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Abstract. We address the problem of identifying dry areas in the tear film as part
of a diagnostic tool for dry-eye syndrome. The requirement is to identify and mea-
sure the growth of the dry regions to provide a time-evolving map of degrees of
dryness. We segment dry regions using a multi-label graph-cut algorithm on the
3D spatio-temporal volume of frames from a video sequence. To capture the fact
that dryness increases over the time of the sequence, we use a time-asymmetric
cost function that enforces a constraint that the dryness of each pixel monoton-
ically increases. We demonstrate how this increases our estimation’s reliability
and robustness. We tested the method on a set of videos and suggest further re-
search using a similar approach.

Fig. 1. A sequence of images showing how dryness forms over the iris. The first image
is immediately after a blink and then the images are every 4 seconds. The intensity of
regions over the iris is related to dryness: the darker the area, the drier it is.

1 Introduction

The pre-ocular tear film in humans does not remain stable for long periods of time [1].
When blinking is prevented, the tear film ruptures and dry spots appear over the cornea.
This phenomenon is known as Dry Eye Syndrome [2]. The Fluorescein Break Up Time
(FBUT) test was designed by Norn [3] to detect dryness. A small amount of fluorescein
is instilled in the patient’s eye. Then, the tear film is viewed with the help of a yellow
filter in front of a slit-lamp (see Fig.1). A video of the front of the eye is recorded
between two consecutive blinks. As time passes after the blink, dark areas form on the
iris, indicating the lack of fluorescence and the rupture of the tear film. The degree of
blackness of these areas is related to the degree of thinning of the tear film. When a
dark area of a certain size first appears on the iris, the time elapsed since the blink is
recorded as the Break Up time (BUT). If the eyes are kept open, the area of the break
will increase in size and breaks may appear in new areas over the cornea. This is the
most commonly used test by clinicians to evaluate dry eyes [4].
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In this paper, we present a graph-cut approach for automatic detection of dryness.
We transform the video (after alignment) into a spatio-temporal 3D volume, so a rela-
tionship between successive images is defined. The 3D image volume is modeled as a
3-dimensional multi-label Markov Random Field (MRF) in which the label assigned to
each pixel represents the degree of dryness. A graph-cut approach benefits from lesser
sensitivity to spatial noise and misalignment of the eye images. In addition, we intro-
duce the idea of enforcing temporal monotonicity. This reflects the condition that dry
spots on the iris can only become darker (dryer) in temporally successive images as
seen in Fig.1. To enforce the increasing dryness condition, we define asymmetric edge
weights in the temporal direction, specifying an infinite (or very large) cost to assigning
decreasing labels to a pixel in consecutive frames. The associated energy minimization
problem is solved using the alpha expansion algorithm [5].

Previous Work. Assessment of dry-eye was reported by us in [6], but in that work
we did not use any sort of spatial or temporal constraints. We compare the new results
with our previous method.

There has been some work on 3-dimensional segmentation using graph-cuts. Re-
cently Bokyovet al. [7] described a global N-D graph-cut segmentation approach that
can be used to segment the kidney from a 3D MRI. They are interested in identify-
ing three regions of the kidney and conduct three independent binary segmentations
sequentially. However, they do not segment all three regions simultaneously using a
multi-label approach. Another example for an application that uses 3D volume binary
graph-cuts is for the segmentation of brain tumors [8].

Asymmetric cost functions have not seen widespread use. For example, when em-
ployed for spatial geometric constraints [9], alpha-expansion was not able to find a good
solution. In [10], the authors use an asymmetric cost to segment multiple surfaces in 3D
CT images. Even though the surfaces are segmented simultaneously, they use a binary
label set (and not a multi-label approach). To our knowledge, asymmetry has not been
used before to enforce temporal constraints within volumetric images.

Motivated by the recent report of the international dry eye workshop (DEWS) [2],
we apply the monotonic constraint to the dry eye problem. The report notes the lack of
gold standard for diagnosis of dry eye and the need for more robust methods.

2 Formulation of the Problem

We formulate our problem as a second-order MRF. In this approach, each variablei
must be assigned a labelxi from the set of labelsL = {0, 1, 2, . . . , `}. The most prob-
able labelingx? minimizes the associated energy function:

E(x) =
∑
i∈P

Ei(xi) +
∑

(i,j)∈N

Eij(xi, xj). (1)

Here,P is the set of pixels in the image andN is the set of pairs of pixels defined over
the standard four-connectedness neighborhood.

The unary termsEi are application dependent, and we employ a dryness measure
similar to [6]. The pairwise termsEij enforce ana priori model. In our application, we
expect the labels of neighboring pixels to be the same (or at least quite similar). How-
ever, large changes are also possible at edges. Therefore, we employ a function based on



the truncated linear distance (see Fig.3(a)), which encourages local smoothness, while
limiting the cost of large changes to a thresholdT :

Eij(xi, xj) = λ min(|xi − xj |, T ). (2)

The alpha-expansion algorithm [5] can minimize functions of the form (2) as they obey
the triangle inequality [5,11]. Although an optimal solution is not guaranteed, in prac-
tice the method performs quite well.

2.1 3D Graph Construction

Graph-cut minimization is not limited to 2D and is easily extended to 3D applications.
The main advantage of a 3D approach to segmenting individual 2D slices is that the
relationship between pixels at consecutive slices is considered. Moreover, it allows one
to incorporate monotonic constraints (described in the next section) between slices,
which would have been impossible otherwise.

Extending the 2D approach to 3D is based on redefining the neighborhood used in
the pairwise term. While in the case of MRI segmentation, it is fairly clear what the indi-
vidual slices are, we offer an approach based on spatial and temporal progression. Even
though the image modality is 2D in the case of the FBUT test, it can be perceived as a
3D approach to capture the global relationship between image frames. Denoting image
t in a video of lengthn + 1 asIt, each image is considered as a horizontal slice in the
3D graph (or MRF), creating a graph based on spatial and temporal changes. Therefore
slice number0 in the graph is the image immediately after the blink and slicen is the
last image in the sequence. Every other slice is related to the time passed since the blink.
The construction of the graph is based on a 6-connectedness neighborhoodN , and an
example of a 3D MRF showing the 6-connectedness neighborhood is depicted in Fig.
2. Each voxel in the MRF(x, y, t), t = {0, . . . n} is connected to its four immediate
neighbors in the same image and to the corresponding pixel(x, y) in the previous and
next frames:(x, y, t− 1) and(x, y, t + 1). Another way to look at the neighborhood of
a voxel is:N = {left, right, up, down, next, previous}. The energy function is still
built only from quadratic terms, as each voxel can be seen as being part of a maximum
of 6 pairwise cliques. Each voxel is now also dependent on two voxels which are tem-
porally different. This allows the addition of time based constraints. Denoting the set
of pixels of framet by Pt, the new set of pixels is now defined over the whole image
sequence:P = P0 ∪ . . . ∪ Pn. The hidden nodes of the MRF are the labels assigned to
each voxel from the setL.

2.2 Monotonic Constraint

Multi-label problems usually have an inherent meaning to the ordering of the labels. In
the case of the FBUT test, the labels represent the estimated thickness of the tear film.
The labeling0 represents no thinning of the tear film and the final label` corresponds
to a complete absence of fluid, or a break-up of the tear film. Other labels depict the
different degrees of thinning of the tear film. Again, we expect the labels to change



Fig. 2.Explaining the 3D MRF. Thex andy axis are the image planes; thet plane is the
temporal plane. A pixelIt(x, y) (or the voxel (x,y,t)) is the pixel (x,y) in the t-th image
after the blink. The figure shows the 6-connectedness approach (by the red arrows),
where a pixel is connected to its 4 immediate neighbors in the same plane and to two
pixels corresponding to the same location at timest − 1 and t + 1. Each voxel in the
MRF can be assigned any label from the setL.

gradually, so we employ a distance metric for the pairwise cost in the temporal axis:

fij(xi, xj) = γ|xi − xj |. (3)

As long as the patient does not blink, the thickness of the tear film can not increase
between consecutive images. Formally, the labelxj of a particular pixel at timetj must
be less than the corresponding labelxi of the same pixel at timeti = tj +1. We enforce
this monotonic dryness condition directly into the pairwise energy term:

Eij(xi, xj) =
{
∞ if ti = tj + 1 andxi < xj

fij(|xi − xj |) otherwise.
(4)

We use the truncated linear term of (2) wheni andj are a spatial pair (ti = tj), and the
monotonic function of (4) when they are a temporal pair (ti = tj + 1).

The monotonic function (4) sets an infinite cost to any labelingx where a pair
of labels(xi, xj) for a particular pixel at timestj andti = tj + 1 decreases — i.e.,
xi < xj . Although we associate an infinite cost for violating monotonicity, in general,
a finite cost can be employed.

Fig. 3 shows two examples of pairwise functions which can be minimized using
alpha-expansion. Part (a) is a cost function based on (2). The maximum penalty for
assigning different labels is bounded byT . Part (b) is a cost function based on (4). If the
change of labels is negative, the cost is infinity; Otherwise, the penalty is linear and not
truncated. Whenxi = xj the function is assigned0, however it is not mandatory. In our
algorithm, we use the first function for spatially neighboring voxels as a large change
between labels should happen at edges. The second function is used for temporally
neighboring pixels, where changes in labels (dryness) are usually gradual.



The inclusion of a monotonic constraint makes the pairwise terms asymmetric: the
cost of changing from labelα to β can be different from changing fromβ to α, or
mathematicallyEij(α, β) 6= Eij(β, α). Alpha-expansion requires the cost function to
be metric, however this definition [5] does not include symmetry.

(a) (b)

Fig. 3. The spatial (a) and temporal (b) pairwise functions. (a) Neighboring pixels
within the same frame are encouraged to have the same label, unless the difference
is quite big. In this case, medium and large differences are penalized equally. (b) Tem-
porally, labels must not decrease as time progresses. Moreover, the increase (if any)
should not be too large.

3 Application to Detect Dryness

The 2D segmentation approach [6] first detects the iris in each of the video frames. The
images are aligned, such that the iris is located roughly at the same location in each
image. The segmentation of the dry areas is based on analyzing the aligned video. A
cost function examines differences in intensities for each of the pixels in the iris between
the first and last images in the video. A dryness image is created, where each pixel is
assigned an intensity value which is proportional to its degree of dryness and is denoted
by Ĩ(x, y). However, the degree of dryness is also computed at each individual slice,
and we denote this pixel value bỹI(x, y, t).

This approach produces good segmentation results and is very fast. Nevertheless, it
has a few disadvantages:

1. Small errors in the alignment can completely bias the dryness result for a pixel.
2. The spatial relationships between neighboring pixels in the 2D image are not used.
3. There is no use of the knowledge regarding the temporal change.

3.1 Advantages of The 3D Approach

Given the aligned video created by the 2D segmentation approach, it is possible to
incorporate the ideas discussed so far to improve the segmentation results. Instead of
looking at individual pixels, and examining every single 2D image for the Break Up
Time (BUT), we add the following assumptions:

1. Smoothness constraint - If a pixel becomes dry, it is likely that its neighbors also
show a similar degree of dryness.



2. Using temporal knowledge - The video is considered as a 3D volume where each
2D frame is a slice in the 3D image. Segmenting the 3D volume takes into consid-
eration the relationship between the pixel’s values at all times.

3. Monotonicity constraint - Temporally, pixels should only become darker, as the
amount of fluid in the tear film decreases as time passes. If a pixel becomes brighter
it is probably caused by an error in the alignment process or because of shifting of
the fluorescein after the blink and not related to the actual dryness.

3.2 Applying the Technique

We show now how the described approach can be easily adopted to the dryness problem.
Given the aligned video created in the 2D approach, it is used to create a 3D graph based
on temporal changes (see Sec.2.1). The region of interest in each image is defined as
only the pixels belonging to the iris. This region should not be image dependent as after
the alignment the iris is resized to the same size at the same location.

The number of labels needed for segmenting dryness depends on the importance of
distinguishing between the different degrees of thinning of the tear film. A reasonable
choice is to use a set of9 labels:L = {0, 1, . . . , 8}. This number of labels generally
produces suitably precise segmentations of the tear film.

The unary term is defined using the valueĨ(x, y, t) computed in [6] for every pixel
for every imaget = {0, . . . n}. When using a multi-label algorithm, a value has to be
assigned for each labelEi(xi), xi ∈ L. The valueĨ can be associated with the expected
label x?

i for each pixel. For example, the intensity range ofĨ can be divided into|L|
equally spaced bins, where each bin is associated with a label. The unary term is then
defined as a functionh proportional to the difference from the expected label:

Ei(xi) = [h(xi − x?
i )]

2. (5)

The pairwise term uses linear distance metrics in both the spatial (2) and temporal
(4) directions with parametersλ andγ manually tuned to1. The spatial term is trun-
cated, since large label discontinuities are expected as break-up areas can be local in
shape. In the temporal domain, large discontinuities are not expected, so the regular
linear distance metric is appropriate. The value ofγ is related to the rate of temporally
changing labels and can be tuned according to the number of slices in the 3D MRF. The
clinical definition of tear film in the FBUT test states that the thickness of the tear film
can not increase with time, thus directly encoding a monotonic restriction into (4).

This finalizes the creation of the graph and it is solved using graph-cuts. The label-
ing for each voxel is its degree of dryness at the time. The labeling of the voxels at time
n can be seen as a similar output to the dryness image computed by the 2D approach.

4 Results

To test our method, we used a database of 22 videos with a varying length (4-24 sec-
onds), all having a break of the tear film. Fig.4(a) shows the result for the sequence
in Fig. 1. The brightest areas correspond to areas of maximum thinning. The top slice
is the final segmentation result. The t-axis shows the progress of dryness through time.



(a) (b) (c)

Fig. 4. The top slice shows the final segmentation result. The brighter the colors the
more severe the dryness. The t-axis is the temporal axis (not to scale). The 3D view
demonstrates how the dryness progresses at specific spatial locations. The monotonic
constraint enforces pixels to have non-decreasing intensity. (a) Dryness image of the
sequence from Fig.1 (rotated counterclockwise for clarity). (b) A sequence where the
dryness is mainly in the central and superior parts (rotated clockwise). (c) Temporal
progress of the voxel highlighted byx in (b)

It can be seen how the monotonic constraint enforces the voxels to have only a non-
decreasing intensity and that some of the voxels start showing dryness at a later stage
but progress faster. Fig.4(b) shows a similar cut for a different sequence where the
dryness mainly develops in the central and superior areas. The area of dryness in the
superior part is quite thin, but the smoothness constraint ensures it is a connected area.

In order to show the contribution of the monotonic constraint, we examined the
average number of label changes between every two consecutive slices:

C = 1/|Pi|
∑
x∈Pi

t=n−1∑
t=0

|xt+1
i − xt

i|. (6)

We denote the label of pixeli at timet by xt
i. When using the monotonic constraint,

the upper bound forC is defined by the max number of labels:C ≤ `. Applying (6) to
both methods on all 22 videos, we received an average of0.906 and0.523 for the 2D
approach and 3D approach respectively. Clearly the new approach is much more robust
and smooth. We note that in a few videos, most of the image pixels have no thinning
of the tear film at all, so the change of labels is focused in a small number of pixels.
Therefore, the difference inC between the approaches is quite meaningful, as in the
2D approach, individual pixels mainly near the eyelids or the iris’s borders, had up to
68(!) label changes and a maximum of8 when using the monotonic 3D approach. Fig.
5(a) shows another segmentation result using our approach. Parts (b) & (c) are temporal
cuts, where the y-axis in these images is progression through time. Notice how near the
left end side the monotonic constraint creates a smooth transition between labels with
no fluctuations while there is a lot of noise in the other approach.

We asked a clinician to measure the BUT in each of the videos. We then automati-
cally computed the BUT using [6] and then using the new method, considering a break
of a pixel when it is assigned the highest label inL. The average difference between



the clinician’s BUT and the approaches was2.4s and2.34s for the old and new method
respectively. Considering the high inter-observer variance, these results are on the ac-
ceptable range. However, the new method detected small break areas in 2 videos that
were not discovered before. This is due to the tendency of our approach to reduce the
number of incorrectly segmented pixels. Thus, the result is less sensitive to outliers
allowing the use of a lower threshold for computing the BUT (see [6]).

(b)

(c)
(a)

Fig. 5. Example of an x-t cut. (a) Segmentation result using the new approach. An x-t
cut (not to scale) at the location of the line in (a) using the (b) 2D approach. (c) 3D
approach. The y-axis in (b) & (c) shows temporal progress from bottom to top.

5 Conclusion and Further Research

In this paper, we demonstrated how an asymmetric graph-cuts approach, can be used
to segment dryness. The inclusion of a temporally monotonic constraint improves the
robustness of the results and reduces the sensitivity to outliers.

The approach presented in this paper can be extended to other medical applications.
For instance in segmentation of OCT images of the retina, ordering of the different
retinal layers may be enforced using spatially monotonic constraints. In fluoroscopic
imaging involving perfusion of contrast agents, temporally monotonic increase and
subsequent decrease of intensity may be enforced using an extension of these meth-
ods. Finally, spatial relationships and geometric properties such as convexity may be
modeled using MRFs with asymmetric edge labels.
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