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Abstract

We present a monocular3D reconstruction algorithm for inextensible de-
formable surfaces. It is based on point correspondences between the actual
image and a template. Since the surface is inextensible, itsdeformations are
isometric to the template. We exploit the underlying distance constraints to
recover the3D shape. Though these constraints have already been investi-
gated in the literature, we propose a new way to handle them. As opposed to
previous methods, ours does not require a known initial deformation. Spatial
and temporal smoothness priors are easily incorporated. The reconstruction
can be used for3D augmented reality purposes thanks to a fast implementa-
tion. We report results on synthetic and real data. Some of them are faced to
stereo-based3D reconstructions to demonstrate the efficiency of our method.

1 Introduction

Recovering the3D shape of a deformable surface from a monocular video and a tem-
plate is a challenging problem, illustrated in figure 1 (a). It has been addressed for years
and several algorithms have been proposed. The3D shape seen in the template is usu-
ally known. The general problem is ill-posed due to depth ambiguities [11]. Additional
consistency constraints are thus required. Most commonly,ad hoc constraints are used.
These include spatial and temporal surface smoothness [3, 4, 10] and the low-rank shape
model [2, 3].

The algorithm we propose is dedicated to inextensible surfaces such as those shown in
figure 1 (b,c). It uses point correspondences to compute upper bounds on the points’ depth
thanks to the inextensibility assumption. We show that these bounds directly provide a
decent3D reconstruction of the surface. The algorithm does not require an initial guess
and easily handles additional smoothness constraints.

There are two main differences between our method and the previous ones:

• the inextensibility constraints are treated as hard constraints instead of as a penalty.
It makes the result less empirical because we guarantee to find an inextensible sur-
face. Indeed, smoothing terms that can be used to handle other priors on the surface
do not alter the inextensible property of the solution. Other methods usually mix
different penalties and so generally have to carefully trade off various terms to get
convincing results.



• our algorithm does not need any assumption about the surfacedeformation in the
video, contrarily to other methods such as [10, 13] for whichthe first frame of the
video must be ‘similar’ to the template. It is simple and fast, and can therefore be
used to provide a good initialization to more sophisticatedalgorithms.

The paper is organized as follows. Related work on monoculardeformable recon-
struction is reviewed in§2. The evaluation of upper bounds is presented in§3 and the
surface recovery procedure in§4. An experimental study on the reconstruction error is
proposed in§5. Results on synthetic and real data sets are reported in§6. Eventually, we
give our conclusion and research perspectives in§7.
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Figure 1: Monocular reconstruction of a deformable surface. (a) Problem setup. (b)
Examples of paper sheets: the template (left) and two deformed sheets, a smooth one
(middle) and a creased one (right). (c) Example of a can: template image (left),3D
template (middle), and the input image of the deformed can (right).

2 State of the Art

There are three main components in monocular deformable scene reconstruction: the
general low-rank shape model, the assumption that the object of interest is a surface and
the knowledge of a template. They can be independently used or combined together so as
to handle the monocular reconstruction ambiguities.

The low rank factorization solution to the non rigid shape recovery problem has been
introduced by [2]. The object is represented by a combination of unknown basis shapes.
The algorithm recovers both the basis shapes and the configuration weights for each frame
of the video. The surface hypothesis has recently been incorporated through shape pri-
ors [3]. This method needs the whole video to compute the solution and thus is not suited
for reconstruction on the fly.

Learning approaches have proven efficient to model deformable objects [12, 13]. The
main drawback is the lack of generality when the trained model is too specific. To deal
with videos, temporal consistency is used to smooth the deformations [10]. It requires
to know the initial3D shape. It usually needs a template, and the video is such thatthe
object deformation in the first frame is close to the one in thetemplate.



Methods using only the surface assumption have been proposed. They require strong
priors on the surface. One of the motivations for these methods is to perform paper scan-
ning from images of deformed paper sheets. For this kind of applications, a template is
obviously not available. Under the surface smoothness assumption, [4] solves a system of
differential equations on the page borders to obtain the3D shape. Other approaches such
as [7] use textual information to evaluate the surface parameters. These methods perform
well on smoothly bent paper but cannot be extended to arbitrary inextensible objects.

The method we propose is dedicated to surfaces and uses a template. It assumes the
internal parameters of the camera to be known. It is more flexible than other approaches
since it applies to any inextensible surface such as paper, garment or faces. Only one
frame is needed to compute the reconstruction and there is noneed for a reference image
in the video,i.e. an image for which the3D surface is known in advance.

3 Finding Upper Bounds on the Surface Depth

3.1 Principle

We focus on inextensible deformable objects imaged by projective cameras. A surface
template is assumed to be known. The template is composed of the 3D surface shape
registered with an image of the object. Examples are shown onfigure 1. For the paper
sheet and the piece of garment, the reference shape is a plane, and for the can, it is a
cylinder. Assuming that point correspondences are established between the image of the
deformed object and the template, we show that the region of space containing the object
is bounded. The internal camera parameters allow one to compute the backprojection of
the matched feature points, known as sightlines. Since the camera is projective, the sight-
lines intersect at the camera center and are not parallel to each other. The consequence is
that the distance between two points along the sightlines increases with their depths. The
template gives us the maximal distance between two points (when the real dimensions of
the template are available, the scale ambiguity can be resolved). This is used to compute
the maximal depth of the points.

First of all, correspondences are established between the image and the template using
for instance SIFT [8] or a detection process designed for deformable objects [9]. We
assume that there is no mismatch. The evaluation of the bounds is then done through a
two step algorithm:

• Initialization. (§3.2) A suboptimal solution is computed by using pairwise con-
straints.

• Refinement. (§3.3) An iterative refinement process considers the upper bounds as
a whole and tunes all of them to get a fully compatible set of bounds.

Our notations are given in table 1.

3.2 Initializing the Bounds

The initialization of the bounds is computed pairwise. Two points and the inextensibility
constraint are sufficient to bound the position of these two points along their sightlines.



Notation Meaning

T template

qT
i point i in the template

I image of the deformed object
P camera matrix forI
C camera centre forI

qI
i point i in the image

Si sightline for pointqI
i

vi direction of the sightlineSi

αi j the angle betweenSi andS j

q̄i point i in homogeneous coordinate
‖.‖ vector two norm

di j = ‖qT
i −qT

j ‖

Euclidean distance
betweenqT

i andqT
j

µi depth of the pointi

Qi = Qi(µi) 3D point i

µ̂i true depth of the pointi

Q̂i true3D point i

µ̃i reconstructed depth of the pointi

Q̃i reconstructed3D point i

i⋆
indice of the point constraining

the depth of pointi
µ̆i = µ̆ii⋆ maximal depth of the pointi

Q̆i deeper3D point i

Table 1: Our notations for this paper.

For n correspondences, it givesn− 1 bounds for each point. Only the most restrictive
bound (i.e. the tightest one) is kept as the initial bound.

The sightlines are computed in the image of the deformed object I , (details can be
found in e.g. [6]). The camera matrixP = [M|p4] is composed of a(3× 3) matrix M
and a(3×1) vectorp4. The camera center isC = −M−1p4. The vectorvi orienting the
sightline passing trough the pointqI

i is:

vi =
M−1q̄I

i

‖M−1q̄I
i‖

.

A 3D point Qi on the sightlineSi can be expressed as:

Qi(µi) = µi vi +C.

The depthµi is the distance of the point to the camera center. The cheirality property
states thatµi is positive [5].

As figure 2 illustrates, the inextensibility of the object gives the following constraint
between the points: whatever the actual deformation, the Euclidean distance between two
3D points is lower or equal to the Euclidean distance between them on the template:

‖Q̂i − Q̂ j‖ ≤ ‖q
T
i −qT

j ‖= di j.

qT
i

qT
j

Q̂i

Q̂ j

di j

‖Q̂i− Q̂ j‖

Template

isometric deformation

3D surface

Figure 2: Inextensible object deformation. The template isdeformed to the3D surface by
an unknown isometric transformation. The dashed line is thegeodesic curve between̂Qi

andQ̂ j, it has the same lengthdi j as the geodesic distance in the template. The Euclidean
distance between the3D points is shorter due to the deformation.



As figure 3 illustrates, the coordinate frame system can be choosen such that the points
Qi andQ j are parameterized by:

Qi =

(

µi

0

)

Q j =

(

µ j cos(αi j)
µ j sin(αi j)

)

.

Givenµi, the two pointsQ j such that‖Qi−Q j‖ equalsdi j are given by:

µ j (µi) = µi cos(αi j)±
√

d2
i j−µ2

i sin2(αi j). (1)

So there exists a real solution if and only if:

µi ≤

√

d2
i j

sin2(αi j)
.

The boundµi is then computed from the whole set of correspondences (without loss of
generality, we assumeαi j ≤

π
2 which holds with most of the common lenses):

µ̆i = µ̆ii⋆ = min
j = 1..n

j 6= i

(

di j

sin(αi j)

)

.

The point that induces the minimum upper bound has indexi⋆. We refer to this pointi⋆

as theanchor point of point i. The notationi→ i⋆ reads ‘pointi⋆ constraints the upper
bound of pointi’. One can remark that this property is not symmetric:i→ j does not
imply j→ i. It is one of the reasons why this initialization is suboptimal, as explained in
the next paragraph.
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Figure 3: Point parameterization along the
sightlines.
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Figure 4: Bound refinement. Initial bound
µ̆ki is refined toµ̆ ′ki by the process.

3.3 Refining the Bounds

The set of initial bounds is not optimal for the whole set of points. A suboptimal situation
is represented on figure 4. We consider three points, and their pairwise computed bounds.
The bounds for the pointsQ j andQk are given by the pointQi. The pointsQ j andQk are
used to compute two bounds for the pointQi. Only the most restrictive one is kepti.e.
µ̆i j. It means that the pointQi can not be deeper than̆µi j. This gives the new bound̆µ ′ik
for the pointQk.



We propose an iterative implementation of the bound refinement. During one itera-
tion, for each point, the upper bounds of the other points induced by the actual point are
computed. If they are smaller than their actual bounds, these are updated. The iterations
stop when there is no change during one iteration, meaning that the bounds are coherent.

To derive the update rule, we refer to equation 1 that links the depth of two points such
that the distance between the points is equal to their distance measured in the template,
i.e. the maximal distance between the two points. We study the upper bound on pointj
induced by the pointi, it is thus given by the largest value ofµ j:

µ j (µi) = µi cos(αi j)+
√

d2
i j−µ2

i sin2(αi j). (2)

As figure 5 illustrates, this function has a global maximum:

µmax
i =

di j
tan(αi j)

µ j(µmax
i ) =

di j
sin(αi j)

(3)

C
αi j
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Figure 5: Relationship between the depth of the points underan inextensibility constraint.
(left) The parameterization. (left) Graph of the function giving depth of pointj against
depth of pointi when the distance between pointsi and j is equal todi j.

The upper bound for pointj with respect to pointi is thus:

µ̆ ji =







µi cos(αi j)+
√

d2
i j−µ2

i sin2(αi j) if µ̆i ≤
di j

tan(αi j)
di j

sin(αi j)
otherwise,

and the formula to update the bound is the following:

µ̆ j = min (µ̆ j j⋆ , µ̆ ji) .

In our experiments, this process converges in 3 or 4 iterations. The outputs of the
bounding process are the upper bound and the anchor point of each point. Both are used
to recover the surface, as explained below.

4 Recovering the Surface

Our surface recovery procedure has two main steps:

• Reconstruction of sparse3D points. (§4.1) The3D points are computed using the
upper bounds and the distances to their anchor points,

• Reconstruction of a continuous surface.(§4.2) The surface is expressed as an
interpolation of these points, possibly using surface priors.



4.1 Finding a Sparse Set of3D Points

The set of bounds gives the maximal depth of the points. For a fast surface reconstruction
algorithm, one can directly use the upper bounds as points onthe surface:

µ̃i = µ̆i. (4)

In practice, the error due to this approximation is small, asshown on figures 6, 7 and 8.
However, this is not satisfying from the inextensible pointof view. Indeed, the dis-

tance between two upper bounds‖Q(µ̆i)−Q(µ̆i⋆)‖ can be larger than their distance in
the templatedii⋆ . For instance, when there is a symmetry between a point and its anchor
point: i→ i⋆ andi⋆→ i, the distance is equal todii⋆ ·cos−1

(

1
2αii⋆

)

. To get a more consis-
tent surface, we propose an optimization scheme to enforce the length equality between
a point and its anchor point. Since the upper bounds give decent results, the points depth
such that these length equalities are satisfied are searchednear the upper bounds.

The optimization can also handle other priors on the points.For instance, with a first
order temporal smoother, it has the following form:

µ̃ = argmin
µ

(

n

∑
i=1

(µ̆i−µi)
2 + γ (µi(t)−µi(t−1))2

)

subject to ‖Qi−Qi⋆‖= dii⋆ for i = 1..n ,

(5)

with µ the points depth vector,µi(t) the depth of thei−th point for the framet andγ
the balancing weight. This is a linear least squares problemunder non-linear quadratic
constraints, solved with the Levenberg-Marquardt algorithm [6] (the initial solution is
given by equation (4)).

Table 2 shows the reconstruction time with and without the optimization process. The
values given here are measured on our not optimal Matlab implementation.

number of points 50 100 250
reconstruction time without optimisation (ms)13 35 176

reconstruction time with optimisation (ms) 82 143 444

Table 2: Reconstruction time against the number of points.

4.2 Interpolating to a Continuous Surface

The reconstructed3D points are eventually treated as control points of a mappingΓ from
the template to the3D space. This allows us to represent the surface by transferring a
regular mesh designed on the template. In practice the mapping we choose is composed
of three2D to 1D Thin-Plate-Splines. These have proven efficient in the representation
of deformable objects [1]. Getting a continuous surface makes it possible to deal with
surface priors. At this stage, another optimization process can be used to include these
priors. They are written as penalty terms of a cost function that is minimized with respect
to the depth of the control points. For priors on the temporaland geometric smoothness
of the surface, one can write this optimization as:



µ̃ = argmin
µ

n

∑
i=1

(µ̆i−µi)
2 +λ

m

∑
i=1

∥

∥

∥

∥

∂ 2Γ
∂q2 (qi)

∥

∥

∥

∥

2

+ γ ‖qi(t)−qi(t−1)‖2

subject to ‖Qi−Qi⋆‖= dii⋆ for i = 1..n ,

(6)

with q a vertex of the mesh,m the number of vertices of the mesh andλ , γ the balanc-
ing weights controlling the trade-off between the distanceto the bounds, the geometric
smoothness and the temporal one. Fixing the deformation centers of the Thin-Plate-
Splines in the template, problem (6) shows to be linear leastsquares under non-linear
quadratic constaints. It can be similarly solved as problem(5).

5 Error Analysis

The quality of the reconstruction depends on the number of correspondences and the
noise in the images. Though the latter has been ignored in thetheoretical derivation, we
show how to deal with it in the reconstruction algorithm. Theexperiments to assess the
reconstruction error against the number of points or the noise magnitude are performed on
synthetic surfaces. They are modeled by developable surfaces, which are isometric to the
plane. In practice we use a square shape width 200mm. The feature points are randomly
drawn on the shape. The reconstruction error for thei−th feature point is defined as:

e(i) = ‖Q̃i− Q̂i‖. (7)

5.1 Number of Points

Figure 6 shows the average reconstruction error against thenumber of correspondences.
The dashed curve represents the fast implementation error (equation (4)) and the full one
corresponds to the optimized points under length constraints only (equation (5)). As ex-
pected, the error decreases thanks to the point optimization. The curves are decreasing:
the higher the number of points, the lower the error. The accuracy of the reconstruction
is related to two situations: the amount of deformation between the points and the orien-
tation of the points with respect to the camera. Their respective influences are explained
below. Due to lack of space, we do not show any quantitative results.

While deforming, the Euclidean distance between the3D points decreases. Since our
algorithm is somehow based on the preservation of the Euclidean distance between a point
and its anchor point, the less it deforms between these pointpairs, the better the results.

The 3D orientation of a point and its anchor point changes the relative position of
their projections in the image. There exist a configuration where the angle between the
sightlines of the two points is maximum. This is the optimal orientation since it leads to
a closer upper bound, and thus minimizes the reconstructionerror.

For both situations, the increasing number of points gives more chance to get an op-
timal situation,i.e. the points and their anchor points are well-oriented and thesurface is
not deformed too much between them.



5.2 Influence of the Noise

There are two ways to see the noise on our point primitives because one can arbitrarily
choose in which image (the template or the image) the exact points are and in which one
they are noisy. This choice induces differences in our algorithm: the ‘noise in the image’
changes the orientation of the sightlines whereas the ‘noise in the template’ modifies the
reference distancesdi j between the points. Since our3D points are parameterized along
their sightlines, we choose the second possibility. The noisy distances measured in the
template lead to lower upper bounds if they are under evaluated. With the refinement
process on the bounds, this error is propagated to other points, spoiling the reconstruction
accuracy. To avoid this, we add a constant corrective termk to the computed distances in
the template:

di j←− di j + k. (8)

This term reflects how reliable the distances are. Its efficiency is related to the noise
level, as shown on figure 7. The curve presents a nice minimum at around 55% of the
average noise magnitude, giving an empirical way to choose the term. This experimental
curve shows also that it is better to over-estimate this parameter than to under-estimate it.
However it is still difficult in practice to evaluate the noise magnitude. We ran all our real
experiments with this parameter fixed to one pixel.

The precision of the reconstruction gracefully degrades with the noise magnitude, as
shown on figure 8. The relation between the noise magnitude and the reconstruction error
is nearly linear. For a noise magnitude of 5 pixels, the average error is below 5.5mm.

50 100 150 200 250 300
2.6

2.8

3

3.2

3.4

3.6

3.8

4

number of point correspondances

av
er

ag
e 

er
ro

r 
(m

m
)

 

 

fast implementation
point optimization

Figure 6: Error against num-
ber of correspondences.
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Figure 7: Influence of the
corrective term on the error.

0 1 2 3 4 5
0

1

2

3

4

5

6

noise magnitude (pixels)

av
er

ag
e 

er
ro

r 
(m

m
)

 

 

fast implementation
point optimization

Figure 8: Error against noise
magnitude in the image.

6 Experimental Results on Real Data

To evaluate the quality of our reconstructions, we have compared them to stereo-based3D
reconstructions given by a calibrated pair of cameras. We report results on three objects:
two A4-paper sheets and a can. The templates and the images ofthe deformations are
shown in figure 1. The reconstructions are registered to the stereo-based reconstructions
using a rigid transformation and a scale factor before evaluating the discrepancy.

The shape of the smoothly bent paper sheet is well recovered by our algorithm and
looks like the stereo-based reconstruction. The reconstruction has been performed using
80 point correspondences. Both are shown in figure 9. The RootMean Squared error is
equal to 1.2mm, meaning that our reconstruction is closed tothe stereo one.



(a) (b) (c) (d)

Figure 9: Reconstruction of the deformed paper sheets and the can. (a) Reprojections of
our estimated surfaces. (b) Stereo reconstructions. (c) Our reconstructions. (d) Discrep-
ancy map between the reconstructions.

The results we obtained with the creased paper sheet are shown in figure 9. The recon-
struction has been done using 78 point correspondences. The3D shape from the stereo
algorithm and from our method are similar. The RMS error is equal to 3.3mm. It is larger
than the one of the smooth deformation. Actually, the creases make the deformations less
adapted to our algorithm. However, the reconstruction accuracy we obtain is still very
satisfaying.

We also used our method to reconstruct the deformed can shownin figure 1. For this
example the template is not planar. We successfully recovered the shape using 72 point
correspondences: the RMS error is 1.6mm. The results are shown on figure 9.

7 Conclusions

The algorithm we presented has been designed for inextensible surfaces imaged by a
perspective camera. It evaluates the3D bounds on the points such that the inextensible
constraints can be satisfied. A surface optimization can then be run to handle priors such
as surface smoothness or temporal consistency. The resultswe obtained are convinc-
ing, and show that our algorithm brings a simple and effective solution to the monocular
deformable reconstruction problem. Possible extensions include coupling our algorithm
with a matching process for deformable environments such as[9]. The surface is repre-
sented by a3D warp parameterized by the correspondences. Better resultscould possibly
be achieved by tuning these warp parameters through a cross-validation process to select
optimal smoothing parameters.
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