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Abstract. The “discriminative direction” has been proven useful to re-
veal the subtle difference between two anatomical shape classes. When a
shape moves along this direction, its deformation will best manifest the
class difference detected by a kernel classifier. However, we observe that
such a direction cannot maintain a shape’s “anatomical” correctness, in-
troducing spurious difference. To overcome this drawback, we develop
a regularized discriminative direction by requiring a shape to conform
to its population distribution when it deforms along the discriminative
direction. Instead of iterative optimization, an analytic solution is pro-
vided to directly work out this direction. Experimental study shows its
superior performance in detecting and localizing the difference of hip-
pocampal shapes for sex. The result is supported by other independent
research in the same domain.

1 Introduction

It is critical to identify and understand the difference between two anatomical
shape classes, such as normal/abnormal or male/female hippocampi. To differ-
entiate linearly non-separable classes, kernel classifiers, such as SVMs, have been
widely used. The class difference is identified in a high dimensional feature space
F induced by a kernel function. While such difference is mathematically mean-
ingful, it needs to be projected back to the shape descriptor space R

d to be
explained in an anatomically meaningful way. For this purpose, Golland et al.
proposed a “discriminative direction” method to isolate and visualize the subtle
class difference in the shape descriptor space ([1, 2]). As in Figure 1, when a
shape deforms along the discriminative direction towards the opposite class, the
movement of its image in F will follow the direction w which best discriminates
the two classes in F . Hence the deformation can localize the class difference by
ignoring the within-class variability. This method has been used to analyze the
hippocampal shape difference between normal controls and patients [2]. In our
previous work [3] we proposed a different way to calculate this discriminative
direction and obtained the result similar to that of Golland’s method.
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Fig. 1. Discriminative direction for a point, x. A nonlinear mapping Φ maps the shape
descriptor space R

d onto a feature space F , where the two classes (gray and white dots)
become linearly separable. The w is the normal of a hyperplane found in F to best
discriminate the two classes. Move Φ(x) along w to a new position Φ(z1), and project
Φ(z1) back to R

d as z1. The vector z1−x is the “discriminative direction” of x. Similar
results can be obtained for Φ(z2) and Φ(z3).

However, we observed that simply deforming along this discriminative di-
rection may introduce spurious shape differences. This is because the deformed
shapes deviate from the underlying distribution of a shape class and untrue
shapes are generated. That is, the intrinsic characteristic of a shape which makes
it belong to a particular shape class (called “anatomical correctness” in this pa-
per) is no longer maintained. In such cases, comparing the shapes before and
after the deformation will lead to artifact differences, as shown later in the ex-
periments. To remedy this, we argue that the shape distribution should not be
ignored because (i) the shapes may only reside in a sub-dimensional manifold
though the shape descriptor space has high dimensionality, and (ii) the defor-
mation of an organ may be spatially restricted by its surroundings.

Our contributions are: (i) We identify the cause of the spurious difference as
that deforming along the discriminative direction ignores the underlying shape
distribution; (ii) We propose a regularized discriminative direction by requiring
a shape to conform to the distribution when it deforms, and this is formulated
as a penalized optimization problem; (iii) We derive an analytical solution for
this optimization problem. It avoids performing optimization in a possibly high-
dimensional shape descriptor space and directly works out the direction; (iv)
After verifying our approach with controlled experiments, we analyze the shape
difference of hippocampi for sex and compare it with that using the approach
in [1]. We found our result agrees better with a published work about sex differ-
ence in hippocampal shapes [4] studied by a different approach.

2 Review of discriminative direction methods

Let D = {x1, · · · ,xn} (xi ∈ R
d) be a set of n training samples from two classes.

A kernel classifier implicitly performs a mapping Φ(·) from the input space R
d

to the feature space F . An optimal separating hyperplane is obtained in F as
f(x) = w⊤Φ(x)+b where w is the normal and b is a bias. The vector w indicates
the direction that best discriminates the two classes. Ideally Φ(x) should move



along w strictly to reflect only the class difference. However there is a dilemma.
If Φ(x) moves strictly along w, the resulting images in F might not have a pre-
image in R

d. On the other hand, by enforcing that the pre-image of Φ(x) does
exist, Φ(x) cannot move strictly along w. Two different solutions to this problem
are given in [1, 2] and in our previous paper [3]. In [1, 2], Golland’s method
searched for the direction dx in R

d under the constraint ‖dx‖ = ǫ. When x moves
along dx, the divergence of the displacement dz = Φ(x+dx)−Φ(x) from w will
be minimized in F . Note that the constraint of ‖dx‖ = ǫ allows dx to be searched
identically along all directions in R

d. Clearly the underlying distribution of x is
not taken into account. From a different perspective, our previous work makes
the movement of Φ(x) strictly follow w, and approximates the corresponding pre-
images in R

d by minimizing the reconstruction error ρ(z) =‖ Φ(x)+sw−Φ(z) ‖2.
Here z ∈ R

d denotes the estimated pre-image and s denotes the step of movement
in F . Our previous work also allows z to freely move in all directions in R

d.

3 Our approach - Regularized Discriminative Direction

The key idea of our new approach is that, when seeking for the pre-image of a
point in F , the possible solutions are restricted into a certain region rather than
the whole R

d as in [1–3]. Without loss of generality, assume that w has been
normalized as a unit vector. Let x̂ denote a particular shape to be deformed.
Moving Φ(x̂) along w in F for a step s arrives at a new position Φ(x̂) + sw.
Let z be the pre-image of Φ(x̂) + sw, representing the new shape of x̂ after
deformation. The estimation of z is elaborated below.

We argue that to ensure “anatomical correctness”, the pre-image z should
comply with the probability distribution of x. For example, if x resides in a
low-dimensional manifold, z should reside in it too. Let ǫ(x̂) = ‖x − x̂‖ ≤ ǫ0
be a neighborhood of x̂ and p(x| x ∈ ǫ(x̂)) be an empirical probability density
function of x in ǫ(x̂) estimated from the training shapes. We model p(x| x ∈ ǫ(x̂))
as a normal distribution 1 with mean µ = x̂ and covariance matrix Σ. For an
RBF kernel k(xi,xj) = exp(−‖xi − xj‖

2/2σ2), moving Φ(x) with a sufficiently
small step s in F can always ensure that z stays in ǫ(x̂). Hence we require that
p(z) should be large enough, or equally (z−µ)⊤Σ−1(z−µ) be adequately small,
provided that Σ has full rank. In this way, the optimal z is defined as

z∗ = arg min
z∈Rd

ρ(z) + 2η · (z − µ)⊤Σ−1(z − µ) (1)

where ρ(z) is defined in Section 2, and η (η ≥ 0) is the regularization parameter.
When η is 0, this problem reduces to that in our previous work in [3]. According
to our observation, our algorithm is insensitive to η in a reasonably large range.

Consider the case when the shapes reside in a sub-dimensional manifold,
causing Σ to be rank-deficient. Decompose Σ as Σ = ΓΛΓ⊤, where each column

1 Using a more complicated model may be dangerous in the sense that its parameters
may not be reliably estimated because the number of training samples in ǫ(x̂) is
quite limited in practice.



of Γ is an eigenvector and Λ is diag{λ1, · · · , λk, 0, · · · , 0}. The λi is the i-th
positive eigenvalue and k is the rank of Σ. An optimal solution z⋆ should satisfy:

z⋆ ∈ {z|(Γ⊤(z − µ))i = 0 for i = k + 1, · · · , d} = {z|z = µ + Γ̂Λ̂
1

2

u} (2)

where u ∈ R
k, the Λ̂ is diag{λ1, · · · , λk}, and Γ̂ contains the corresponding

eigenvectors. This optimization problem is explained as follows. Let M be the
manifold where the shapes reside, and Tµ(M) be a tangent plane of M at µ.

This tangent plane is spanned by the eigenvectors in Γ̂. Since a manifold can be
approximated locally by its tangent plane, the result in (2) can be thought of
as confining the solution z to the manifold M. Moreover noting that the shapes
do not necessarily isometrically distribute in Tµ(M), our regularized method

naturally incorporates such distribution information via the Λ̂
1

2 in (2). This
makes it achieve better performance than merely projecting z which maximizes
ρ(z) onto the tangent plane 2, as shown later in experiments. Finally, the problem
in (1) can be simplified by optimizing u as:

u⋆ = arg min
u∈Rk

ρ(µ + Γ̂Λ̂
1

2

u) + 2η · u⊤u (3)

and z∗ is computed by (2). This greatly reduces the number of parameters to
estimate compared with directly optimizing over z. Iterative optimization meth-
ods can be used to estimate u. However, when k is large, optimizing u is still
cumbersome. Below we propose a new differential equation based solution so
that for a given step s, first u⋆ and then z⋆ can be directly worked out.

3.1 An analytic solution to the pre-image z⋆

The problem in (3) is equivalent to maximizing 〈Φ(x̂) + sw, Φ(µ + Γ̂Λ̂
1

2

u)〉− η ·
u⊤u provided 〈Φ(x), Φ(x)〉 is a constant, such as for an RBF kernel. Noting that
w lies in a space spanned by the training samples: w =

∑

i αiΦ(xi), αi ∈ R, we
maximize the expression below. Note that k indicates the kernel function.

f(s,u) = 〈Φ(x̂) + sw, Φ(µ + Γ̂Λ̂
1

2 u)〉 − η · u⊤
u

= k(x̂, µ + Γ̂Λ̂
1

2 u) + s
X

i

αik(xi, µ + Γ̂Λ̂
1

2 u) − η · u⊤
u

, g(u) + s·h(u) − η · l(u).

For each given s, there will be a u∗ which maximizes f(s,u). This optimization
problem is not convex and has multiple local maxima. We propose an approach
which does not directly solve the optimization over u for a given s. Instead it
makes use of the fact that (0, 0) is a global maximum of f(s,u) and traces the
change of the global maximum with respect to s. As long as u∗(s) is continuous
and differentiable, our solution remains the global or at least local maximum.

2 This approach is called “tangent plane projection” later in our experiments.



The change of u∗ with respect to s can be considered as a curve u∗(s) in R
k para-

metrized by s, passing through (0,0). The curve can be traced out by computing

its tangent du∗

ds . We approximate f by a second order Taylor expansion

f(s,u) ≈g(u0) + Jg(u − u0) +
1

2
(u − u0)

⊤
Hg(u − u0)

+ sh(u0) + sJh(u − u0) + s
1

2
(u − u0)

⊤
Hh(u − u0)

− ηl(u0) − ηJl(u − u0) − η
1

2
(u − u0)

⊤
Hl(u − u0), (4)

where J and H are the Jacobian and Hessian of the functions g, h and l with
respect to u, evaluated at u0. Here u0 maximizes f(s,u) when s = s0. The first
order derivative of f with respect to u vanishes at u0 and other extrema u∗.

Since ∂f
∂u

∣

∣

∣

u0

= 0, we have s0Jh = −Jg + ηJl. Combining it in ∂f
∂u

∣

∣

∣

u∗

= 0 gives

du∗

ds

���
s=s0

= −(Hg + s0Hh − ηHl)
−1

Jh. (5)

The curve of u∗(s) can be therefore traced out by

u
∗(t) = u

∗(t−1) +
du∗(t−1)

ds

���
s=0

(st − st−1); z
∗(t) = µ

(t−1) + Γ̂
(t−1)

[Λ̂
(t−1)

]
1

2 u
∗(t)

where u∗(0) = 0, Γ̂
(t−1)

and Λ̂
(t−1)

are estimated from z∗(t−1), and z∗(0) = x̂. A
four-stage Runge Kutta method is integrated to suppress the lower-order error
terms of this ordinary differential equation. Our algorithm is summarized below.

� Algorithm 1

1. z0 ≡ x̂, s0 ≡ 0, u0 ≡ 0

2. Estimate Γ̂ and Λ̂ at z0; Evaluate Jh, Hg, Hh at u0 with an RBF kernel.

3. Compute u and the new position z using a four-stage Runge Kutta method.

(1) u1 ←− u0, su1 ←− s0, compute t1 = du
∗

ds
|s=su1,u=u0

.

(2) u2 ←− u1 + t1∆s/2, su2 ←− s0 + ∆s/2, compute t2 = du
∗

ds
|s=su2,u=u0

(3) u3 ←− u1 + t2∆s/2, su3 ←− s0 + ∆s/2, compute t3 = du
∗

ds
|s=su3,u=u0

(4) u4 ←− u1 + t3∆s/2, su4 ←− s0 + ∆s, compute t4 = du
∗

ds
|s=su4,u=u0

(5) Compute u = u0 + ∆s× (1/6t1 + 1/3t2 + 1/3t3 + 1/6t4)

(6) Compute the new position z: z = µ + Γ̂Λ̂
1

2 u0

4. x̂←− z

5. Repeat step 1 ∼ 4 to get the pre-images of the movement along w in F .

4 Experiment Result

Our main purpose is to use the regularized discriminative direction to localize
the class difference for human hippocampal shapes between sexes. This remains
an open problem and lacks ground truth. Hence, first we have to perform a
sanity check on our proposed method with data for which we know what kind
of deformations to expect, and compare it with Golland’s method.



The sanity check is taken on the USPS handwritten digit image database
and the UMIST facial image database [5]. Each image is represented by a high-
dimensional feature vector comprising all pixels, analogic to the landmark rep-
resentation of shapes. The images have been known to only reside in a low-
dimensional manifold [6]. We aim to discriminate (i) the shapes of two groups
of digits, and (ii) two classes of human faces (8 individuals): left-side view and
right-side view. In experiments, a particular feature vector is moved from one
class towards the other along the discriminative direction. Note that the result-
ing generated images do not exist in the database. Fig. 2 is the result on USPS.
As shown, Golland’s method introduces much more noise (spurious difference),
while our regularized method well localizes the discrimination, adding the min-
imum necessary shape changes. The advantages of the regularized method are
more obvious on UMIST shown in Fig. 3. During deformation, it only introduces
the class difference (the change of view), leaving the individual variability (the
owner of the face) unchanged (Fig. 3 (c)). Most importantly, the newly gen-
erated images remain faces. However Golland’s method cannot guarantee this
(Fig. 3 (a)), and the authentic difference is overwhelmed by noise. Fig. 3 (b)
shows the result obtained by the “tangent plane projection” (see footnote 2).
It is better than Golland’s method, but still worse than the regularized method
(see the ghost around the glasses). This demonstrates the benefit of using Λ̂ in
the regularized method.

(a) (b)

Fig. 2. Sanity check on the USPS data by (a) Golland’s method and (b) the regularized
method. The top row shows the deformation from digit 5 to digit 8. The bottom row
shows the deformation from digit 0 to digit 9.

After the sanity check, we analyze the class difference of hippocampal shapes
for sex. This is part of a longitudinal study in mental health research in Aus-
tralian National University. Hand-traced left hippocampi of healthy individuals
is used, which comprise 219 females and 181 males in an age span of 40-44. Each
shape is normalized with respect to volume and represented by 642 landmarks
generated by spherical harmonics (SPHARM) [7] with degree 5. An SVM clas-
sifier with the RBF kernel is employed for classification. The localized discrimi-
nation is shown in Fig. 4. These hippocampi belong to 6 individuals (a column
for each one), 3 females and 3 males. The color code indicates the nature of de-
formation that an actual hippocampal shape undergoes to become a shape akin
to the opposite class. Take the leftmost hippocampus in Fig. 4 for example. To
make this female hippocampus to be male-like, the blue areas should shrink. As
observed, the shape changes are not uniform over the whole hippocampus: small



(a)

(b)

(c)

Fig. 3. Sanity check on UMIST data. (a) Golland’s method, (b) the tangent plane
projection (see footnote 3), (c) the regularized method. During the deformation, a right-
side view face (the leftmost image) gradually turns towards the left (keeping adding
class difference) while remaining a face image of the same person (filtering individual
variability) in (b) and (c). However Golland’s method in (a) cannot guarantee this.

changes (either compression or expansion, in green color) occur on most of the
shape, while sharp changes are localized on the head and the tail. Comparing
the deformations in both ways (female to male and vice versa), the regular-
ized method consistently captures the compression in the lateral parts at the
head and the tail for male hippocampi. Compared with Golland’s method which
shows a different pattern (a compression next to an expansion in the head), our
results are also more compact, with changes concentrated in fewer regions but
at greater magnitude. Interestingly, the work in [4] has reported findings similar
to that of our method. In [4], the hippocampal shapes are represented by me-
dial models, totally different from our SPHARM-based shape descriptors. Shape
difference for sex is observed and found that it is mostly due to the volume loss
in males with age in young adulthood in the lateral areas of the hippocampus
head and tail, which is not observed for females. This finding supports that of
our regularized method.

5 Conclusion

Our research demonstrates the importance and benefit of incorporating the shape
distribution in identifying the essential difference between two shape classes.
The proposed regularized discriminative direction is applied to studying the sex
difference in hippocampal shapes, localizing the key difference at the lateral parts
of the head and tail. More applications are expected in our future work.
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