameras do not
share any or only a few common points. The system moves rigidly and correspon-
dences between subsequent frames taken by the individual cameras are captured
before and after the motion.
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This non-overlapping arrangement poses difficulties in calibrating the multi-
camera rig. Recent work done by Pollefeys et al. suggests a simple approach
using a flat planar mirror [4]. Since it requires the use of a mirror, it is less
convenient to use.

Esquivel et al. [5] proposed an approach for rig parameter estimation from
non-overlapping views using sequences of time-synchronous poses of each cam-
era. The presented approach works in three stages: internal camera calibration,
pose estimation and rig calibration. They solve the problem using the relative
motion measurements directly. However, according to our analysis, multiple rela-
tive motions are not consistent in general; using an averaging of motion strategy
we can estimate the relative motion with high precision and in a globally con-
sistent manner.

Our main contributions are: L1-optimal rotation averaging strategy; L2-
optimal quaternion mean; global minimum with respect to the quaternion dis-
tance metric for the conjugate rotation problem and iterative rotation averaging
for rotation calibration of multi-camera rig with non-overlapping views.

2 Existing works on rotation averaging

Given several estimates of relative orientation of coordinate frames, a posteriori
enforcement of global consistency has been shown to be an effective method
of achieving improved rotation estimates. Govindu seems to be the first who
introduced the idea of motion averaging for structure-from-motion computation
in computer vision. He published a series of papers addressing this problem [6–8].
In [6] a simple linear least squares method is proposed where rotations in SO(3)
are parameterized by quaternions and a closed-form linear least squares solution
is derived. Although Govindu made a claim of optimality, the linear solution is
not in fact optimal because the linear solution can not require each quaternion
in the solution to have unit norm. It also ignores the difficulty that both a
quaternion and its negative represent the same rotation, which can sometimes
cause the method to fail.

The paper [7] further developed the above linear method by following a non-
linear optimization on manifold approach. Because the set of all rotations carries
the structure of a Lie group, it makes more sense to define the distance between
two rotations as the geodesic distance on that Lie group. Based on this, the av-
eraged “mean rotation” should be defined with respect to the geodesic distance.
It will be made clear later that, while our new methods to be presented share
the same spirit in this regard, Govindu’s Lie-averaging algorithm uses a first
order approximation only, whereas our approach makes no such approximation.
Similar Lie-averaging techniques have been applied to the distributed calibration
of a camera network [9], and to generalized mean-shifts on Lie groups [10]. A
generic mathematical exposition of this topic can be found in [11].

Another paper by Govindu [8] basically tackles robustness problems where
a RANSAC-type approach is adopted. In the present paper we demonstrate
that the L1-distance can be directly used for this purpose as the L1-distance is
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well known to be robust. What we really have achieved here is that we give an
L1-based averaging algorithm and prove its global convergence.

Martinec and Pajdla [12] discussed rotation averaging using the “chordal”
metric, defined by dchord(R1, R2) = ‖R1 − R2‖Fro. Averaging using the chordal
metric suffers from similar problems to quaternion averaging. An analysis of
averaging on SO(3) under the chordal metric has recently appeared [13].

When covariance uncertainty information is available for each local measure-
ment, Agrawal shows how to incorporate such information in the Lie-group av-
eraging computation [14]. Alternatively, one could apply the belief propagation
framework to take the covariance information into account [15].

In the above discussions, the problem in question is to find the averaged ro-
tation R̄ from a set of rotations {R1, . . . , Rn} measured in the same coordinate
frame. In this paper, we consider two more challenging rotation averaging prob-
lems: rotation averaging over several views and conjugate rotation averaging. In
the case of conjugate rotations, the distance is defined as d(RiS, SLi) where rota-
tion pairs Ri, Li are given, and the rotation S is to be found. One traditional way
to solve the conjugate-rotation problem is by solving a Sylvester equation treat-
ing each of the rotations as a generic 3 × 3 matrix (e.g. used in robot hand-eye
calibration) [16].

Most of the papers on rotation averaging in the vision literature have omitted
any discussion of optimality or global convergence. In addition, it seems they all
overlooked the ambiguity of the sign problem associated with the quaternion
representation, which invalidates previously known algorithms in some configu-
rations. We have obtained rigorous conditions for convergence for most of our
algorithms, though space does not allow us to include all proofs here.

3 Problem Formulation

We consider a camera rig consisting of two cameras, denoted left and right,
fixed rigidly with respect to each other and individually calibrated. The camera
rig undergoes rigid motion and captures several image pairs. We denote the
coordinate frames of the cameras at time i by ML

i and MR
i , respectively.

ML
i =

[
Li tL

i

0� 1

]
and MR

i =
[
Ri tR

i

0� 1

]
.

The first three rows of these matrices represent the projection matrices of the
corresponding cameras, where image points are represented in coordinates nor-
malized by the calibration matrix.

We denote the relative motion of MR
0 with respect to ML

0 by a transforma-
tion MLR, such that MLR = MR

0 (ML
0 )−1. Since this relative motion remains fixed

throughout the motion, we observe that MLR = MR
i (ML

i )−1 for all i.
Next, the relative motion of ML

j with respect to ML
i is denoted by ML

ij =
ML

j (ML
i )−1. Similarly, MR

ij = MR
j (MR

i )−1. Using the relation MR
i = MLR ML

i , we find

MR
ij = MLR ML

ij (MLR)−1 (1)
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for all i, j. Now, we denote

ML
ij =

[
Lij tL

ij

0� 1

]
and MR

ij =
[
Rij tR

ij

0� 1

]
.

Observe that the relative rotations Rij , Lij and relative translations tR
ij , t

L
ij may

be computed via the essential matrix for the (i, j) image pairs.

Writing the transformation MLR as
[
S s
0� 1

]
, we deduce from (1) the equations

Rij = SLijS
−1 (2)

tR
ij = StL

ij + (I − Lij)s (3)

Calibration strategy. Our prescribed task is to find the relative motion
between the right and left cameras, namely the transformation MLR. Our method
uses the following general framework.

1. Compute the relative rotations and translations (Rij , tR
ij) (Lij , tL

ij) for many
pairs (i, j) using the essential matrix.

2. Compute the relative rotation S from (2).
3. Solve linearly for s using (3).

Both these equations may be solved linearly. The rotation equation may
be written as SLij = RijS, which is linear in the entries of S. In solving for
the translation s, we note that the relative translations tL

ij and tR
ij are known

only up to scale factors λij and µij . Then (3) may be written more exactly as
λijtR

ij = µijStL
ij + (I − Lij)s, where everything is known except for s and the

scales λij and µij . Three image pairs are required to solve these equations and
find s.

The strategy outlined here is workable, but relies on accurate measurements
of the rotations Lij and Rij . In the following sections of this paper, we will ex-
plain our strategies for rotation averaging that will lead to significantly improved
results in practice. Although we have implemented the complete calibration al-
gorithm, including estimation of the translation s, for the rest of this paper, we
will consider only rotation estimation.

4 Averaging Rotations

The relative rotation estimates Rij and Lij obtained from individual estimates
using the essential matrix will not be consistent. In particular, ideally, there
should exist rotations Li, Ri and S such that Lij = LjL

−1
i and Rij = RjR

−1
i =

SLijS−1. If these two conditions are satisfied, then the relative rotation estimates
Rij and Lij are consistent. In general they will not be, so we need to adjust them
by a process of rotation averaging.

A distance measure d : SO(3)×SO(3) → IR is called bi-invariant if d(SR1, SR2) =
d(R1, R2) = d(R1S, R2S) for all S and Ri. Given an exponent p ≥ 1 and a set of
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n ≥ 1 rotations {R1, . . . , Rn} ⊂ SO(3) we define the Lp-mean rotation with
respect to d as

dp-mean({R1, . . . , Rn}) = argmin
R∈SO(3)

n∑
i=1

dp(Ri, R). (4)

4.1 The geodesic L2-mean

The geodesic distance function dgeod(R, S) is defined as the rotation angle ∠(RS�).
It is related to the angle-axis representation of a rotation in which a rotation is
represented by the vector θv, where v is a unit 3-vector representing the axis,
and θ is the angle of rotation about that axis. We denote by log(R) the angle-axis
representation of R. Then d(R, S) = ‖ log(RS�)‖. The inverse of this mapping is
the exponential R = exp(θv).

The associated L2-mean is usually called the Karcher mean [17] or the geo-
metric mean [11]. A necessary condition [11, (3.12)] for R to be a d2

geod-mean of
{R1, . . . , Rn} is given by

∑n
i=1 log(R�Ri) = 0.

The mean is unique provided the given rotations R1, . . . , Rn do not lie too
far apart [17, Theorem 3.7], more precisely if {R1, . . . , Rn} lie in an open ball
B(R, π/2) of geodesic radius π/2 about some rotation R. For this case Manton [18]
has provided the following convergent algorithm where the inner loop of the
algorithm is computing the average in the tangent space and then projecting
back.

1: Set R := R1. Choose a tolerance ε > 0.
2: loop
3: Compute r := 1

n

Pn
i=1 log

`
R�Ri

´
.

4: if ‖r‖ < ε then
5: return R

6: end if
7: Update R := R exp(r).
8: end loop

Algorithm 1: computing the Karcher mean on SO(3)

4.2 The geodesic L1-mean

Another interesting mean with respect to the geodesic distance dgeod is the
associated L1-mean

dgeod-mean({R1, . . . , Rn}) = argmin
R∈SO(3)

n∑
i=1

dgeod(Ri, R) , (5)

which we might assume to be more robust to errors.
We propose a Riemannian gradient descent algorithm with geodesic line

search to compute the L1-mean. As long as Algorithm 2 avoids arbitrarily small
but fixed δ-neighborhoods of the Ris, convergence to the set of critical points of
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1: Set R := d2
geod-mean({R1, . . . , Rn}). Choose a tolerance ε > 0.

2: loop
3: Compute r :=

Pn
i=1 log(R�Ri)/‖ log(R�Ri)‖.

4: Compute s∗ := argmins≥0 f(R exp(sr)).
5: if ‖sr‖ < ε then
6: return R

7: end if
8: Update R := R exp(sr).
9: end loop

Algorithm 2: computing the geodesic L1-mean on SO(3)

f follows from [19, Corollary 4.3.2] applied to a modification of f obtained by
smoothing f within those δ-neighborhoods [20].

Note that possibly the easiest way to implement the line search in Step 4 is
a Fibonacci search on a large enough interval. We have suggested to initialize
the algorithm with the Karcher mean, but other initializations would of course
be possible.

4.3 Quaternion averaging

A rotation R may be represented by a quaternion r, which is a unit 4-vector,
defined as follows. If v is the axis of the rotation and θ is the angle of the rotation
about that axis, then r is defined as r = (cos(θ/2),v sin(θ/2)). We may think to
define a distance dquat(S, R) between two rotations to be dquat(R, S) = ‖r − s‖.
Unfortunately, this simple equation will not do, since both r and −r represent
the same rotation, and it is not clear which one to choose. However, this is
resolved by defining

dquat(R, S) = min(‖r − s‖, ‖r + s‖) .

Since quaternions satisfy the condition ‖r · t‖ = ‖r‖ ‖t‖, where r · t represents
the quaternion product, it is easily verified that the quaternion distance is bi-
invariant.

The relationship of this to the geodesic distance is as follows. Let dgeod(R, S) =
dgeod(I, R�S) = θ, which is equal to the angle of the rotation RS�. Then sim-
ple trigonometry provides the relationship dquat(I, R�S) = 2 sin(θ/4). For small
rotations, we see that dquat(R, S) ≈ dgeod(R, S)/2.

The following theorem shows how the L2 quaternion mean of a set of rotations
Ri may be computed, it is defined as argminR

∑n
i=1 d2

quat(R, Ri) [20].

Theorem 1. Let Ri; i = 1, . . . , n be rotations, and suppose that there exists
a rotation S such that dgeod(Ri, S) is less than π/2. Let ri be the quaternion
representation of Ri chosen with sign such that ‖ri − s‖ is the smaller of the two
choices. Then the L2 quaternion mean of the rotations Ri is represented by the
quaternion r̄/‖r̄‖, where r̄ =

∑n
i=1 ri.
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4.4 The conjugate averaging problem

We now consider the problem of conjugate averaging. This problem is motivated
by the second step of the calibration algorithm outlined in Section 3. The general
form of this problem is as follows. Let (Ri, Li); i = 1, . . . , n be pairs of rotations.
(In Section 3 these rotations have two subscripts, namely Rij , Lij). The conjugate
averaging problem is to find the rotation S that minimizes

n∑
i=1

dp(RiS, SLi) . (6)

This problem has not been explicitly addressed in the context of multi-camera
rigs, as far as we know, though it has been studied as the “hand-eye coordination
problem” in robotics [16]. We give here an optimal solution for the L2 quaternion
distance metric under certain conditions.

We make the observation that if Ri and Li are exactly conjugate, then they
have the same rotation angle. In general, we assume that they do not differ by
too much. One condition we need to give a closed form solution to this problem
is that the rotations Ri and Li should not be too large. In fact, we assume that
the angle θ associated with Ri or Li is less than some angle θmax < π. For the
application we are interested in, where Ri and Li are relative rotations between
two positions of a camera, the rotation angle of Ri can not be very large. If for
instance the rotation R between two positions of a camera approaches π, then
at least for normal cameras, there will be no points visible in both images, and
hence no way to estimate the rotation R. Normally, the rotation Rij between two
positions of the camera will not exceed the field of view of the camera, otherwise
there will not be any matched points for the two cameras (except possibly for
points lying between the two camera positions).

We now state the conditions under which we can guarantee an optimal solu-
tion to the conjugate averaging problem.

1. The rotations Li and Ri satisfy the conditions ∠(Li) < θmax and ∠(Ri) <
θmax.

2. In the optimal solution to problem (6), the errors dgeod(RiS, SLi) < αmax.
3. θmax + αmax/2 < π.

Thus, we are assuming that the errors plus angles are not too large. In particular,
since αmax ≤ π, we see that the last two conditions always hold if θmax < π/2.

Linear solution. We now outline a linear algorithm for estimating the matrix
S, under the L2 quaternion distance. Let ri and li be quaternion representatives
of the rotations Ri and Li, chosen such that ri = (cos(θi/2), sin(θi/2)v) with
θi < π. This means that the first component cos(θi/2) of the quaternion is
positive. This fixes the choice between ri and −ri. We define li similarly.

Now, consider the equation RiS = SLi, and write it in terms of quaternions as
ri·s−s·li = 0. As before, · represents quaternion multiplication. Since quaternion
multiplication is bilinear in terms of the entries of the two quaternions involved,
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this gives a homogeneous linear equation in terms of the entries of s. Stacking all
these equations into one and finding the solution such that ‖s‖ = 1, we may solve
for s. This gives a simple linear way to solve this problem. Under the conditions
stated above, we can prove that this algorithm finds the global minimum with
respect to the quaternion distance metric [20].

4.5 Iterative Rotation Averaging for Camera Rig Calibration

The cost function that we minimize is the residual error in the rotation mea-
surements Rij and Lij , defined by

min
S,Li

∑
(i,j)∈N

dp(Lij , LjL
−1
i ) + dp(Rij , SLjL

−1
i S−1) (7)

There seems to be no direct method of minimizing this cost function under any of
the metrics we consider. Therefore, our strategy is to minimize the cost function
by using rotation averaging to update each Li in turn, then conjugate rotation
averaging to find S. At each step of this algorithm, the total cost decreases, and
hence converges to a limit. We do not at present claim a rigorous proof that the
algorithm converges to even a local minimum, though that seems likely under
most reasonable conditions. In particular, the sequence of estimates must contain
a convergent subsequence, and the limit of this subsequence must be at least a
local minimum with respect to each Li and S individually.

Initial values for each Li are easily found by propagating from a given rotation
L0 assumed to be the identity, and then obtaining the initial S through conjugate
averaging.

The complete rotation estimation procedure follows.

1: Choose a tolerance ε > 0.
2: Estimate initial values of Li through rotation propagation.
3: Estimate S from RijS = SLij solving the quaternion least squares problem.
4: loop
5: Update each Lj in turn by averaging all the rotations LijLi and S−1RijSLi.
6: Recompute and update S from the equation RijS = SLjL

−1
i S using conjugate

rotation averaging.
7: if the RMS error has decreased by less then ε since the last iteration, then
8: return S
9: end if

10: end loop
Algorithm 3: Iterative Rotation Averaging

5 Experiments

To evaluate the performance of the proposed algorithms, we conducted experi-
ments on both synthetic data and real images. A comparison with other methods
is presented to show the improved accuracy of the proposed method.
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In the experiments reported below, we used L1 and L2 geodesic rotation
averaging to compute each Li, but used quaternion averaging for the conjugate
rotation averaging to compute S. Theoretically this is not ideal, but we find it
works well in practice and we will discuss all the possible combinations in future
work.

5.1 Synthetic Rotation Averaging

In the first group of synthetic experiments, we evaluate the performance of L1

rotation averaging and L2 rotation averaging on a bunch of rotation measure-
ments. First we generate a random rotation r and the corresponding rotation
matrix R. A normally distributed angle θ with mean 0 and standard deviation σ
is generated to simulate the effect of random rotation noise. The rotation axis is
generated uniformly in the cube [−1, 1]3 and then normalized to a unit vector r.
Then the rotation noise is expressed as θr and the corresponding rotation matrix
is denoted Rerr. Finally the simulated rotation measurement is taken as RRerr.

All the results are obtained as the mean of 200 trials. The evaluation metric
is the angle between the ground truth rotations and the estimates.
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Fig. 1. Performance comparison of L1-optimal rotation averaging and L2-optimal ro-
tation averaging. (a) Angle difference between the ground truth rotations and the
averaging results for various numbers of rotations, where normally distributed rotation
noise with standard deviation parameter σ = 2 degrees is added and no outliers are
included. (b) Angle difference between the ground truth rotations and the averaging re-
sults on 100 rotations for various levels of outliers, where normally distributed rotation
noise with standard deviation parameter σ = 2 degrees is added, and the outliers are
simulated using normally distributed noise with standard deviation parameter σ = 20
degrees followed by selecting the samples with an angle error larger than 5 degrees.

From both figures in Figure 1 we conclude that the L1-mean is more robust
than the L2-mean, especially in the presence of outliers.

5.2 Synthetic Camera Rig

To simulate a camera rig system, a rig with two cameras is generated with various
numbers of frames. First the relatives rotation S of the camera rig is randomly
generated. Second, the orientation Li of the left camera is generated and the
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corresponding orientation Ri of the right camera is obtained. Third, whether a
pair of frames has an epipolar geometry relationship is determined according
to some probability distribution. If there exists epipolar geometry, the relative
rotation measurement is obtained as Lij = LjLi

−1 and Rij = RjRi
−1. A random

error rotation is applied to simulate noise in the rotation measurements.
To evaluate the performance of L1-mean based rig rotation calibration, L2-

mean based rig rotation calibration and direct least squares rig rotation cali-
bration, we conducted 200 separate experiments on synthetic camera rig data
which contains 20 frames of motion. The possibility of existence of a relative
measurement is 0.5 and 10% outliers are added where the rotation error is larger
than 5 degrees. The histograms of the resulting errors are illustrated as Figure
2 and the histograms imply that our proposed L1 rotation calibration estimates
the rotation better than L2 rotation calibration and direct least squares.
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Fig. 2. (a) Histogram of rotation error using L1 rotation averaging. It shows a mean
of 1.12 degrees and standard deviation of 1.05 degrees. (b) Histogram of rotation error
using L2 rotation averaging. It shows a mean of 2.41 degrees and standard deviation
of 2.75 degrees. (c) Histogram of rotation error using direct least squares. It shows a
mean of 5.14 degrees and standard deviation of 11.65 degrees.

5.3 Experiments on Real Images

As a real example of a two-camera rig system, we have used a pair of wide-angle
cameras to capture sequences of images. Images are captured at each camera
illustrated in Figure 3. Feature points on the images are extracted using SIFT
and tracked through image sequences. These tracked features are transformed
to image vectors on the unit sphere given the individual intrinsic calibrations.
Outliers in the tracked features are removed using RANSAC [21] to fit the es-
sential matrix using the normalized 8 point algorithm. Pairwise relative pose is
obtained through decomposition of the essential matrix, and two frames bundle
adjustment is utilized to refine the estimate, thus obtaining the relative rotations
Lij , Rij . Finally, L1 and L2 algorithms are applied to calibrate the camera rig,
obtaining the relative rotation S and relative translation s.

Fig. 3. Images captured by camera rig with non-overlapping views
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The image sequences captured by the left camera and the right camera con-
tain 200 frames individually. As some pairs of image frames do not supply rel-
ative motion estimates, we ultimately obtained 11199 pairs of relative motion
estimates. Since relative rotation estimates Lij and Rij should have equal angle
rotations, we use this criterion along with a minimum rotation angle requirement
to select the best image pairs for further processing. After rotation selection, we
obtained 176 pairs of synchronized motions. The distributions of the rotation
angles and angle differences for these pairs are shown in Figure 4.
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Fig. 4. (a) Angle distribution of the left camera. (b) Angle distribution of the right
camera. (c) Distribution of the difference between the angle of the left camera and the
angle of the right camera

The convergence process is shown in Figure 5 with the L1 rotation averaging
and quaternion conjugate result corresponding to an angle of 143.1◦ and the L2

rotation averaging result corresponding to an angle of 169.4◦. Measured from
the scene, the ground truth is about 140◦.
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Fig. 5. Convergence process on real camera rig image sequences. (a) Log of Angle
Residual of L1 rotation averaging. (b) Log of Angle Residual of L2 rotation averaging.

6 Conclusion and Future Work

Rotation averaging is an important component of our method of camera rig
calibration. Individual rotation estimation is sensitive to outliers and geometri-
cally critical configurations. It was shown that our new L1 rotation averaging
method gives markedly superior results to L2 methods. Global bundle adjust-
ment is recommended for final polishing. Previous computer vision literature has
largely ignored issues such as convergence and optimality of rotation averaging
algorithms. We have addressed this issue. Our complete analysis will be made
available in an extended version of this paper.
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