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Abstract. The powerful theory of compressive sensing enables an effi-
cient way to recover sparse or compressible signals from non-adaptive,
sub-Nyquist-rate linear measurements. We propose a compressive an-
neal particle filter to exploit sparsity existing in image-based human mo-
tion tracking. Interestingly, it has been shown that random projections
can well approximate an isometry, providing the number of linear mea-
surement is twice proportional to the sparsity level of the signal. This
has inspired our approach. Instead of performing full signal recovery, we
evaluate the observation likelihood directly in the compressive domain.
Moreover, we introduces a progressive multilevel wavelet decomposition
staged at each anneal layer to accelerate the evaluation in a coarse-to-fine
fashion. The experiments with the benchmark dataset HumanEvaII show
the computational speed is dramatically accelerated, while the tracking
accuracy is maintained comparable to the method using original image
observations.

1 Introduction

Compressive sensing (CS) acquires and reconstructs compressible signals from
a small number of non-adaptive linear random measurements by combining the
steps of sampling and compression [1–4]. It enables the design of new kinds
of compressive imaging systems, including a single pixel camera [5] with some
attractive features, including simplicity, low power consumption, universality,
robustness, and scalability. Recently, there has been a growing interest of com-
pressive sensing in computer vision and it has been successfully applied to face
recognition, background subtraction, object tracking and other problems. Wright
et al [6] represented the test face image in a linear combination of training faces
images. Their representation is naturally sparse, involving only a small fraction
of the overall training database. Such a problem of classifying among multiple
linear regression models can be then solved efficiently via L1-minimisation which
seeks the sparsest representation and automatically discriminates between the
various classes presented in the training set. Cevher et al [7] casted the back-
ground subtraction problem as a sparse signal recovery problem and solved by
greedy methods as well as total variation minimisation as convex objectives to
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process field data. They also showed that it is possible to recover the silhouettes
of foreground objects by learning a low-dimensional compressed representation
of the background image without learning the background itself to sense the
innovations or the foreground objects. Mei et al [8] formulated the tracking
problem similar to [6]. In order to find the tracking target at a new frame, each
target candidate is sparsely represented in the space spanned by target tem-
plates and trivial templates. The sparse representation is achieved by solving
an L1-regularised least squares problem to find good target templates. Then
the candidate with the smallest projection error is taken as the tracking target.
Subsequent tracking is continued using a Bayesian state inference framework in
which a particle filter is used for propagating sample distributions over time.

Unlike above works, many data acquisition/processing applications do not re-
quire obtaining a precise reconstruction, but rather are only interested in making
some kind of evaluations on the objective function. Particularly, human motion
tracking essentially attempts to find the optimal value of the observation like-
lihood function. Therefore, we propose a new framework, called Compressive
Anneal Particle Filter, for such a situation that bypasses the reconstruction and
performs evaluations solely on compressive measurements. It has been proven
[1] that the random projections can approximately preserve an isometry and
pairwise distance, when the number of the linear measurements is large enough
(still much smaller than the original dimension of the signal). Moreover, noticing
the anneal schedule is a coarse-to-fine process, we introduce the staged wavelet
decomposition with respect to each anneal layer. As a result, the number of
compressive measurements is progressively increased to gain computational effi-
ciency.

The rest of the paper is organised as follows. Section 2 describes the hu-
man body template. In Section 3, we provide a brief overview of the theoretical
foundation of Compressive Sensing, followed by Compressive Annealed Particle
Filter in Section 4 and the results of experiments with the HumanEvaII dataset
in Section 5. Finally, Section 6 concludes with a brief discussion of our results
and directions for future work.

2 Human Body Template

The textured body template in our work uses a standard articulated-joint parametri-
sation to describe the human pose, further leading to an effective representation
of the human motion over time. Our articulated skeleton consists of 10 segments
and is parameterised by 25 degrees of freedom (DOF) in Figure 1. It is regis-
tered to a properly scaled template skin mesh by Skeletal Subspace Deforma-
tion (SSD)[9]. Then, shape details and texture are recovered by an interactive
volumetric reconstruction and the texture registration procedure. At last, the
template model is imported to commercial software to be finalised according to
the real subject. The example of the final template model is illustrated in Figure
1.
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Fig. 1. From left to right: the articulated skeleton parameterised by 25 DOF and the
textured template model after manual refinements

3 Compressive Sensing

The novel theory of Compressive Sensing (CS) [1–4] provides a fundamentally
new approach to data acquisition which provides a better sampling and compres-
sion when the underlying signal is known to be sparse or compressible, yielding
a sub-Nyquist sampling criterion.

3.1 Signal Sparse Representation

Given that a signal f ∈ RN is sparse in some orthonormal basis Ψ ∈ RN×N

and can be represented as f = Ψf ′. If the number of significant entries of f ′ is
small, so that insignificant entries can be discarded without much loss, then f ′

can be well approximated by f ′K that is constructed by keeping the K largest
entries of f ′ unchanged and setting all remaining N −K entries to zero. Then
fK = Ψf ′K is so called K-sparse representation. Since Ψ is an orthonormal
matrix, ∥f − fK∥2 = ∥f ′ − f ′K∥2, and if f ′ is sparse or compressible in the sense
that the sorted magnitudes of its components xi decay quickly, then the relative

error ∥f−fK∥2

∥f∥2
is also small. Therefore, the perceptual loss of recovery is hardly

noticeable.

3.2 L1 Minimisation Recovery

Compressive sensing nevertheless surprisingly predicts that reconstruction from
vastly undersampled non-adaptive measurements is possible-even by using effi-
cient recovery algorithms. Let us consider M << N non-adaptive linear mea-
surements z (so called Compressive Measurement) of a signal f using z = Φf ,
where Φ ∈ RM×N denotes the measurement matrix. Since M << N , the re-
covery of f from z is underdetermined. If, however, the additional assumption
is imposed that the vector f has sparse representation, then the recovery can
be realised by searching for the sparsest vector f ′

∗
which is consistent with the

measurement vector z = ΦΨf ′. The finest recovery f∗ = Ψf ′
∗
is achieved when

the sparsest vector f ′
∗
is found. This leads to solving a L0-minimisation problem.
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Unfortunately, the combinatorial L0-minimisation problem is NP hard in general
[10]. In [2] Candes et al have shown that the L1 norm yields the equivalent solu-
tion to the L0 norm, leading to solve an easier linear program, for which efficient
solution methods already exist. When the measurement process involves a small
stochastic error term ∥η∥2 ≤ ϵ, z = ΦΨf ′ + η, the L1-minimisation approach
considers the solution of:

min ∥f ′∥1 subject to ∥ΦΨf ′ − z∥2 ≤ ϵ (1)

This is an instance of second order cone programming [3] which has a unique
convex solution.

The exact recovery from non-adaptive linear measure is not universal but
conditional. The primary result [4] of CS states, if Φ is incoherent with Ψ so
that the coherence µ(Φ,Ψ) =

√
N maxl,k∈[1,N ] |⟨ϕl, ψk⟩|1 is close to 1 and M >

Cµ2(Φ,Ψ)K logN/σ for some positive constant C and small values of σ then f ′

in z = Φf = ΦΨf ′ can be exactly recovered with overwhelming probability 1−σ.
Moreover, it turns out that a randomly generated matrix Φ from an isotropic
sub-Gaussian distribution with γ = 1 and µ = 1 (e.g. from i.i.d. Gaussian
or Bernoulli/ Rademacher 1 vectors) is incoherent with high probability to an
arbitrary fixed basis Ψ.

4 Compressive Anneal Particle Filtering

The proposed approach resides on the APF framework that is first introduced in
human tracking by Deutscher et al. [11]. APF incorporates simulated annealing
[12] for minimising an energy function E(yt,xt) or, equivalently, maximising the
observation likelihood p(yt|xt) that measures how well a particle (an estimate
pose configuration) xt fits the observation yt at time t. The observation likeli-
hood is essential for APF in order to approximate the posteriori distribution,
and it is often formulated in a modified form of the Boltzmann distribution:

p(yt|xt) = exp{−λE(yt,xt)} (2)

where, the annealing variable λ is ,1/(kBTt), an inverse of the product of the
Boltzmann constant kB and the temperature Tt at time t. The optimisation
of APF is iteratively done according to a predefined L-phase schedule {λ =
λ1, ..., λM}, where λ1 < λ2 < ... < λL, known as the annealing schedule. At time
t, considering a single phase l, initial particles are outcomes from the previous
phase l−1 or drawn from the temporal model p(xi

t|xi
t−1). Then, all particles are

weighted by their observation likelihood p(yt|xt), resampled probabilistically to
select good particles which are highly likely to near the global optimum. Finally,
particles are perturbed by a Gaussian noise with the diagonal covariance matrix
Pl. The perturbation covariance matrix Pl is used to adjust the search range of
particles.

1 To simplify the notation, ϕl can be concatenated as the basis with N elements so
that ⟨ϕl, ψk⟩ is always computable.
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Considering the pose space model in a dynamic structure that consists of a
sequence of estimate poses xt at successive time t = 1, 2, ..., and each pose is
associated with an image observation yobs

t or a compressive measurement zdt . At
time t, the compressive measurement can be defined by:

zdt = ΦΨyd
t + η

= ΦΨ(yobs
t − ybg

t ) + η

= zobst − zbgt + η (3)

where, η denotes measurement noises and Ψ denotes wavelet basis. In particular,
yd
t is the difference image generated by subtracting the background image ybg

t

from the original observation image yobs
t . It is known that the images acquired

from the natural scene have highly sparse representation in the wavelet domain.
The the difference image calculated by subtracting the static background from
the observation image has more pixel values close to zero, hence, the difference
image Ψyd

t is highly sparse and compressible.

On the other hand, given the estimate state xt, the estimate compressive
measurement ẑdt of the difference image can be calculated by subtracting the

background image ybg
t from the synthetic foreground image sfg(xt), which is

generated by projecting the human model with the pose xt and camera param-
eters onto the image plane. This difference image is also compressible in the
wavelet domain so that it can be defined by:

ŷd
t,i = sili(xt) ∗ (sfgi (xt)− ybg

t,i) i = 1, ..., N

ẑdt = ΦΨŷd
t (4)

where, sil(x) is a synthetic silhouette mask for the estimate state x which has
0s on all background entries and 1s on all the foreground entries. This mask
operation is used to make the synthetic difference image is comparable to the
original difference image.

4.1 Restricted Isometry Property and Pairwise Distance
Preservation

Another important results of CS is the Restricted Isometry Property (RIP) [1]
which characterises the stability of nearly orthonormal measurement matrices. A
matrix Φ satisfies RIP of orderK if there exists an isometry constant σK ∈ (0, 1)
as the smallest number, such that (1 − σK)∥f ′∥22 ≤ ∥Φf ′∥22 ≤ (1 + σK)∥f ′∥22
holds for all f ′ ∈ ΣK = {f ′ ∈ RN : ∥f ′∥0 ≤ K}. In other words, Φ is an
approximate isometry for signals restricted to be K-sparse and approximately
preserves the Euclidean length, interior angles and inner products between the
K-sparse signals. This reveals the reason why CS recovery is possible because Φ
embeds the sparse signal set ΣK in RM while no two sparse signals in RN are
mapped to the same point in RM .



6 Yifan Lu, Lei Wang, Richard Hartley, Hongdong Li, Dan Xu

If Φ has i.i.d. Gaussian entries and M ≥ 2K, then there always exists
σ2K ∈ (0, 1) such that all pair wise distances between K-sparse signals are well
preserved [13]:

(1− σ2K) ≤
∥Φf ′i −Φf ′j∥22
∥f ′i − f ′j∥22

≤ (1 + σ2K). (5)

Meanwhile, Baraniuk and Wakin [14] presents a Johnson-Lindenstrauss (JL)
lemma [15] formulation with the stable embedding of a finite point cloud under
a random orthogonal projection, which has a tighter lower bound for M .

Lemma 1. [14] Let Q be a finite collection of points in RN . Fix 0 < σ < 1 and
β > 0. Let Φ ∈ RM×N be a random orthogonal matrix and

M ≥
(

4 + 2β

σ2/2 + σ3/3

)
ln(#Q)

. If M ≤ N , then, with probability exceeding 1−(#Q)−β, the following statement
holds: For every f ′i , f

′
j ∈ Q and i ̸= j

(1− σ)

√
M

N
≤

∥Φf ′i −Φf ′j∥2
∥f ′i − f ′j∥2

≤ (1 + σ)

√
M

N

where A random orthogonal matrix can be constructed by performing the House-
holder transformation [16] onM random length-N vectors having i.i.d. Gaussian
entries, assuming the vectors are linearly independent.

4.2 Multilevel Wavelet Likelihood Evaluation on Compressive
Measurements

The above Equation (5), Lemma (1) and orthonormality of Ψ guarantees the
pairwise distance to be approximately preserved providing the M is sufficient
large. Therefore the CS recovery is not necessary to evaluate the observation
likelihood, instead the observation likelihood can be directly calculated via the
distance of compressive measurements in Equation (3) and (4).

p(yt|xt) = exp{−λ∥zdt − ẑdt ∥2} (6)

where the anneal variable λ also accounts for the error term η in Equation (3).
Notice λ > 0, the above equation can be transformed as:

p(yt|xt) = exp{−∥λzdt − λẑdt ∥2}
= exp{−∥Φ(λΨyd

t − λΨŷd
t )∥2} (7)

Consider a pixel-wise homogeneous metric d(), a typical observation likelihood
in APF can be rewritten by:

p(yt|xt) = exp{−λ
∑
i

d(Iiyt
, Iixt

)}

=

(∏
i

exp{λd(Iiyt
, Iixt

)}

)−1
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Fig. 2. The number of wavelet coefficients is progressively elevated as the wavelet de-
composition process so that details are gradually enhanced through the anneal schedule.
From left to right, we show 4 levels wavelet decomposition coefficients at the top of
the figure. 1) using only the K4 = 2805 largest coefficients (about 18.39% over all the
level 4 coefficients) at the level 4, 2) K3 = 4345 (7.18%) at the level 3, 3) K2 = 12086
(5.01%) at the level 2 and 4)K1 = 30000 (3.11%) at the level 1. The observation images
at the bottom are reconstructed by using corresponding Kg sparse wavelet coefficients.

Due to homogeneity |a|d(x, y) = d(ax, ay) and λ > 0, the above equation can be
rewritten by:

p(yt|xt) =

(∏
i

exp{d(λIiyt
, λIixt

)}

)−1

(8)

Therefore, λ can be considered as the scaling factor for each pixel Ii. The ob-
servation likelihood can then be regarded as the inverse of product over the
exponential pixel-wise distances of the λ scaled image, providing the difference
between adjacent pixels is small. On the other hand, the equation (7) contains
a homogeneous L2 norm metric and requires a wavelet decomposition. Briefly,
approximation coefficients are uniformly downsampled (or scaled) through the
wavelet decomposition, while the detail coefficients are calculated to account for
the adjacent pixel differences in super level approximation coefficients. Often,
downsampled approximation coefficients are able to preserve major information
of the image due to the detail coefficients are often close to zero and negligible,
especially in first several decomposition levels. This just coincides the situation
of the image λ scaling in the progressive anneal schedule, except in a reverse
order. Therefore, we design directly evaluating the coarse-to-fine wavelet coef-
ficients in difference levels to simulate increasing λl at each layer l. Then, an
alternative of Equation (7) is given by:

p(yt|xt) = exp{−∥Φ(l)(Ψ(l,yd
t )−Ψ(l, ŷd

t ))∥2} (9)

where, Ψ(l,yd
t ) is wavelet coefficients of yd

t at the l layer associated to the
level g decomposition, and it has Nl wavelet coefficients. With l is increasing, g
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is decreasing and the more details encoded in wavelet coefficients Ψ(l,yd
t ) are

used. For instance, as shown in Figure 2. Φ(l) is a Ml × Nl sub-matrix of Φ.
Ml = 2Kg is determined according to the sparsity Kg of the g level wavelet
coefficients.

5 Experiments
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Fig. 3. Top two figures of Wavelet Coefficient Histogram and Wavelet Coefficient Cu-
mulative Histogram show 95% coefficients have very small values close to zero.

Experiments are conducted on the benchmark dataset HumanEvaII [17] that
contains two 1260-frame image sequences from 4 colour calibrated cameras syn-
chronised with Mocap data at 60Hz. Those tracking subjects perform three dif-
ferent actions including walking, jogging and balancing. To generate compressive
measurements, we apply the 8 level haar wavelet 2D decomposition [18] to all
observation images. The wavelet coefficients appear highly sparse, most of them
are close to zero as illustrated in Figure 3. For instance, using solely the 30000
largest wavelet coefficients we are able to reconstruct the 964320 colour com-
ponents of 656 × 490 RGB image with hardly noticeable perceptual loss. For
the multilevel evaluation (Equation 9), the four sparsity levels K1 = 30000,
K2 = 12086, K3 = 4345 and K4 = 2805 are evenly allocated in the 10 anneal
layers2. The Ml = 2Kg rows of Φ are drawn i.i.d. from the normal distribution
N(0, 1/Ml) to approximately preserve the isometry as shown in Equation (5).
On the other hand, the single level evaluation Equation (6) is used with a tight
lower bound for M shown in Lemma (1). We presume there are one observation
image and maximum 20003 synthetic images generated in the evaluation for each
view and each frame. Then, for the 1260-frame sequence, there are total 2521260
unique compressive measurements required for tracking. Let σ = 0.1, β = 1 and

#Q = 2521260, so M =
(

4+2β
σ2/2+σ3/3

)
ln(#Q) = 16583. Moreover, the M rows

2 using M1 = 2 × 2805,M2 = 2 × 2805,M3 = 2 × 2805,M4 = 2 × 4345,M5 = 2 ×
4345,M6 = 2 × 4345,M7 = 2 × 12086,M8 = 2 × 12086,M9 = 2 × 30000,M10 =
2× 30000

3 Given 10 layers and 200 particles as the maximum
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Fig. 4. From top to bottom, 1) tracking results of HumanEvaII Subject 2, 2) tracking
results of HumanEvaII Subject 4 (the ground truth data is corrupted at 298-335 frames)
and 3) computational time for one frame using the different number of compressive
measurements.
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of the Φ is constructed by drawing i.i.d. entries from the normal distribution
N(0, 1/M) and performing the Householder transformation to orthogonalise Φ.
Therefore, with high probability 1− 1/2521260, Φ approximately preserves the
pairwise distance. we also verified the performance of the number of compressive
measurements in cases of M = 10000 and M = 5000.

Fig. 5. HumanEvaII visual tracking results of Subject 4 and 2 are shown at the top
four rows and the bottom four rows, respectively. The transparent visual model is
overlapped with the tracking subject.

As illustrated in the experimental results of HumanEvaII Subject 2 (the top
of Figure 4), the evaluation using original images as the evaluation input ob-
tains 54.5837± 4.7516mm4. While the multilevel evaluation achieves the stable
results 56.9442± 4.4581mm which is comparable with the results using original
images. When using the single level evaluation with M = 16583 compressive
measurements, the tracking results appear poorer than the multilevel evaluation
but still maintain within 65.7548±5.4351mm. When the number of compressive
measurements are further reduced to M = 10000 and M = 5000, the perfor-
mance is degraded dramatically and we merely obtain 70.4249± 7.5613mm and

4 The results are statistically presented by mean± standard deviation in Millimetres
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68.2124 ± 11.6153mm, respectively. The middle of Figure 4 shows the experi-
mental results of HumanEvaII Subject 4. The evaluation using original images
achieves 54.2207± 4.9250mm which is slightly better than 57.1705± 6.0227mm
achieved by the multilevel evaluation. The results 64.1233 ± 7.7703mm using
M = 16583 compressive measurements experiences slightly more fluctuations
comparing with the results of Subject 2. When the number of compressive
measurements are decreased to M = 10000 and M = 5000, there are signifi-
cant mistrackings and drifts with fluctuated errors 71.6053 ± 15.4005mm and
96.3663± 32.8075mm. More visual tracking results are shown in Figure 5.

The computational performance is also evaluated via the computational time
for one frame using the different number of the compressive measurements shown
in the bottom of Figure 4. As expected, the computational times from 40 to 75
seconds roughly correspond to increasing the number of the compressive mea-
surementsM , except that the multilevel evaluation reaches the level of computa-
tional speed similar to usingM = 10000 compressive measurements. Overall, the
boost from utilisation of progressive coarse-to-fine multilevel evaluation allows
our approach to achieve the computational efficiency as only using M = 10000
compressive measurements and maintain the comparable tracking accuracy as
using the original images.

6 Conclusion and Future Works

This paper has presented a compressive sensing framework for human tracking.
It is realised by introducing a compressive observation model into the annealed
particle filter. As the restricted isometry property ensures the preservation of the
pairwise distance, compressive measurements with relative lower dimensions can
be directly employed in observation evaluations without reconstructing the orig-
inal image. Furthermore, noticing there is a similar progressive process between
the annealing schedule and the wavelet decomposition, we propose a novel mul-
tilevel wavelet likelihood evaluation in the coarse-to-fine fashion in which a fewer
wavelet coefficients are used at the beginning, and then elevated gradually. This
saves computational time and hence boosts the speed of evaluations. Finally, the
robustness and efficiency of our approach are verified via the benchmark dataset
HumanEvaII.

Despite powerfulness and non-adaptivity of compressive sensing recovery,
many signal processing problems do not require full signal recovery and rather
prefer to work on the compressive domain to benefit from dimensionality reduc-
tion. Indeed, RIP which approximately preserves an isometry allows evaluations
and analysis on compressive measurements to be meaningful. However, the com-
putational complexity of performing the sparse basis representation (in our case
the wavelet decomposition) and compressive measuring still remains very high.
In future work, we therefore would like to explore more about how to design
more efficient the sparse basis representation and compressive measuring.

Acknowledgement. Authors would like to thank the support from National
ICT Australia.
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