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Abstract

We present a monocul@D reconstruction algorithm for inextensible de-
formable surfaces. It is based on point correspondencegebatthe actual
image and a template. Since the surface is inextensibldeftamations are
isometric to the template. We exploit the underlying dis&anonstraints to
recover the3D shape. Though these constraints have already been investi-
gated in the literature, we propose a new way to handle thenopfosed to
previous methods, ours does not require a known initialrdedtion. Spatial

and temporal smoothness priors are easily incorporated.rdd¢onstruction
can be used fo8D augmented reality purposes thanks to a fast implementa-
tion. We report results on synthetic and real data. Someeohthre faced to
stereo-base8D reconstructions to demonstrate the efficiency of our method

1 Introduction

Recovering the8D shape of a deformable surface from a monocular video and a tem
plate is a challenging problem, illustrated in figure 1 (ahds been addressed for years
and several algorithms have been proposed. 3AMeshape seen in the template is usu-
ally known. The general problem is ill-posed due to depthigoibes [11]. Additional
consistency constraints are thus required. Most commadIfioc constraints are used.
These include spatial and temporal surface smoothness 18] 4nd the low-rank shape
model [2, 3].

The algorithm we propose is dedicated to inextensible sasfauch as those shown in
figure 1 (b,c). It uses point correspondences to computerigouads on the points’ depth
thanks to the inextensibility assumption. We show thatehssunds directly provide a
decent3D reconstruction of the surface. The algorithm does not recan initial guess
and easily handles additional smoothness constraints.

There are two main differences between our method and thépeeones:

e the inextensibility constraints are treated as hard caimt instead of as a penalty.
It makes the result less empirical because we guaranteedtariimextensible sur-
face. Indeed, smoothing terms that can be used to handleptbes on the surface
do not alter the inextensible property of the solution. ®©thethods usually mix
different penalties and so generally have to carefullydraffl various terms to get
convincing results.



e our algorithm does not need any assumption about the suttgfoemation in the
video, contrarily to other methods such as [10, 13] for whitg first frame of the
video must be ‘similar’ to the template. It is simple and fastd can therefore be
used to provide a good initialization to more sophisticatkegbrithms.

The paper is organized as follows. Related work on monoagéwrmable recon-
struction is reviewed ir32. The evaluation of upper bounds is presenteg3irand the
surface recovery procedure §4. An experimental study on the reconstruction error is
proposed ir5. Results on synthetic and real data sets are reportggdl iBventually, we
give our conclusion and research perspectivégin
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Figure 1: Monocular reconstruction of a deformable surfat@ Problem setup. (b)
Examples of paper sheets: the template (left) and two defdrsheets, a smooth one
(middle) and a creased one (right). (c) Example of a can: lampmage (left),3D
template (middle), and the input image of the deformed cght:.

2 State of the Art

There are three main components in monocular deformablees@eonstruction: the
general low-rank shape model, the assumption that the todijéaterest is a surface and
the knowledge of a template. They can be independently useshabined together so as
to handle the monocular reconstruction ambiguities.

The low rank factorization solution to the non rigid shapeorery problem has been
introduced by [2]. The object is represented by a combinatfounknown basis shapes.
The algorithm recovers both the basis shapes and the caatiiguweights for each frame
of the video. The surface hypothesis has recently beenpocated through shape pri-
ors [3]. This method needs the whole video to compute theisaland thus is not suited
for reconstruction on the fly.

Learning approaches have proven efficient to model defdevaijects [12, 13]. The
main drawback is the lack of generality when the trained rhid®o specific. To deal
with videos, temporal consistency is used to smooth therdeftions [10]. It requires
to know the initial3D shape. It usually needs a template, and the video is suclthinat
object deformation in the first frame is close to the one intémeplate.



Methods using only the surface assumption have been propdsey require strong
priors on the surface. One of the motivations for these nusti®to perform paper scan-
ning from images of deformed paper sheets. For this kind pfiegtions, a template is
obviously not available. Under the surface smoothnessgsson, [4] solves a system of
differential equations on the page borders to obtairBieshape. Other approaches such
as [7] use textual information to evaluate the surface patars. These methods perform
well on smoothly bent paper but cannot be extended to arpitnaxtensible objects.

The method we propose is dedicated to surfaces and uses atenipassumes the
internal parameters of the camera to be known. It is morebilexhan other approaches
since it applies to any inextensible surface such as papement or faces. Only one
frame is needed to compute the reconstruction and therernisedfor a reference image
in the video,.e. an image for which th8D surface is known in advance.

3 Finding Upper Bounds on the Surface Depth
3.1 Principle

We focus on inextensible deformable objects imaged by ptioge cameras. A surface
template is assumed to be known. The template is composédte 8Dt surface shape
registered with an image of the object. Examples are showiigare 1. For the paper
sheet and the piece of garment, the reference shape is g plashdor the can, it is a
cylinder. Assuming that point correspondences are estaddi between the image of the
deformed object and the template, we show that the regiopaafescontaining the object
is bounded. The internal camera parameters allow one to a@ntipe backprojection of
the matched feature points, known as sightlines. Sinceaimera is projective, the sight-
lines intersect at the camera center and are not paralleldio @her. The consequence is
that the distance between two points along the sightlinegases with their depths. The
template gives us the maximal distance between two poirtierfvhe real dimensions of
the template are available, the scale ambiguity can bevedpl This is used to compute
the maximal depth of the points.

First of all, correspondences are established betweemtgs and the template using
for instance SIFT [8] or a detection process designed foordadible objects [9]. We
assume that there is no mismatch. The evaluation of the Isosritien done through a
two step algorithm:

e Initialization. (§3.2) A suboptimal solution is computed by using pairwise-con
straints.

e Refinement. (§3.3) An iterative refinement process considers the uppend®oas
a whole and tunes all of them to get a fully compatible set ofrits.

Our notations are given in table 1.

3.2 Initializing the Bounds

The initialization of the bounds is computed pairwise. Twainps and the inextensibility
constraint are sufficient to bound the position of these taints along their sightlines.



[ Notation | Meaning | Euclidean distance
T template dij =g’ —df| betweeng| andq]
q pointi in the template i depth of the point
| image of the deformed object Qi =Qi(H) 3D pointi
P camera matrix fot I true depth of the poirit
C| camera centre far Q true 3D pointi
G pointiin the image T reconstructed depth of the point
iahtli int! =
S sightline for pointg Q reconstructe@D pointi
Vi direction of the sightlineg indice of the point constraining
aij the angle betwee§ andS; i Fhe depth of point _
— — = i = [ maximal depth of the point
[ Gi [ pointi in homogeneous coordinatg - —
A vector two norm | Q deepesD pointi

Table 1: Our notations for this paper.

For n correspondences, it gives— 1 bounds for each point. Only the most restrictive
bound (.e. the tightest one) is kept as the initial bound.

The sightlines are computed in the image of the deformedcbbjgdetails can be
found ineg. [6]). The camera matri®® = [M|p4] is composed of &3 x 3) matrix M
and a(3 x 1) vectorps. The camera center 8= —M~1p4. The vectow; orienting the
sightline passing trough the poigltis:

M~
Vi= —————.
Mg
A 3D pointQ; on the sightline§ can be expressed as:
Qi(ki) = i vi +C.

The depthy; is the distance of the point to the camera center. The cligipbperty
states thaty; is positive [5].

As figure 2 illustrates, the inextensibility of the objectes the following constraint
between the points: whatever the actual deformation, tloidean distance between two
3D points is lower or equal to the Euclidean distance betweemtbn the template:

IQ = Qill < lla’ —a] || =dh.

isometric deformation

3D surface

Template

Figure 2: Inextensible object deformation. The templatieformed to th&D surface by

an unknown isometric transformation. The dashed line ig#wesic curve betweé@
ande, it has the same length; as the geodesic distance in the template. The Euclidean
distance between tiD points is shorter due to the deformation.



As figure 3illustrates, the coordinate frame system can besd#m such that the points
Qi andQ; are parameterized by:

(i (1 cogaij)
Q'_<0) QJ_([J]‘ sin(aij))'
Given;, the two pointQ; such that|Q; — Q;|| equalsd;j are given by:

Hj (Ki) = pi cos(aij) £ /df — p? sin?(aij). (1)

So there exists a real solution if and only if:

<[5
M S

The boundy; is then computed from the whole set of correspondencesdutitioss of
generality, we assum®; < 7 which holds with most of the common lenses):

[ = [ie = min di
! ! j=1.n sin(aij) '
J#I

The point that induces the minimum upper bound has intleXVe refer to this point*
as theanchor point of point i. The notation — i* reads ‘pointi* constraints the upper
bound of pointi’. One can remark that this property is not symmetiie> j does not
imply j — i. Itis one of the reasons why this initialization is subogatinas explained in
the next paragraph.

Vi Qi(1i) Hi ;i

Figure 3: Point parameterization along theFigure 4: Bound refinement. Initial bound
sightlines. [ is refined tofyy; by the process.

3.3 Refining the Bounds

The set of initial bounds is not optimal for the whole set ofip® A suboptimal situation
is represented on figure 4. We consider three points, andghieivise computed bounds.
The bounds for the point®; andQy are given by the poin®;. The pointsQ; andQy are
used to compute two bounds for the po@t Only the most restrictive one is kepé.
[ij. It means that the poir@®; can not be deeper thgh;. This gives the new boung,
for the pointQ.



We propose an iterative implementation of the bound refimémBuring one itera-
tion, for each point, the upper bounds of the other pointaded by the actual point are
computed. If they are smaller than their actual boundsethes updated. The iterations
stop when there is no change during one iteration, meanatghke bounds are coherent.

To derive the update rule, we refer to equation 1 that linksdigpth of two points such
that the distance between the points is equal to their distameasured in the template,
i.e. the maximal distance between the two points. We study therdppund on poinj
induced by the poinit, it is thus given by the largest value pf:

Hi (Hi) = pi cos(aij) + 4 /df — p? sin?(aij). (2)

As figure 5 illustrates, this function has a global maximum:
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Figure 5: Relationship between the depth of the points uadémextensibility constraint.
(left) The parameterization. (left) Graph of the functiamiigg depth of pointj against
depth of point when the distance between pointndj is equal tod;j.

The upper bound for pointwith respect to pointis thus:

i = { pi cos(aij) +/di — u2 sin?(aij) if i < tand(ié(ij)

JI— d” .
sn(ai}) otherwise,

and the formula to update the bound is the following:
iy = min (e, i) -
In our experiments, this process converges in 3 or 4 itaratiorhe outputs of the

bounding process are the upper bound and the anchor poiatbfgoint. Both are used
to recover the surface, as explained below.

4 Recovering the Surface

Our surface recovery procedure has two main steps:

e Reconstruction of sparse3D points. (§4.1) The3D points are computed using the
upper bounds and the distances to their anchor points,

e Reconstruction of a continuous surface.(§4.2) The surface is expressed as an
interpolation of these points, possibly using surfacergrio



4.1 Finding a Sparse Set 08D Points

The set of bounds gives the maximal depth of the points. Fastestirface reconstruction
algorithm, one can directly use the upper bounds as pointiseogurface:

b = [ 4)

In practice, the error due to this approximation is smalklemwvn on figures 6, 7 and 8.

However, this is not satisfying from the inextensible pafwiew. Indeed, the dis-
tance between two upper boun®(fi) — Q(fi+)|| can be larger than their distance in
the templated;-. For instance, when there is a symmetry between a point arahihor
point:i — i* andi* — i, the distance is equal ti- - cos* (%a”*). To get a more consis-
tent surface, we propose an optimization scheme to enfbecéehgth equality between
a point and its anchor point. Since the upper bounds giverdeesults, the points depth
such that these length equalities are satisfied are seanelaethe upper bounds.

The optimization can also handle other priors on the polds.instance, with a first
order temporal smoother, it has the following form:

po= argmin(Z(Fli—ui)2+v(ui(t)—ui(t—1))2>
oS (5)
subjectto ||Qi— Q|| =di fori=1.n,

with p the points depth vectoy;(t) the depth of thé—th point for the framd andy
the balancing weight. This is a linear least squares prohieder non-linear quadratic
constraints, solved with the Levenberg-Marquardt algamif6] (the initial solution is
given by equation (4)).

Table 2 shows the reconstruction time with and without th&n@ipation process. The
values given here are measured on our not optimal Matlakeimg@htation.

number of points|| 50 | 100 | 250
reconstruction time without optimisation (mg)13 | 35 | 176
reconstruction time with optimisation (ms) 82 | 143 | 444

Table 2: Reconstruction time against the number of points.

4.2 Interpolating to a Continuous Surface

The reconstructe@D points are eventually treated as control points of a mappifigm
the template to th&D space. This allows us to represent the surface by transfeari
regular mesh designed on the template. In practice the mgppe choose is composed
of three2D to 1D Thin-Plate-Splines. These have proven efficient in theesgntation
of deformable objects [1]. Getting a continuous surface esdk possible to deal with
surface priors. At this stage, another optimization precas be used to include these
priors. They are written as penalty terms of a cost functiat is minimized with respect
to the depth of the control points. For priors on the tempanal geometric smoothness
of the surface, one can write this optimization as:



2
+yllait) —ai(t—1))2

n 2

2 || aT

~ : - 2
= argmin P— i)+ A j
i g i:§ (Fi — k) i:§ g (@)

(6)
subjectto ||Qi— Q|| =dix fori=1.n,

with q a vertex of the meshm the number of vertices of the mesh ahdy the balanc-
ing weights controlling the trade-off between the distatwéhe bounds, the geometric
smoothness and the temporal one. Fixing the deformatioterenf the Thin-Plate-
Splines in the template, problem (6) shows to be linear lsgstires under non-linear
quadratic constaints. It can be similarly solved as prol&m

5 Error Analysis

The quality of the reconstruction depends on the number oespondences and the
noise in the images. Though the latter has been ignored ithdaeetical derivation, we
show how to deal with it in the reconstruction algorithm. Téxperiments to assess the
reconstruction error against the number of points or theewsiagnitude are performed on
synthetic surfaces. They are modeled by developable sasfadich are isometric to the
plane. In practice we use a square shape width 200mm. Thedgaints are randomly
drawn on the shape. The reconstruction error fori thté feature point is defined as:

e(i) = |Q - Qill- (7)

5.1 Number of Points

Figure 6 shows the average reconstruction error againstuimber of correspondences.
The dashed curve represents the fast implementation egaetion (4)) and the full one
corresponds to the optimized points under length conssrainly (equation (5)). As ex-
pected, the error decreases thanks to the point optimizalibe curves are decreasing:
the higher the number of points, the lower the error. The l@myuof the reconstruction
is related to two situations: the amount of deformation leetmvthe points and the orien-
tation of the points with respect to the camera. Their repenfluences are explained
below. Due to lack of space, we do not show any quantitatiselte

While deforming, the Euclidean distance between3Depoints decreases. Since our
algorithm is somehow based on the preservation of the Eratfidistance between a point
and its anchor point, the less it deforms between these pairg, the better the results.

The 3D orientation of a point and its anchor point changes the ivelgtosition of
their projections in the image. There exist a configuratidrese the angle between the
sightlines of the two points is maximum. This is the optimaéntation since it leads to
a closer upper bound, and thus minimizes the reconstruetian.

For both situations, the increasing number of points givesenchance to get an op-
timal situation,i.e. the points and their anchor points are well-oriented andtinface is
not deformed too much between them.



5.2 Influence of the Noise

There are two ways to see the noise on our point primitivealiee one can arbitrarily
choose in which image (the template or the image) the exantgare and in which one
they are noisy. This choice induces differences in our @lyor: the ‘noise in the image’
changes the orientation of the sightlines whereas theéniaishe template’ modifies the
reference distances; between the points. Since 08D points are parameterized along
their sightlines, we choose the second possibility. Theyndistances measured in the
template lead to lower upper bounds if they are under eveduawith the refinement
process on the bounds, this error is propagated to othetspsjoiling the reconstruction
accuracy. To avoid this, we add a constant corrective tetorthe computed distances in
the template:
dij<—dij—|—k. (8)

This term reflects how reliable the distances are. lIts effayigs related to the noise
level, as shown on figure 7. The curve presents a nice minirtuanoand 55% of the
average noise magnitude, giving an empirical way to chdoséerm. This experimental
curve shows also that it is better to over-estimate thisrpatar than to under-estimate it.
However it is still difficult in practice to evaluate the neimagnitude. We ran all our real
experiments with this parameter fixed to one pixel.

The precision of the reconstruction gracefully degradeh tie noise magnitude, as
shown on figure 8. The relation between the noise magnitudéereconstruction error
is nearly linear. For a noise magnitude of 5 pixels, the ay@exror is below 5.5mm.
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Figure 6: Error against num¥igure 7: Influence of theFigure 8: Error against noise
ber of correspondences.  corrective term on the error.magnitude in the image.

6 Experimental Results on Real Data

To evaluate the quality of our reconstructions, we have @eghthem to stereo-basad
reconstructions given by a calibrated pair of cameras. \ferteesults on three objects:
two Ad-paper sheets and a can. The templates and the imagles déformations are
shown in figure 1. The reconstructions are registered totdres-based reconstructions
using a rigid transformation and a scale factor before ewadg the discrepancy.

The shape of the smoothly bent paper sheet is well recoveredibalgorithm and
looks like the stereo-based reconstruction. The recortstruhas been performed using
80 point correspondences. Both are shown in figure 9. The Reanh Squared error is
equal to 1.2mm, meaning that our reconstruction is closé¢ldectereo one.
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(b) (©)
Figure 9: Reconstruction of the deformed paper sheets andaih. (a) Reprojections of
our estimated surfaces. (b) Stereo reconstructions. (cy€zonstructions. (d) Discrep-
ancy map between the reconstructions.

The results we obtained with the creased paper sheet ar@shéigure 9. The recon-
struction has been done using 78 point correspondences3sbape from the stereo
algorithm and from our method are similar. The RMS error isado 3.3mm. It is larger
than the one of the smooth deformation. Actually, the creaszke the deformations less
adapted to our algorithm. However, the reconstruction i@myuwe obtain is still very
satisfaying.

We also used our method to reconstruct the deformed can sindigure 1. For this
example the template is not planar. We successfully reeovidte shape using 72 point
correspondences: the RMS error is 1.6mm. The results avenstio figure 9.

7 Conclusions

The algorithm we presented has been designed for inextersiisfaces imaged by a
perspective camera. It evaluates 8i2 bounds on the points such that the inextensible
constraints can be satisfied. A surface optimization cam fieerun to handle priors such
as surface smoothness or temporal consistency. The regeiltsbtained are convinc-
ing, and show that our algorithm brings a simple and effectiwlution to the monocular
deformable reconstruction problem. Possible extensioclade coupling our algorithm
with a matching process for deformable environments sucfphsThe surface is repre-
sented by 8D warp parameterized by the correspondences. Better resulld possibly
be achieved by tuning these warp parameters through a eatigstion process to select
optimal smoothing parameters.
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