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Abstract

A well-known theoretical result for motion estimation us-
ing the generalized camera model is that 17 correspond-
ing image rays can be used to solve linearly for the motion
of a generalized camera. However, this paper shows that
for many common configurations of the generalized camera
models (e.g., multi-camera rig, catadioptric camera etc.),
such a simple 17-point algorithm does not exist, due to some
previously overlooked ambiguities.

We further discover that, despite the above ambigui-
ties, we are still able to solve the motion estimation prob-
lem effectively by a new algorithm proposed in this paper.
Our algorithm is essentially linear, easy to implement, and
the computational efficiency is very high. Experiments on
both real and simulated data show that the new algorithm
achieves reasonably high accuracy as well.

1. Introduction

In the study of “using many cameras as one” for motion
estimation [13], Pless has derived the generalized epipo-
lar constraint (GEC) expressed in terms of the generalized
essential matrix which is a 6 × 6 matrix capturing the 6
degrees-of-freedom motion of the multi-camera rig system
. In his original derivation, the key idea is to use the Gen-
eralized Camera Model (GCM) to replace the image pixels
by a set of unconstrained image rays, each described by a
Plücker line vector L.

As an analogy to the conventional epipolar equation for a
pinhole cameras, the GEC is also written as a homogeneous
6× 6 matrix equation, giving

L′�
[
E R
R 0

]
L = 0, (1)

where E = [t]×R is similar to the conventional essential ma-
trix, and L and L′ are two Plücker line vectors representing
two corresponding rays. One substantial difference between

this GEC and the conventional epipolar equation is that all
6 degrees of freedom (of camera motion) can be recovered
by solving the GEC.

This GEC also suggests a 17-point (or 17-ray) algorithm
that could possibly be used to solve the problem. Because
there are in total 18 unknowns, one may think to solve for
E and R linearly by using 17 pair of corresponding image
rays.

Specifically, the GEC can be re-written as AX = 0,
where A is an N × 18 equation matrix and X is the vector
of unknowns made up of the entries of E and R. The
usual way of solving this system is to take the Singular
Value Decomposition (SVD) of A = UDV�, in which case
the solution for X is the last column of the matrix V,
corresponding to the smallest singular value ([6]). We refer
to this as the standard SVD algorithm. This conclusion
has been explicitly claimed by many other authors as well
[17, 10, 14, 11].

Somewhat surprisingly, no one has actually given numer-
ical results for such an SVD algorithm in a real imaging
situation. The original paper of Pless gives no account of
numerical tests on the 17-point algorithm.

It is shown in the present paper that in fact the standard
SVD algorithm does not work at all in many common sce-
narios involving the generalized camera model. For exam-
ple, we have found it is not possible to apply the standard
SVD algorithm to non-overlapping multi-camera rigs in a
straight-forward way. The reason is very simple, for these
common camera configurations the rank of the above co-
efficient matrix A is less than 17 (under noise-free condi-
tion). In other words, there are extra ambiguities (degen-
eracies/singularities) in the linear equation system, which
lead to a whole family of solutions.

In this paper, we characterize three typical general-
ized camera configurations—locally-central, axial and
stereo—where we prove that the ranks are 16, 14 and 14,
respectively.



Figure 1. This paper studies the motion estimation problem us-
ing a Generalized Camera. Here illustrates 3 typical instances
of the generalized camera. The left one is a traditional pinhole
camera. The central one shows a generalized camera model con-
taining a set of image rays or ‘raxels’ ([5]). The right one is a
non-overlapping multi-camera rig.

Yet, more remarkably, we show that even though the
ranks are deficient, it is still possible to solve for the camera
motion linearly and uniquely (without suffering from the
degeneracy). Specifically, we show the following results.

1. For motion of a general multi-camera rig, where image
points are not matched from one camera to another, the equa-
tion matrix A will have rank 16. Consequently, there exists a
2-parameter family of solutions for (E, R) to the GEC equa-
tions.

2. For an axial camera, defined by the property that all imaging
rays intersect a single line the equation matrix has rank 16,
and hence a 2-parameter family exists for (E, R).

3. For a multi-camera rig with all the cameras mounted in a
straight line, the rank will be 14. Thus, there exists a 4-
parameter family of solutions. This includes the popular case
of stereo (binocular) head. This setup is a mixture of the two
cases enumerated above.

4. Remarkably, we show that: despite the rank deficiency of
the equation matrix, it is still possible to solve the E part
uniquely by our new linear algorithm. From this E we may
further estimate the rotation R and translation t, as well as
the scale of the motion.

The above results may seem paradoxical given the exis-
tence of multi-dimensional families for (E, R), but it will be
made clear in the rest of this paper. The key observation is
that all ambiguity lies only in the estimate of R but not in
the estimate of E, provided simple conditions are met.

Alternation. Although our linear algorithm for comput-
ing the motion gives generally favorable performance, the
result may be further improved.

For this purpose, we propose an iterative scheme via al-
ternation between solving for the rotation R and the transla-
tion t. Each iteration is a simple solution of linear equations
of low dimension. This scheme seems straightforward and
easy to implement, yet we point out critical pitfalls, and
suggest remedy accordingly.

2. Previous work

Using non-traditional non-central cameras for motion es-
timation has recently attracted much attention from both
the research community and practitioners. The most com-
mon case is that of a set of many cameras, often with non-
overlapping views, attached to a vehicle. This is particularly
relevant to recent application to urban mapping ([2]).

Pless predicted that it is possible to solve the equation
system linearly using 17 corresponding rays (hereafter we
will refer to this algorithm as the 17-point algorithm). In his
paper, he however hinted that the generalized epipolar equa-
tions may accept multiple non-unique solutions. In other
words, there might be ambiguities for certain cases. This
important issue remains however unexplored in that paper.

Later on, Sturm unified the theory of multi-view geom-
etry for generalized camera models [17][18]. He also men-
tioned that in order to solve the non-central generalized
epipolar equations 17 points are necessary. Again, no ex-
periment was provided.

This is somewhat surprising, because, by contrast, many
more nonlinear algorithms (and results) have been reported
for this problem. Molana and Geyer used a nonlinear man-
ifold optimization approach to solve the generalized mo-
tion estimation problem [10]. Lhuillier proposed a method
based on iterative bundle adjustment minimizing a new an-
gular error [7]. Papers [16] and [1] used Groebner basis
techniques to derive a polynomial solver for the minimal
case of the problem. A recent paper [11] confirmed the
existence of ambiguity, and provided a non-linear incre-
mental bundle adjustment solution to it. Schweighofer and
Pinz suggested a globally-convergent nonlinear iterative al-
gorithm [14]. They derived an object-space cost function
and used 3D triangulation as the intermediate goal of mini-
mization. It is well known that those non-linear algorithms
often require proper initialization. This made us even curi-
ous, as none of the above nonlinear algorithms actually used
the linear 17-point algorithm for initialization.

There are other related research efforts on motion esti-
mation using non-traditional cameras. Frahm, Koser and
Koch [4] proposed a motion estimation algorithm using
multi-camera rigs. Dellaert and Tariq [19] designed an em-
bedded (miniature) multi-camera rig for helping people suf-
fering from visual impairment. Neumann and Fermuller et
al. solved motion estimation from optical flow using poly-
dioptric camera [12]. Vidal et al used multiple panoramic
images for estimating egomotion [15]. Pajdla et al derived
the epipolar geometry for the crossed-slit camera [3]. Clipp
and Pollefey et al in [2] suggested an ad hoc method that
combines the five-point algorithm [9] with a scale estima-
tor.

In the following sections, we solve the problem effec-
tively and linearly. The estimates we obtain are remarkably
accurate.
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Figure 2. From left to right, the figure illustrates two-view motion estimation from a generalized camera of 3 different types (cases). Left:
the most general case, where all the image rays are entirely unconstrained; Middle: the locally-central case, where for every 3D scene
point the projection center is unique and fixed locally in camera frame; Right: the axial case, where all image rays must intersect a common
line called as axis. Note that in the latter two cases the relative positions of all the camera centers are fixed in the local frame. In this
paper we show that the ranks of generalized epipolar equations corresponding to the above three cases are respectively r = 17, r = 16
and r = 14. The standard SVD algorithm works only for the first case, while our new algorithm applies to all 3 cases.

3. Analysis of Degeneracies

The derivation of the generalized epipolar equation can
be easily obtained from the Plücker coordinate representa-
tion of 3D lines (see [13]). An image ray passing through
a point v (e.g., camera center) with unit direction x can be
represented by a Plücker 6-vector L = (x�, (v × x)�)�.

Using this representation we then re-state the GEC as
follows:

xi
�Ex′

i + xi
�R(v′

i × x′
i) + (vi × xi)�Rx′

i = 0 . (2)

In the ground-truth solution to these equations, the ma-
trix E is of the form [t]×R, where R is the same matrix oc-
curring in the second and third terms of this equation. There
is no simple way of enforcing this condition in solving the
equations, however, so in a linear approach we solve the
equations ignoring this condition. Our initial goal is to ex-
amine the linear structure of the solution set to these equa-
tions under various different camera geometries.

3.1. Degeneracies

We identify several degeneracies for the set of equations
arising from (2), which cause the set of equations to have
smaller than expected rank. Suppose we wish to show that
the rank of the system is r < 17. Assume that there are
at least r equations arising from point correspondences via
the equations (2). To show that the rank is r, we will exhibit
a linear family of solutions to the equations. If the linear
family of solutions has rank 18−r, then the equation system
must have rank no greater than r.

The reader may object that this argument only places an
upper bound on the rank of the equation system. However,
to show that the system does not have smaller rank, it is suf-
ficient to exhibit a single example in which the rank has the
claimed value. This will mean that generically (that is, for
almost all input data) the rank will indeed reach this upper
bound. In this paper, we do not explicitly exhibit examples

where the rank attains the claimed value, but in all cases this
has been verified by example.

The most general case. In the most general case (see
fig-2 left), the camera is simply a set of unconstrained im-
age rays in general position. For this case, the rank of the
obtained generalized epipolar equation will be 17. There-
fore a unique solution is readily solvable by the standard
SVD method. We do not further consider this case in the
paper.

Locally central projection. Next, we consider a degen-
erate case of a “generalized camera” consisting of a set of
locally central projection rays (see fig-2 middle). The com-
monly used (non-overlapping) multi-camera rigs are exam-
ples of this case. When the camera rig moves from an initial
to a final position, points are tracked. We assume no point
from one component camera to another is used, so that all
point correspondences are for points seen in the same cam-
era. We assume further that each component camera is a
central projection camera, so that all rays go through the
same point, i.e. the camera center. We will refer to this as
locally central projection.

Since rays are represented in a coordinate system at-
tached to the camera rig, the correspondence is between
points (xi,vi) ↔ (x′

i,vi) where vi is the camera center.
In particular, note that v′

i = vi. The equations (2) are now

xi
�Ex′

i + xi
�R(vi × x′

i) + (vi × xi)�Rx′
i = 0 . (3)

Now let (E, R) be a one solution to this set of equa-
tions, with E �= 0. It is easily seen that (0, I) is also
a solution. In fact, substituting (0, I) in (3) results in(
xi

�(vi × x′
i) + (vi × xi)�x′

i

)
, which is zero because of

the antisymmetry of the triple-product.
Generically, the rank is not less than 16, so a complete

solution to this set of equations is therefore of the form
(λE, λR + µI), a two-dimensional linear family. From this
formulation, an interesting property of the set of solutions



to (2) is found: the ambiguity is contained entirely in the
estimation of R, while the essential matrix E is still able to
be determined uniquely up to scale.

Axial cameras. Our second example of degenerate con-
figuration is what we will call an axial camera (see fig-2
right). This is defined as a generalized camera in which all
the rays intersect in a single line, called the axis. There are
several examples of this which may be of practical interest.

1. A pair of rigidly mounted central projection cameras
(for instance, ordinary perspective cameras).

2. A set of central projection cameras with collinear cen-
ters. We call this a linear camera array.

3. A set of non-central catadioptric or fisheye cameras
mounted with collinear axes.

The first two cases are also locally central projections,
provided that points are not tracked from one camera to oth-
ers.

To analyze this configuration, we will assume that the
origin of the world coordinate system lies on the axis, and
examine the solution set of equations (2) for this case.

In this coordinate system, we may write vi = αiw and
v′

i = α′
iw, where w is the direction vector of the axis.

Equation (2) then takes the form

xi
�Ex′

i + αi(w× xi)�Rx′
i + α′

ixi
�R(w× x′

i) = 0 . (4)

Suppose that (E, R) is the true solution to these equa-
tions. Another solution is given by (0,ww�), It satisfies
the equation (4) because (w× xi)�w + w�(w× x′

i) = 0.
Generically, the equation system has rank 16, so the general
solution to (4) for an axial camera is (λE, λR + µww�).

Note the most important fact that the E part of the solu-
tion is constant, and the ambiguity only involves the R part
of the solution. Thus, we may retrieve the matrix E with-
out ambiguity from the degenerate system of equations. It
is important to note that this fact depends on the choice of
coordinate system such that the origin lies on the axis. With-
out this condition, there is still a two-dimensional family of
solutions, but the solution for the matrix E is not invariant.

Locally-central-and-axial cameras. If in addition we
assume that the projections are locally central, then further
degeneracies occur. We have seen already that for locally
central projections, (0, R) is also a solution. However, in the
case of an axial camera array, a further degeneracy occurs.
The condition of local centrality means that αi = α′

i in (4).
We may now identify a further solution (0, [w]×), since

(w × xi)�[w]×x′
i + xi

�[w]×(w × x′
i)

= (w × xi)�(w × x′
i) + (xi ×w)�(w × x′

i) = 0 .

In summary, in the case of a locally central axial camera
the complete solution set is of the form

(αE, αR + βI + γ[w]× + δww�) .

under the assumption that the coordinate origin lies on the
camera axis. Once more, the E part of the solution is de-
termined uniquely up to scale, even though there is a 4-
dimensional family of solutions.

4. Algorithm

Next, we shall give a new algorithm based on (2) for re-
trieving the motion of a generalized camera. The algorithm
applies to the situations involving locally-central and/or ax-
ial cameras where the equation set is rank-deficient, result-
ing in different dimensional families of solutions. Despite
the degeneracy, we show how to obtain a unique linear so-
lution.

Linear algorithm. The condition (2) gives one equation
for each point correspondence. Given sufficiently many
point correspondences, we may solve for the entries
of matrices E and R linearly from the set of equations
A(vec(E)�, vec(R)�)� = 0. However, we have seen
that the standard SVD solution to this set of equations
gives a whole family of solutions. If one ignores the rank
deficiency of the equations, totally spurious solutions may
be found.

It was observed that for locally-central projections, one
trivial solution to the linear system is E = 0 and R = I.
In practice, this solution is often found using the standard
SVD algorithm. The corresponding motion are R = I and
t = 0, since E = [t]×R. This means that the camera rig
neither rotates, nor translates — a null motion. However,
for a moving camera this solution is not compatible with
the observation. This shows a very curious property of the
algebraic solution, that the equation set may be satisfied ex-
actly with zero error even though the solution found is to-
tally wrong geometrically.

Various possibilities for finding a single solution from
among a family of solutions may be proposed, enforcing
necessary conditions on the essential matrix E and the ro-
tation R. Such methods will be non-linear, and not easy to
implement (e.g., involving many parameter tunings). In ad-
dition, observe that the solution E = 0, R = I with t = 0
satisfies all compatibility conditions between a rotation R
and E = [t]×R, and yet is wrong geometrically. We pre-
fer a linear solution avoiding this problem, which will be
described next.

The key idea. To avoid the problem of multiple solutions
we observe the crucial fact that although there exists a fam-



ily of solutions (of dimension 2 to 4 depending on the case),
all the ambiguity lies in the determination of the R part of
the solution. The E part of the solution is unchanged by the
ambiguity. In other words, the family of solutions, when
projected down to the 9-dimension subspace formed by the
E part only, will be well constrained. This suggests using
the set of equations to solve only for E, and forget about
trying to solve for the R part, which provides redundant in-
formation anyway.

Thus, given a set of equations

A(vec(E)�, vec(R)�)� = 0

we find the solution that minimizes

‖A (vec(E)�, vec(R)�)�‖ subject to ‖E‖ = 1 ,

instead of ‖(vec(E)�, vec(R)�)‖ = 1 as in the standard
SVD algorithm. This seemingly small change to the algo-
rithm avoids all the difficulties associated with the standard
SVD algorithm.

Solving a problem of this form is discussed in [6] (sec-
tion 9.6, page 257) in a more general form. Here we sum-
marize the method. Write the equations as AEvec(E) +
ARvec(R) = 0, where AE and AR are submatrices of A con-
sisting of the first and last 9 columns. Finding the solution
that satisfies ‖vec(E)‖ = 1 is equivalent to solving

(ARA+
R − I)AEvec(E) = 0

where A+
R is the pseudo-inverse of AR. This equation is

then solved using the standard SVD method, and it gives
a unique solution for E.

Handling axial cameras. The method for solving for
axial cameras, and particularly for the case of two cameras
(i.e., stereo head) is just the same, except that we must take
care to write the GEC equations in terms of a world co-
ordinate system where the origin lies on the axis. This is
an essential (non-optional) step to allow us to compute the
matrix E correctly. In the case of two cameras, it makes
sense that the origin should be the mid point between the
two cameras. In addition, we scale the rays such that each
of the two cameras lies at unit distance from the origin, in
opposite directions.

Extracting the rotation and translation. The E part
once found may be decomposed as E = [t]×R to obtain
both the rotation and translation up to scale. This problem is
a little different from the corresponding method of decom-
posing the essential matrix E for a standard pair of pinhole
images. There are two differences.

1. The decomposition of E = [t]×R gives two possi-
ble values for the rotation, differing by the so-called

twisted pair ambiguity. This ambiguity may be re-
solved by cheirality considerations. However, in the
GCM case, only one of the two possibilities is com-
patible with the GEC.

2. From the standard essential matrix the translation t
may be computed only up to scale. For a generalized
camera, however, the scale of t may be computed un-
ambiguously. There is only one translation t that is
compatible with the correctly scaled rotation matrix R.

The recommended method of computing the translation
t once R is known, is to revert to the equations (2) and com-
pute t directly from the relationship

xi
�[t]×(Rx′

i) + xi
�R(v′

i × x′
i) + (vi × xi)�Rx′

i = 0 .

The only unknown in this set of equations is the transla-
tion vector t which may then be computed using linear-least
squares. The computed t will not have scale ambiguity.

Algorithm description. We now summarize the linear
algorithm for solving GEC in the case of locally central or
axial cameras.�

�

�

�

1. Given: a set of correspondences (xi,vi) ↔
(x′

i,v
′
i). For the case of locally central projection,

vi = v′
i for all i. For the case of an axial camera,

all vi and v′
i lie on a single line.

2. Normalization: Center the cameras by the trans-
formations vi ← vi − v̄, v′

i ← v′
i− v̄ for some v̄,

normally the centroid of the different camera cen-
ters. For axial cameras, it is essential that v̄ be a
point on the axis of the cameras. Next, scale so that
the cameras are approximately unit distance from
the origin.

3. Form the set of linear equations AEvec(E) +
ARvec(R) = 0 using (2).

4. Compute the pseudo-inverse A+
R of AR and write

the equation for vec(E) as B vec(E) = 0, where
B = (ARA+

R − I)AE. Solve this equation using the
standard SVD algorithm to find E.

5. Decompose E to get the twisted pair of rotation ma-
trices R and R′.

6. Knowing possible rotations, solve equations (2)
to compute t linearly. The equations are non-
homogeneous in t, so t is computed with the cor-
rect scale. Keep either R or R′ and the correspond-
ing t, whichever gives the best residual.



5. Alternation

It was indicated that once R is known, t may be computed
linearly. Similarly, if t is known, then R may be computed
linearly from the same equations. We solve linearly for R
subject to the condition ‖R‖ = 3 so as to approximate a
rotation matrix.

This suggests an alternating approach in which one
solves alternately for R and t. Since the cost decreases at
each step, this alternation will converge to a local minimum
of the algebraic cost function
∑

i

‖xi
�[t]×Rx′

i+xi
�R(v′

i×x′
i)+(vi×xi)�Rx′

i‖2. (5)

The matrix R so found may not be orthogonal, but it may
be corrected at the end. Note that the cost (5) being mini-
mized decreases at each step of the iteration. Unfortunately,
the alternation algorithm just given has a problem that man-
ifests itself occasionally. Namely, it returns to the spurious
minimum R = I and t = 0, i.e., the null motion, even if it
may not be geometrically meaningful. Note that we avoided
this spurious solution in the linear algorithm by enforcing a
constraint that ‖E‖ = 1. However, since we are comput-
ing the value of t exactly (without scale ambiguity) in this
alternation method, we can not enforce this constraint.

The way to solve this is by modifying the equations (2) as
will be explained now. We rewrite the equations as follows.
Let t̂ = βt be a unit vector in the direction of t, with β
being chosen accordingly. Then multiplying each term of
(5) by β results in a cost function
∑

i

∣∣xi
�[t̂]×Rx′

i + β
(
xi

�R(v′
i × x′

i) + (vi × xi)�Rx′
i

)∣∣2
(6)

in which t̂ is a unit vector, and β is an additional unknown.
We wish to minimize this cost over all values of β, t̂ and R
subject to the conditions ‖t̂‖ = 1, and ‖R‖ = 3. Given t̂
and β it is easy to solve for R linearly as described before.
Similarly, if R is known, the problem is a linear least-squares
problem in t̂ and β, that we may solve subject to ‖t̂‖ = 1
in the same way as we solved for E above.

Note that the trick of multiplying the cost by β–which is
the reciprocal of the magnitude of t–prevents t from con-
verging to zero, since otherwise will result in increasing
cost.

By a sequence of such alternating steps, the algebraic
cost function associated with (6) is minimized subject to
‖t̂‖ = 1 and ‖R‖ = 3, the cost diminishing at every step.
In this way, we can not fall into the same spurious mini-
mum of the cost function as before. Our alternation serves
as a simple add-on to the linear algorithm, which improves
accuracy at very low cost. If further accuracy is required,
it may be used to initialize a nonlinear bundle-adjustment
algorithm.

6. Experiments

To demonstrate the proposed algorithm works well in
practice, we conduct extensive experiments on both syn-
thetic data and real image data using multi-camera rig con-
figuration.

For both real and simulated experiments, the algorithm’s
performance is characterized by the following criteria.

• Error in E : εE = ‖E−Ê‖
‖E‖ ;

• Error in R : εR = ‖R− R̂‖;

• Angle difference in R: δθ = cos−1

�
Tr(RR̂

�
)−1

2

�
;

• Direction difference in t: δt = cos−1

�
t
�·t̂

‖t‖‖t̂‖

�
;

The symbols used above are defined as following. We
denote E, R, t as the ground-truth information used in sim-
ulations, and Ê, R̂, t̂ the corresponding estimated versions.
Note that all these data (matrix or vector) are defined with
absolute scales (rather than defined up to a scale). Further
denote the R̂ and t̂ as the final results obtained after the al-
ternation, while Ê is computed by Ê = [t̂]×R̂. All the norms
are Frobenius norms.

6.1. Tests on simulated multi-camera rigs

Figure 3. We simulate three different configurations of multi cam-
era rigs. Left: a general non-axial camera rig; middle: an axial
camera rig; right: a non-overlap stereo head. The standard SVD
algorithm is not applicable to any of these cases.

We simulate three cases of multi-camera rigs (see fig-
3). The first two cases—one is non-axial and one is axial—
each consists of five pinhole cameras, and the last case is a
non-overlapping stereo (binocular) system . The synthetic
image size is about 1000 × 1000 pixels. We do not use
any cross camera matches, therefore they both satisfy the
locally-central projection model.

We build up GEC equations for each of these three cases.
When there is no noise, the observed rank of each of the
equations is 16, 14 and 14. This has confirmed our theoret-
ical prediction.

We add Gaussian noise of 0.05 degrees in std to the di-
rection part of the Plücker vectors. This is a reasonable
level of noise, as in the image plane it roughly corresponds
to one pixel std error in our experiments.

We test our linear algorithm+alternation algorithm. Ex-
periments confirm that the alternation procedure always de-
creases the residual and thus improves the estimation accu-
racy. An average convergence curve is illustrated in fig-4.
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Figure 4. An average convergence curve of the alternation proce-
dure, i.e., residual error v.s. number of iterations. The curve was
generated by averaging 50 tests with 0.05 degrees std noise.
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Figure 5. Histograms of estimation accuracy based on 1000 ran-
domly simulated tests. Top row: results for a non-axial multi-
camera rig; Bottom row: results for an axial camera rig. In all
these tests, we introduce angular noise at level std=0.05 degrees.
The number of image rays are 100.

Figure-5 gives the histograms of estimation accuracy for
the first two cases. Figure-6 shows the estimation accuracy
as a function of noise levels for both cases. The number of
random trials is 1000.

Figure-7 shows results for the two-camera case, i.e.,a
stereo system. For comparison we also gives the estima-
tion accuracy obtained by deliberately using only one cam-
era (i.e., the monocular case). To be fair we use the same
set (same number) of matching points. It is clearly that our
algorithm gives much better results.

6.2. Tests on real Ladybug camera

For real data experimentation, we use PointGrey’s La-
dybug omnidirectional camera, which is a multi-camera rig
with 6 pinhole camera units. During experiments, we move
the Ladybug in a controlled way along a prescribed trajec-
tory on a plotting paper (with a coordinates grid) placing on
a planar table. In this way we can obtain measured ground-
truth motion (see fig-8). At each step of the movements of
the camera we take one image from each camera, and call
them a ‘frame’. In total we have captured 101 frames for an
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Figure 6. This figure shows estimation accuracy (in rotation, trans-
lation, scale) as a function of noise level. The error in scale esti-
mate is defined as |1 − ‖t‖

‖t̂‖ |. Top row left: results for simulated
non-axial camera rigs; Top row right: results for simulated axial
camera rigs. Bottom row shows the same results as in the top row,
but with much higher levels of noise.
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Figure 7. Experiment results for a 2-camera stereo system: Top
row: estimation errors in rotation and translation direction by us-
ing one camera only (i.e., monocular); Bottom row: estimation
errors obtained by the proposed method.

entire trajectory. Some sample captured images are shown
in fig-9. After removing radial distortions of each individ-
ual image, we use the KLT tracker to find feature matches
for every pair of images. These matches are then subjected
to manual checking and modification to ensure that they are
accurate and outlier-free. The measured ground-truth mo-
tion between every neighboring frames is about±30-degree
rotation and around 1-cm translation.

After all these careful preparations we apply the new lin-
ear+alternation algorithm to matches, and obtain the follow-
ing trajectories, shown in fig-10.

Remember that only two images are used to compute
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Figure 8. Left: our experiment setup. A ladybug camera is moving
along a plotted planar curve; Right: spatial configurations of its
six camera units.

Figure 9. Some sample images used in the real date experiment.

Figure 10. Measured ground-truth trajectories vs. recovered tra-
jectories. From left to right we test three different type of curves,
an ∞-shaped curve, a spiral and a circle. Each sequence has 101
frames.

the incremental motion between them. Even with errors
accumulate over 100 frames, the recovered trajectories are
remarkably good, not show obvious drift. This has vali-
dated the effectiveness of our algorithm. During the tests,
we manually checked the feature matches to rule out mis-
matches. Otherwise, the recovered trajectory would be
skewed, indicating that the algorithm is sensitive to outliers.
To address the outlier issue, we are currently investigating a
new algorithm based on Linear Programming ([8]).

7. Summary

Although the standard 17-point algorithm does not work
for many of the common Generalized Camera config-
urations (such as axial camera arrays, non-overlapping
multiple-camera rigs, non-central catadioptric cameras or
non-overlapping binocular stereo), a new linear algorithm
(based on as few as 14 or 16 points) is proposed which al-
lows us to solve linearly for the generalized essential matrix
and the 6-dof motion of the generalized camera.

This linear algorithm, combined with an alternation

scheme, solves the generic motion estimation problem ef-
ficiently and accurately, as long as care is taken to find good
matches and to avoid the trivial null solution. The accuracy
of the proposed method is very good, in particular for a lin-
ear approach. Using this method for initializing a nonlinear
algorithm (e.g., bundle adjustment algorithm based on geo-
metric error metric) would no doubt give even better results.
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