
Motion Estimation for Multi-Camera Systems using Global Optimization

Jae-Hak Kim, Hongdong Li, Richard Hartley

The Australian National University and NICTA∗

{Jae-Hak.Kim, Hongdong.Li, Richard.Hartley}@anu.edu.au

Abstract

We present a motion estimation algorithm for multi-
camera systems consisting of more than one calibrated
camera securely attached on a moving object. So, they move
all together, but do not require to have overlapping views
across the cameras. The geometrically optimal solution of
the motion for the multi-camera systems under L∞ norm is
provided in this paper using a global optimization technique
which has been introduced recently in the computer vision
research field. Taking advantage of an optimal estimate of
the essential matrix through searching rotation space, we
provide the optimal solution for translation by using linear
programming and Branch & Bound algorithm. Synthetic
and real data experiments are conducted, and they show
more robust and improved performance than the previous
methods.

1. Introduction

Relative pose estimation of a single camera in two views
can be obtained from essential matrix estimation. Then,
how about more than one camera? Motion estimation of
multiple cameras has been studied in [9] as a generalized
camera model. This problem is particularly relevant in the
urban-mapping application where many non-overlapping
cameras are attached to a vehicle and used for large-scale
data capture. Many estimation algorithms for this problem
have been developed in [2, 11, 8, 6]. However, most meth-
ods provide a solution for 5 DOF (Degrees of Freedom) of
motion, three for rotation and two for translation, so the
scale of the translation could not be recovered. In addition,
their methods do not present a geometrically optimal solu-
tion to the problem, either.

In this paper, we would like to present a geometrically
optimal L∞ solution for 6 DOF motion for multi-camera

∗This research was partly supported by NICTA, a research centre
funded by the Australian Government as represented by the Department of
Broadband, Communications and the Digital Economy and the Australian
Research Council through the ICT Centre of Excellence program.

systems from image point correspondences without any 3D
point reconstruction. Hartley and Kahl recently showed that
it is possible to find an optimal solution of the essential
matrix for a single camera under L∞ using a Branch and
Bound algorithm, by searching for the optimal rotation over
the rotation space [5]. Here we extend that algorithm to
make it solve the 6 DOF motion for multiple cameras as
well.

The method relies on the observation that if the rotation
of the rigid multi-camera setup is known, then the optimal
rotation may be found using Second-Order Cone Program-
ming (SOCP), as shown in [6]. As in [5], we use a branch-
and-bound search over rotation space to find the optimal ro-
tation. This allows the optimal translation to be computed
at the same time. Instead of using SOCP, we improve the
speed of computation by using Linear Programming (LP)
which speeds up the computation enormously. In addition, a
preemptive feasibility test allows us to speed up the branch-
and-bound computation. In our experiments, the LP method
with the feasibility-test showed 90 times faster convergence
of errors than the pure LP method.

Multi-Camera Systems. A multi-camera system is a set
of cameras which are placed rigidly on a moving object with
possibly non-overlapping views. Let us suppose that there
are m cameras in the multi-camera system. We assume that
the complete calibration of the camera system is known.
The system of m cameras is moved rigidly and point cor-
respondences are obtained between two points seen before
and after the motion. Given this camera and motion con-
figuration, we would like to estimate the 6 DOF motion,
namely the rotation and translation with scale, of the multi-
camera system. Examples of such multi-camera systems
are a vehicle with multiple cameras mounted, an omnidi-
rectional camera that consists of multiple pinhole cameras,
and a generalized camera model [4].

For multi-camera systems, there is an algorithm to esti-
mate motion of the multi-camera systems using SOCP [6].
In that paper, it is shown that the motion problem is the
same as a triangulation problem, once the rotation is known.
SOCP was applied to obtain an optimal solution for transla-



tion in the multiple camera system. However, their method
uses an unstable initial estimate of rotation which is ex-
tracted from an essential matrix from a single camera. Al-
though, their method tries to obtain good initial estimates by
averaging the selected rotations, the initial estimates come
from each camera not from all cameras. Therefore, the ro-
tation that they estimated from a single camera is still not an
optimal solution for the whole system in terms of global op-
timization. Surely, it can be improved if we could estimate
the initial rotation from all cameras.

In this paper, we introduce a way of using all cameras
to estimate the motion – rotation and translation – from the
optimal essential matrix for the multi-camera system.

2. Branch and Bound algorithm

As given by Hartley and Kahl in [5], the Branch and
Bound algorithm for essential matrix estimation finds the
optimal rotation by dividing the space of all rotation into
several blocks and testing them one by one to find which
one gives the best solution. Rotation space is represented as
a 3-dimensional space using the angle-axis representation
of a rotation. As the algorithm progresses, the blocks may
need to be subdivided into smaller blocks in order to get a
more accurate answer. Ultimately after a finite number of
steps, one can find the optimal rotation, and hence transla-
tion within any required degree of accuracy.

The key to the branch-and-bound technique is a method
of bounding the cost associated with the rotations within
a block. Let R̂0 be the rotation represented by the centre
of a block in rotation space, and let r represent the maxi-
mum radius of the block (measured in radians). Since the
translational part of the motion may be computed optimally
(in L∞ norm) once the rotation is known, we might find
this optimal solution assuming the rotation R̂0, and compute
the best residual δ (namely the maximum reprojection error,
also measured in radians) over all possible choices of trans-
lation. Now the key point is that for all other rotations R in
the rotation block of radius r, the best residual is bounded
below by δ + r (see [5]).

Now, suppose that δmin is a best residual found so far in
the search, we ask the following question. Is it possible to
find a solution with rotation assumed equal to R̂0 that has
residual less than δmin + r. If the answer is no, it means
that no rotation inside the current rotation block can beat
the best residual δmin. In this case, we do not need to con-
sider the current block any further. If on the other hand the
answer is yes, or possibly, then the result is inconclusive. In
this case, we subdivide the rotation block by dividing into
8 subblocks, and keep them for future consideration. This
method is guaranteed to find the optimal rotation, and hence
translation within any desired bound within a finite number
of steps.

The main computation in the method just described is,

for each block we need to answer a feasibility question: is it
possible with rotation R̂0 to find a solution with residual less
than ε = δmin + r? We will see that this feasibility problem
can be answered very efficiently using LP.

This LP problem arises in the following way. It will be
shown that each point correspondence (before and after the
motion) must constrain the translation vector of the motion
to lie in a wedge of space bounded by a pair of planes. The
placement and angle of this wedge depends on the value of
ε just defined. The feasibility problem has a positive answer
if the set of all these wedges (one wedge for every point cor-
respondence) has a common intersection. This is a standard
LP problem, and may be solved quickly and efficiently.

3. Theory

We now give more details of the method given above. We
assume a rotation R̂ is given, and our task is to find whether
there exists a solution to the motion problem with residual
less than a given value ε.

Single camera constraints. Let x ↔ x′ be a pair of
matched points observed in one of the cameras. These rep-
resent direction vectors expressed in a coordinate frame at-
tached to the camera rig. Knowing (or rather hypothesiz-
ing) the rotation, we may transform one of the vectors so
that they are both in the same coordinate system. There-
fore, define v = R̂x and v′ = x′. These two vectors and
the translation vector must now satisfy the coplanarity con-
dition t�(v×v′) = 0 which specifies that the three vectors
involved are coplanar. This obviously places a constraint on
the vector t.

However, we do not expect this constraint to be satisfied
exactly for all point correspondences. Rather, we wish to
know if it may be satisfied within a given error bound ε. A
technical detail discussed in [5] allows us to specify differ-
ent bounds ε and ε′ on the two points. This is not necessary
to follow the argument further, but we will assume that v
and v′ are allowed different error bounds ε and ε ′. If we
allow v and v′ to be perturbed in this way, then this means
they must lie inside cones of radius ε and ε ′ respectively as
shown in Fig 1(a).

The translation direction t must lies inside a wedge
bounded by planes tangent to the two cones. The two nor-
mals of these planes are shown in Fig 1(b). For several
matched points, the translation direction must lie inside all
such wedges.

To solve the feasibility problem, we need to express the
normals to the planes in terms of (v, ε), and (v ′, ε′). Then
answering the feasibility problem is equivalent to solving
the LP problem. We give the formulas for the normals be-
low, without full details.

As shown in Fig 2, let us assume that angles α, β and ε



v′
1

v1

t

v2

v′
2

(a)

n2

n1

t

(b)

Figure 1. (a) Translation direction t exists in a region of intersec-
tions (shaded as green) of half-spaces bounded by planes which
are tangent to two cones having axes vi and v′

i. Two matched
pairs of points v1 ↔ v′

1 and v2 ↔ v′
2 give the two intersections

of two wedges. The intersection of the two wedges is a polyhedron
containing the translation direction t. (b) The two normals of the
two half-spaces.

are the angle between two axes of cones, the angle between
bi-tangent planes and the cones, and radius error of matched
points, respectively. Let x, y and z be vectors given by two
cones v and v′ as shown in Fig 2.

v1

α

ε′

zy

β

x

y

v1

v′1

ε

v2

v′
2

v′
1

t

Figure 2. The angle β, between the planes which are bi-tangent
to two cones and the plane containing the axes v1 and v′

1 of the
two cones, is determined by the angle α, ε and ε′ where α is the
angle between v1 and v′

1, and both ε and ε′ are the angle errors at
measured image point coordinates of matched points. The vectors
x and z are given by vi × v′

i, and y × x, respectively, and the
vectors x, y and z construct a basis of a coordinate system.

The vectors x and z are determined by the axes of two
cones v and v′, and by the vector y where two great circles
meet as shown in Fig 2. The vector y is derived as follows:

y =
sin(ε)v′ + sin(ε′)v

sin(β) sin(α)
, (1)

where β is the angle between the planes bi-tangent to two
cones and the plane containing the axes of the two cones as
illustrated in Fig 2. This angle β is given by

sin2 β =
sin2(ε) + 2 sin(ε) sin(ε′) cos(α) + sin2(ε′)

sin2(α)
(2)

where α, ε and ε′ are shown in Fig 2.
The vectors x, y and z form a basis for a coordinate

system and serve to build equations of normals for the two
half-spaces. From the work of [5], given a pair of matched
cones on vi ↔ v′

i, we derive the two normals n1 and n2 of
half-spaces as follows:

n1 = sin(β)z + cos(β)x (3)

n2 = sin(β)z − cos(β)x . (4)

These equations provide two normals n1 and n2 for
planes from a pair of matched points x ↔ x ′, and even-
tually will be used to get an intersection of all half-spaces
from all matched pair of points. This is an intersection from
only one camera, and the existence of the intersection tells
us whether a problem is feasible for the optimal essential
matrix in one camera. In this paper, we would like to deal
with multiple cameras instead of single camera to find the
optimal rotation and translation.

Multiple cameras. We represent each camera by a
sphere centred at the camera centre. Therefore, we have
m spheres for an m-camera system. Associated with each
sphere, as in Fig 1 there is a polyhedral cone with apex po-
sitioned at the centre of each camera, formed as the inter-
section of wedges defined by the point correspondences for
that camera. These cones represent the direction of motion
of each of the cameras. A correspondence of points in the
k-th camera generates a constraint of the form

n�(c′k − ck) ≥ 0 (5)

where ck is the centre of k-th camera and c ′
k is the center of

k-th camera after the motion. The constraints from different
cameras involve different variables, however. To get a set of
consistent constraints, we need to transform these cones so
that they constrain the final position of a specific chosen
one of the cameras, let us say the final position c ′

1 of the
first camera.

This problem is the same as the triangulation problem
considered in [6]. We will see how the cones given by the
linear constraints are transformed by the assumed rotation
of the camera. This is illustrated in Fig 3.

To express (5) in terms of c′
1 instead of c′

k we use the fol-
lowing relationship, which may be easily read from Fig 3.

c′1 = ck + R̂(c1 − ck) + (c′k − ck)

By substituting for (c′
k − ck) in (5), we obtain the in-

equality for multiple camera systems as follows:

0 ≤ n�(c′k − ck)
= n�(c′1 − ck − R̂(c1 − ck))
= n�c′1 − n�(ck + R̂(c1 − ck))



t1 c1

c3

c2

c′3

c′1 c2 + R̂(c1 − c2)

c3 + R̂(c1 − c3)

R̂, t̂

c′2

t2

t3

Figure 3. The shaded region is the intersection of three polyhedra
located on where each camera sees, c′1, the centre of the first cam-
era after a rigid motion. The shaded region is a feasible solution
of the translation of this multi-camera system.

This is the specific inequality involving c′
1 after the transfor-

mation. Finding a solution satisfying all these inequalities
is same as finding an intersection of all half-spaces.

We find the centre of the first camera after the final mo-
tion by an intersection of all wedges defined by all pairs of
matched points. In other words, we find a solution to a set of
linear constraints by Linear Programming. More precisely,
this feasibility problem is described as follows:

Does there exist c′
1

Satisfying n�
i1c

′
1 − n�

i1(ck + R̂(c1 − ck)) ≥ 0
n�

i2c
′
1 − n�

i2(ck + R̂(c1 − ck)) ≥ 0
for i = 1...N

where ni1 and ni2 are the two normals derived from
matched point i and k is the appropriate index of the camera
generating the matched point i.

The feasible region is the region of space satisfying all
these inequalities. In this problem, it is not important to
know the entire polygon, but only to find one particular
point of interest. Solving this feasibility problem tells us
the position of the centre of the first at the final motion, and
finally it gives us the optimal solution of translation direc-
tion vector and its scale value in multi-camera systems.

Feasibility Test. All half-spaces from matched pairs
serve as inequalities in this LP problem. Given a total of N
matched points in m cameras, the number of inequalities is
2N . Generally, for 5 cameras with 100 points, LP requires
to find an intersection of 1,000 half-spaces. If we use only
LP to solve this problem, it will take too much computation
time.

We introduce a way to reduce the time of computation
for LP in this particular problem by testing the feasibility at
an earlier stage before solving a full LP problem. The fea-
sibility for multi-camera systems depends on the feasibility
of single camera. If any feasibility observed for one single
camera fails, then we do not need to look at feasibilities of
other cameras. This observation gives a method to reduce
the computation time greatly.

Testing a feasibility for a single camera is done by re-
ducing the number of variables for the translation direction
vector to two variables as shown in [5]. This feasibility test
for a single camera can be adopted for greater speed of LP
in multi-camera systems.

The order of matched points also affect the speed of the
feasibility test. A larger angle α between two matched
points leads to a narrower wedge in which the translation
direction must lie, and gives more chance to finish the feasi-
bility test earlier. Thus, these points should be tested first. In
our experiments, using a preemptive feasibility test makes
the algorithm 90 times faster than an algorithm without this
feasibility test.

Degeneracy. It is important to note that if the motion
from one frame to the next has no rotation, then the scale
of the translation can not be computed. Because of the
independence of the different cameras, there is an overall
scale ambiguity, despite having known distances between
the cameras. If the rotation is close to zero, the translation
will be less reliable.

4. Algorithm

Given m calibrated cameras with a total of N matched
points in each image, we can transform the matched points
into vectors on the surface of a sphere by multiplying the
inverse of the calibration matrix and the inverse of the rota-
tion matrix of each camera. An example of these vectors is
illustrated in Fig 6. With these simplified image vectors, the
problem becomes easier to describe. The algorithm to find
the optimal solution of motion of multi-camera systems is
written as follows:

Algorithm Optimal L∞ Motion in Multi-Camera
Input: Given m calibrated cameras with N matched points,

xi ↔ x′
i

Output: Estimated optimal rotation and translation with
scale.

1. Obtain an initial estimate for the motion by any means
(a random guess if necessary) and compute an initial
estimate δmin for the minimal residual. Then carry
out a branch-and-bound algorithm over rotation space,
with the following steps.

2. Select a rotation block and consider its centre as an
initial estimate of rotation R̂ in rotation space.



3. Multiply R̂ by x to get axes of two cones v = R̂x and
v′ = x′.

4. Let ε = δmin + r, where r is the radius of the rota-
tion block. Next determine whether there is a solution
with rotation R̂ and residual less than ε by the following
steps.

5. From the two cones about v and v ′ with half vertex-
angle errors ε, compute two normals n1 and n2 from
(3) and (4). Do this for all correspondences v ↔ v ′.

6. Transform the two half-spaces to obtain inequality
equations n�

i c′1 − n�
i (ck + R̂(c1 − ck)) ≥ 0

7. Solve Linear Programming with the constraints
8. If it is a feasible problem, then divide the selected ro-

tation block into subblocks, and queue for further pro-
cessing; otherwise discard the rotation block.

9. Repeat until we meet a desired error, then return the
estimated rotation and translation

5. Experiments

Two experiments are conducted on synthetic and real
data to show robustness and applications. A comparison
with other method is presented to show improved accuracy
of our proposed method.

5.1. Synthetic Data Experiments

A synthetic data set has four cameras with 50 image
points randomly located in space. A total of 200 points are
projected onto four image planes, and the system of four
cameras is moved by a rigid motion of rotation and trans-
lation. The 200 points are also projected onto another four
image planes of cameras at the final motion. When we pro-
cess this synthetic data to estimate the motion by using our
method, the CPU time of computation is about 3.5 seconds
in a standard Intel Core 2 CPU PC based on 32-bit instruc-
tions and a single process. The implementation is written in
C++ with GLPK (GNU Linear Programming Kit) [3]. As
shown in Fig 4, several experiments are conducted 10 times
on the same synthetic data by increasing noise parameters
in pixels, and the distance error of centres is compared with
the ground truth and its mean values are shown.

We have examined the performance comparison with an-
other method [6], which we call “E+SOCP” in this paper,
which uses a single essential matrix and SOCP to estimate
the motion of multi-camera systems. As seen in Fig 5, our
proposed method gives a better estimation for rotation and
translation than E+SOCP.

5.2. Real Data Experiments

As a real example of multi-camera systems, we have
used an omnidirectional camera, Point Grey’s Ladybug TM

[10], which consists of 6 cameras on the base unit. Its cal-
ibration information is provided by Point Grey. Six im-

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

Standard deviation of Gaussian noise (in pixels)

D
iff

er
en

ce
 o

f c
en

tr
es

 (
in

 u
ni

ts
)

 

 

(a)

0 0.1 0.2 0.3 0.4 0.5
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Standard deviation of Gaussian noise (in pixels)

R
ot

at
io

n 
er

ro
r 

in
 d

eg
re

es

 

 

(b)

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Standard deviation of Gaussian noise (in pixels)

A
ng

le
 e

rr
or

 o
f t

ra
ns

la
tio

n

 

 

(c)

0 0.1 0.2 0.3 0.4 0.5
0.99

0.995

1

1.005

1.01

Standard deviation of Gaussian noise (in pixels)

S
ca

le
 r

at
io

 o
f t

ra
ns

la
tio

n

 

 

(d)

Figure 4. Result of the synthetic data experiments. Normally dis-
tributed noise with standard deviation parameter σ is added to
image coordinates in pixel units. (a) The angle difference between
the estimated rotation and the true rotation of cameras, (b) The an-
gle difference between the estimated translation direction and the
true translation direction of cameras, (c) The distance between the
estimated centres and the true centre of cameras and (d) the scale
ratio between the estimated translation and the true translation
are compared by varying noise parameters σ from 0 to 0.5 which
means about 99.7% of the image points have errors from 0 to ±1.5
pixels because of 3σ.

ages are captured at each camera, and feature points on
the images are extracted and tracked by the KLT tracker
[7] through image sequences. Outliers in the tracked fea-
tures are removed using RANSAC [1]. We transform these
tracked features to image vectors on a sphere by multiply-
ing the inverse calibration matrix and the inverse rotation
matrix in each camera. The image vectors are shown in
Fig 6. They are used in our algorithm to obtain the optimal
solution of the rotation and translation in the 6-camera sys-
tem of LadyBugTM. Please note that we are not dealing with
omnidirectional cameras but a multi-camera system.

5.2.1 First Real Data Set

The 6-camera system is moved on a piece of paper and the
position is marked on the piece of paper. The motion of
the 6-camera system, LadyBug, is a circular-like motion for
95 frames. We have selected key-frames every 5 frames
from the image sequences. The estimated motion of the



0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

Standard deviation of Gaussian noise (in pixels)

D
iff

er
en

ce
 o

f c
en

tr
es

 (
in

 u
ni

ts
)

 

 

E+SOCP
B&B+LP

(a)

0 0.1 0.2 0.3 0.4 0.5
0

0.01

0.02

0.03

0.04

Standard deviation of Gaussian noise (in pixels)

R
ot

at
io

n 
er

ro
r 

in
 d

eg
re

es

 

 

E+SOCP
B&B+LP

(b)

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Standard deviation of Gaussian noise (in pixels)

A
ng

le
 e

rr
or

 o
f t

ra
ns

la
tio

n

 

 

E+SOCP
B&B+LP

(c)

0 0.1 0.2 0.3 0.4 0.5

0.99

0.995

1

1.005

1.01

Standard deviation of Gaussian noise (in pixels)

S
ca

le
 r

at
io

 o
f t

ra
ns

la
tio

n

 

 

E+SOCP
B&B+LP

(d)

Figure 5. Comparison of two methods which are the SOCP
based on the single essential matrix method by [6]. (indicated
as blue lines, “E+SOCP”) and our proposed method based on
Branch and Bound algorithm with LP (indicated as red lines,
“B&B+LP”). (a) The difference between the true position of cam-
era and the estimated position of the camera at the final motion.
(b) Angle error of estimated rotation. (c) Angle error of estimated
translation direction. (d) Scale error of estimated translation.
The “B&B+LP” method gives more accurate position of camera
though it has under-estimation of rotation and translation direc-
tion compared with the “E+SOCP” method. The difference of the
errors is less than 1 degrees, so it is minimal. The less scale error
of translation in the “B&B+LP” method shows why it estimates
better position of cameras at the final position.

6-camera system using our proposed method is shown in
Fig 7 and Fig 8. The purpose of this experiment is to see
how estimated motion is similar to the circular-like motion
because the camera is moved randomly and the ground truth
for this motion is not measured. In the next experiment,
we will look at how the motion is accurately estimated by
locating the cameras at the pre-determined path.

5.2.2 Second Real Data Set

We have placed a piece of A2 size paper on top of a ta-
ble, and the paper has 1mm grid. A trajectory of cameras
is predetermined by drawing figures and marks on the pa-
per. The LadyBug camera is moved manually to be aligned
with the marked positions on the paper at every frame. The
trajectory is shown in Fig 9. The images are captured for
each camera at the mark positions. A total of 108 frames of

−0.500.5

−0.5

0

0.5

1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 

 

data1
data2
data3
data4
data5
data6
data7
data8
data9
data10
data11
data12

Figure 6. Image vectors on a sphere from LadyBugTM camera.
These image vectors represent matched points which are trans-
formed by the inverse of calibration matrix and the inverse of ro-
tation matrix for our simplified model. Data 1 and 2 are from the
first camera, data 3 and 4 are from the second camera, data 5 and
6 are from the third camera, and so on.

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

−0.0500.050.10.15

Figure 7. Path of cameras from a top view. Each point in coloured
lines represents the centre of six cameras in the system.

Figure 8. Path of cameras from a side view. Each point in coloured
lines represents the centre of six cameras in the system. Please
note that a black coloured line is a camera on top of the base unit.

image sequence are captured and matched point correspon-
dences are found. The configuration of the camera setup is
shown in Fig 10, and the images taken by the six cameras
are shown in Fig 11.

Analysis of accuracy. Before we proceed with this par-
ticular “∞-shape” like motion of cameras, first, we would
like to analyze how much pixel errors in images affect the
accuracy of estimation for rotations and translations. For a
better analysis and simulation of the experimental environ-



Figure 11. Six images captured at each camera of LadyBug. Five cameras (camera id 0 to 4) are placed to look horizontally view, and the
last one (camera id 5) is located for a top view (From left to right order). There are only small overlapped fields of view across cameras.

Figure 9. The trajectory of marked positions for cameras is drawn
on a piece of paper. The Ladybug camera is aligned with the blue
line segments of the marked positions. A red line segment is a
starting position of the camera.

Figure 10. Experiment setup. A LadyBug camera is placed on a
piece of paper which has 1mm grids and it is surrounded by books.
A trajectory of cameras is marked on the paper. Total 108 posi-
tions of ground truth are measured from the marked positions.

ment, we used the same data set which has all the measured
trajectories of the Ladybug camera with rotations and trans-
lations, and we also used the camera calibration information
of the Ladybug camera. With this measured ground truth
and the Ladybug camera calibration information from the
real experimental setup, the estimation of translations and
rotations is simulated. The computed motion of cameras is
shown in Fig 12.

Results. For 108 images, the motion of the 6-camera sys-
tem is estimated and the results are shown and compared
with the results of the “E+SOCP” method in Fig 15. The
graph in Fig 15 shows that the estimated rotation and trans-
lation by our proposed method are more accurate than the
estimated motion by the method uses SOCP with essential
matrix from a single camera. The estimated trajectories of
cameras are superimposed the ground truth of the measured

−150

−100

−50

0

50

100

−450−400−350−300−250−200−150−100−500

 

 

Computed positions
Ground truth positions

Figure 12. Computed motion of cameras from synthetic data with
the Ladybug camera calibration information and the ground truth
positions. The computed motion is indicated as blue lines and
the ground truth positions of cameras are drawn with red lines.
The computed motion is generated with 0.1 standard deviation of
the normal distribution for noises in image coordinates by pixel
units. The overall scale of the computed motion is expanded com-
pared with ground truth, perhaps largely due to the scale ambi-
guity caused by small rotation between frames. Nevertheless, note
that the computed path is almost closes accurately. This suggests a
systematic bias towards overestimating translation characteristic
of Maximum Likelihood estimation.

trajectories of the cameras in Fig 13. Histograms of transla-
tion and rotation errors of the simulated motion are shown
in Fig 14. These analysis shows that the translation direc-
tion is sensitive to noise on image coordinates. The esti-
mated trajectories of the Ladybug camera and its consisting
6 cameras with the marker are shown in Fig 16. It shows
the ”∞-shape” path from the positions of the marker.

6. Conclusion

An optimal solution of motion for multi-camera systems
under L∞ norm is presented, and a feasibility test of Lin-
ear Programming for the multi-camera systems reduced the
computation time of the problem significantly. The algo-
rithm is optimal under L∞ through all steps of the algo-
rithm. Analysis of simulated motion showed that this al-



−80

−60

−40

−20

0

20

40

60

80

−350−300−250−200−150−100−500

 

 

Estimated positions
Ground truth positions

Figure 13. Top view of the estimated trajectories of cameras and
the ground truth of the cameras from frame 0 to 108. The estimated
trajectories are indicated as red lines with dots on their positions
of the cameras. The ground truth is illustrated as blue lines with
its positions of the cameras. The starting position of the cameras
is the left middle point which is (0, 0, 0) in the coordinates. There
is a jittering or drift movement in the estimated motion because of
accumulated errors over frames.

0 0.2 0.4
0

20

40

60

80

100

Rotation error in degrees

(a)

0 10 20 30
0

5

10

15

20

25

Translation angle error

(b)

0.5 1 1.5
0

2

4

6

8

10

12

Translation scale ratio

(c)

Figure 14. Histograms of rotation and translation errors on the
simulated motion. The simulated motion is generated with 0.1
standard deviation of normal distribution as noises on the image
coordinates. (a) Histogram of rotation errors. (b) Histogram of
translation direction errors. (c) Histogram of translation scale er-
rors. These shows the translation direction errors are sensitive to
the noises.

gorithm is robust to estimate rotation angles and transla-
tion scale values (at least when the rotation is not too small)
when there is noise in the image coordinates. However, we
found that the estimate of the direction of translation is sen-
sitive to the noise in the images.

Acknowledgement. We wish to thank the two anony-
mous reviewers for invaluable suggestions, and thank Eun
Young Kim for helping us to capture image sequences.

References

[1] M. A. Fischler and R. C. Bolles. Random sample consensus:
a paradigm for model fitting with applications to image anal-

0 2 4 6
0

5

10

15

20

Rotation error in degrees

 

 

B&B+LP

(a)

0 10 20
0

10

20

30

Rotation error in degrees

 

 

E+SOCP

(b)

Figure 15. (a)Histogram of rotation error by our proposed method
“B&B+LP” method. It shows 1.08 degrees of the mean and 0.83
degrees of the variance. (b)Histogram of rotation error by the
“E+SOCP” method which is based on the essential matrix from
single camera and SOCP by [6]. It shows 4.73 degrees of the mean
and 25.61 degrees of the variance. The proposed “B&B+LP”
method estimates the rotation better than the “E+SOCP” method
in real data experiments.

−100

−50

0

50

100

−400

−350

−300

−250

−200

−150

−100

−50

0

50

0

50

100

Figure 16. The top-side view of the path of the 6 cameras (blue and
red lines) and marker (cyan dots).

ysis and automated cartography. Commun. ACM, 24(6):381–
395, 1981.

[2] J.-M. Frahm, K. Köser, and R. Koch. Pose estimation for
Multi-Camera Systems. In DAGM, 2004.

[3] GNU Project. GNU Linear Programming Kit version 4.9.
http://www.gnu.org/software/glpk/.

[4] M. D. Grossberg and S. K. Nayar. A general imaging model
and a method for finding its parameters. In iccv, pages 108–
115, 2001.

[5] R. Hartley and F. Kahl. Global optimization through search-
ing rotation space and optimal estimation of the essential ma-
trix. In Proc. International Conference on Computer Vision,
Oct 2007.

[6] J.-H. Kim, R. Hartley, J.-M. Frahm, and M. Pollefeys. Vi-
sual odometry for non-overlapping views using second-order
cone programming. In 8th Asian Conference on Computer
Vision, pages 353–362, 2007.



[7] B. Lucas and T. Kanade. An iterative image registration tech-
nique with an application to stereo vision. In IJCAI81, pages
674–679, 1981.

[8] E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, and
P. Sayd. Generic and real time structure from motion. In
bmvc, 2007.

[9] R. Pless. Using many cameras as one. In CVPR03, pages II:
587–593, 2003.

[10] Point Grey Research Incorporated. LadybugTM2 camera.
http://www.ptgrey.com, 2006.

[11] H. Stewénius, D. Nistér, M. Oskarsson, and K. Åström. So-
lutions to minimal generalized relative pose problems. In
Workshop on Omnidirectional Vision, Beijing China, Oct.
2005.


