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Abstract. We present a closed form solution to the nonrigid shape and motion
(NRSM) problem from point correspondences in multiple perspective uncali-
brated views. Under the assumption that the nonrigid object deforms as a linear
combination ofK rigid shapes, we show that the NRSM problem can be viewed
as a reconstruction problem from multiple projections fiBA% to P2. There-

fore, one can linearly solve for the projection matrices by factorizing a multifocal
tensor. However, this projective reconstructiorPif* does not satisfy the con-
straints of the NRSM problem, because it is computed only up to a projective
transformation ifP*X . Our key contribution is to show that, by exploiting alge-
braic dependencies among the entries of the projection matrices, one can upgrade
the projective reconstruction to determine the affine configuration of the points in
R3, and the motion of the camera relative to their centroid. Moreové, if 2,

then either by using calibrated cameras, or by assuming a camera with fixed in-
ternal parameters, it is possible to compute the Euclidean structure by a closed
form method.

1 Introduction

Structure from motion (SfM) refers to the problem of reconstructing a 3-D rigid scene
from multiple 2-D images taken by a moving camera. This is a well studied problem
in computer vision (see for instance [1, 2]), which has found numerous applications
in image-based modeling, human-computer interaction, robot navigation, vision-based
control, etc.

A fundamental limitation of classical SfM algorithms is that they cannot be applied
to scenes containing nonrigid objects, such as scenes containing articulated motions,
facial expressions, hand gestures, etc. This has motivated the development of a family
of methods where a movingffine calibratedcamera observes a nonrigid shape that
deforms as a linear combination &f rigid shapes with time varying coefficients [3—
8]. This assumption allows one to recover nonrigid shape and motion (NRSM) using
extensions of the classical rigid factorization algorithm of Tomasi and Kanade [9]. For
instance, Bregler et al. [5] use multiple matrix factorizations to enforce orthonormal-
ity constraints on camera rotations. Brand [3] uses a non-linear optimization method
called flexible factorization. Torresani et al. [7] use a trilinear optimization algorithm
that alternates between the computation of shape bases, shape coefficients, and camera
rotations. Xiao et al. [8] provide a characterization of the space of ambiguous solu-
tions as well as a closed form solution by enforcing additi@halpe constrainten the
shape bases. Their solution not only applies to shapes of full rank three, but can also be
extended to degenerate rank one and two shapes, as shown in [10].
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An important assumption made by these approaches is that the projection model is
affineand the camera isalibrated One way of extending affine methods to the pro-
jective case is to alternate between the estimation of the projective depths and the esti-
mation of shape and motion, similarly to the Sturm and Triggs algorithm [11]. This ap-
proach was indeed explored in [12] for the NRSM problem. However, it is well known
that iterative schemes are often very sensitive to initialization. In the rigid case the pro-
jective depths can be initialized using algebraic methods based on two-view geometry.
In the nonrigid case, the situation is obviously not as straightforward, and hence the
method of [12] simply assumes the initial depths to be all equal to one. To the best
of our knowledge, the only existing algebraic solution to the perspective NRSM prob-
lem can be found in [13], where it is shown that the problem is solvable for a number
of views F' in the range(3K + 1)/2 < F < (3K + 1). However, the algorithm for
computing shape and motion relies on the factorization of a quintifocal tensor, and is
applicable only in the case of two shape bases seen in five calibrated perspective views.

In this paper, we present a closed form solution to nonrigid shape and motion recov-
ery for an arbitrary number of shape bagésnd an arbitrary numbér of perspective
uncalibrated views in the rand8K + 1)/2 < F' < (3K + 1). Our solution exploits
the fact that the NRSM problem can be viewed as a reconstruction problenPfom
to P2 where the projection matrices have a particular structure. As shown in [14], the
camera projections associated with any reconstruction problemIffota P™ can be
computed in closed form from the factorization of a multifocal tensor. However, the
projection matrices computed by this method do not necessarily conform with the par-
ticular structure of the NRSM problem, because they are computed up to a projective
transformation irP*% only. The main contribution of our work is to show that one can
solve for the projective transformation, and hence for the camera matrices, shape basis,
and shape coefficients, in closed form using linear algebraic techniques which do not
require the use of iteration. More specifically, we show that the NRSM problem can be
solved as follows:

1. Linearly compute a multifocal tensor from point correspondences in multiple views
of a nonrigid object.

2. Factorize the multifocal tensor inl** — P? projection matrices, defined up to a
common projective transformation BF .

3. Compute a normalizing projective transformation by enforcing internal constraints
on the projection matrices.

4. Compute the camera matrices, shape basis and shape coefficients from the normal-
ized projection matrices.

Using this method, we find the following results, when the number of shape bases
is K > 2.

1. The structure of the point set may be determined in each frame, up to an affine
transformation common to all frames. This is in contrast with the classic recon-
struction problem with a single shape basis, where the structure may be computed
only up to a projective transformation.

2. If the cameras are calibrated, or have constant internal parameters, then the Eu-
clidean shape may be determined by closed form or linear techniques.
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3. Since the points are potentially moving (within the space spanned bl tsleape
bases), it is possible to determine the camera motion only relative to the moving
points, and up to an individual scaling in each frame. This is the only ambiguity of
the reconstruction (other than a choice of the affine or Euclidean coordinate frame).
If the points are assumed to be centred at the origin, then the camera motion is
uniquely determined apart from a scale within the affine or Euclidean coordinate
frame.

Paper Contributions. This paper gives the first non-iterative solution for the general
nonrigid perspective structure-from-motion problem. Because of the deterministic na-
ture of the algorithm, it is guaranteed to find the correct solution at least for noise-free
data. This is not the case with previous iterative algorithms. (For the difficulties in-
volved with such iterative methods, see for instance [15].) Further, our analysis allows
us to discover the fundamental ambiguities and limitations of NRSM, both in the affine
and perspective cases. Our results clarify and complete the previous results on the am-
biguities of affine NRSM given in [16, 13].

2 Nonrigid Shape and Motion Problem

Notation. We make extensive use of the Kronecker or tensor protlgeB, whereA
andB are matrices. This tensor product is given by

a11B . alnB
A@B=| G|

am1B ... amnB

where thez,; are the elements af A basic property is thgdiA®B) (C®D) = (AC)®(BD)
whenever the dimensions are compatible so that this equality makes sense. Conse-
quently, ifA andB are square, thefA ® B) ™! = A~! @ B~L,

We use the notatiostack(. . .) to represent the matrix or vector created by stacking
its arguments (matrices or vectors) vertically.

Bold font (X, x) is used to represent vectors (one-dimensional arrays) and type-
writer font (A, W, .. .) to represent matrices (two-dimensional arrays). Given a homoge-
neous vector, such asor X, the corresponding non-homogeneous vector is denoted
with a hat, such ag or X. Notation such af,., represents rows to b of II.

Finally, for inline representation of simple matrices, we use the notétidn c, dj,
where the elements are listed in row major order, rows separated by a semi-colon.

Problem statement.Let {x;, € P> |p=1,...,P; f =1,..., F} be the perspective
projections of P (possibly moving) 3-D point{Xy, € P3} onto F frames from a
moving camera. Lek; = [M; t;] € R*** be thecamera matrixassociated with frame
f. Then

ArpXfp =PyXpp, (1)
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where 4, is an unknown scale factor, callpdojective depthlt follows that

A11X11 * - A1pX1p P1X;
W= S = @
AF1XF1 - - AFPXFPp PrXp

whereX; = [Xy1 Xyo -+ Xyp] € R**?is called thestructure matrixand is formed
from the homogeneous coordinates of all fA@oints in thef-th frame.

The structure from motion problertSfM) refers to the problem of recovering the
camera matrice8;, and the structure matricels from measurements of the image
point trajectoriesks,. Without some restriction on the moving 3-D points, the SftM
problem is of course not solvable.

When theP points lie on a rigid stationary object, the structure matrices are equal,
thatisX; = X2 = --- = X = X. Hence, given the depths one can factotizeto
a motion matrixit € R3>*4 and a structure matrix € R**¥ asw = IX. This rank
constraint has been the basis for all factorization-based algorithms, e.g. [9, 11]. In fact,
one can solve the SfM problem by alternating between the estimation of the depths,
and the estimation of motion and structure [17], though care must be taken to avoid
converging to trivial solutions [15].

In this paper we study the case where the 3-D points lie on a nonrigid object, thereby
allowing the 3-D pointsX ¢, to move as a function of time. As suggested in [3-7], we
assume that th& points deform as a linear combination of a fixed sekofigid shape
bases with time varying coefficients. That & = S+, ¢.By, where the matrix
X; = [Xs1---Xp] € R¥*P is the object shapeat frame f, the matrices(B, =
[Byi - - Bip] € R¥*P} are theshape baseand{c;, € R} are theshape coefficients

Under this deformation model, the projection equation (1) can be rewritten as a
projection equation fron®3X to P2 of the form

Bi,
K .
AppXpp =Mp Y (cpaBrp) +tr = [caMy - cpxMpte] | | =B, (3)
k=1 Bxkyp
1

Therefore, the matrix of image measuremanis (2) can be factorized into the product
of a motion matrixt € R3F*(3K+1) and a basis matrig € RGK+TD*P a5

B,
A1X11 - AipXip c1iMyreigMy _
i= = e @
B
AF1XF1 - AFPXFP cpiMp - cpgMp tp llT(

Note that the motion matri® has the fornil = [diag(My,...,Mr)(C ® I3) | t],
wheret = stack(ty, ..., tr). Furthermore, given the factorization in this form, we
may read off the camera matrices = [My | t] and the 3-D points from

stack(il, ‘e ,XF) = (C ® Ig)StaCk(gl, [P ,ﬁK) . (5)
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Note here, however, a basic ambiguity: the individual projection matrices can be de-
termined fromil only up to independent scale factors, since scalingan be balanced
by a corresponding inverse scaling to the corresponding row of the coefficient matrix

Iterative methods. The rank constraint implied by (4) has been the basis for exist-
ing projective NRSM algorithms. As shown in [12], when the depths are known, the
shape coefficients and shape basis may be computed from the factorizatiasiafy

a factorization technique similar to that in [8] for affine cameras. In [12], they solve the
perspective reconstruction problem by alternately solving for the depths and the shape
and motion parameters, in a similar way to [17]. In this paper, we seek an alternative
purely algebraic solution to the problem that does not rely on any iterative optimization.
In doing so, we are able to determine exactly what it is possible to compute uniquely,
and what are the unavoidable ambiguities.

3 Nonrigid Shape and Motion Recovery

In this section, we propose a closed form solution to the NRSM problem from mul-
tiple perspective views. The key to our approach is to observe from equation (3) that
the NRSM problem is a particular case of a reconstruction problem Bdfnto P2.

This interpretation will allow us to solve directly for the motion matiiin (4) up to a
projective transformation ii3% 3K as we will show ir§3.1. We will then propose an
extremely simple linear algorithm for recovering the unknown projective transforma-
tion, hence the original camera matrice®ii‘2, shape bases, and shape coefficients.

3.1 Recovery of the Projection MatricesP3¥ — P2

While factorization methods such as [9, 18, 8] are commonly used in affine reconstruc-
tion problems involving affine or orthographic cameras, they are not so useful for recon-
struction from perspective cameras, since they require iterative estimation of the depth
values [11, 17]. For such problems an alternative is to use tensor-based methods. The
standard methods used for rigid structure and motion problems involve the fundamental
matrix, trifocal or quadrifocal tensors [1]. It was shown in [14] that these tensor based
methods can be extended to projections between projective spaeeslP™ of arbi-
trary dimensions witlm > m. We will rely heavily on this method. In the particular
case of relevance to the current problems 3K andm = 2.

In brief, given a suitable number of projectioft§ — P, we may compute a
tensor that relates the coordinates of matching image pojptg1 P™. This tensor may
be computed linearly, and from it the set of projection matritgsnay be extracted
using non-iterative techniques. Subsequently, pdBysn P* may be computed by
triangulation such that;,x, = II;B,. Here, pointsB,, and the corresponding image
pointsxy, are expressed in homogeneous coordinates andghare unknown scale
factors, which do not need to be known for this reconstruction to be computed.

One may stack the projection matridesas well as the points, on top of each
other and form an equation

w:stack(Hl,...,HF)[Bl...Bp]:HB, (6)
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which is of exactly the same form as the type of decomposition formulated in (4). It was
shown in [14] that this factorizationB is unique except for the (hon-significant) mul-
tiplication of each of the camera matrides by an arbitrary scale factdr; and except

for modifying TIB to TAA~'B, whereA € RGBK+1xBK+1) js an invertible matrix. This

is exactly analogous to the affine ambiguity inherent in affine factorization algorithms.
However, here the matrix represents @rojectivetransformation, since we are using
homogeneous coordinates. Thus, using tensors, we may achieve a similar factorization
in the projective case as that computed by linear methods in the affine case. The only
difference is that the number of views that may be used is restricted.

In the case of projective nonrigid motion, the image projection may be expressed
asll; : P3X — P2 and a factorization’ = 1B may be computed from any number of
views betweerf3K + 1)/2 and3K + 1 (see [13]) using the tensor method. However,
this does not produce a solution of the particular required form, given in (4) and it
is impossible to extract the individu&f — P? projection matrices immediately. We
need to do some more work to find a matkixhat transforms eadi; into the correct
form. However, as will be seen, we gain from this since the remaining ambiguity is only
affine or Euclidean (for calibrated cameras). Thus affine or Euclidean reconstruction is
possible. How we enforce the correct form on the projection matiigesill be the
main focus of the rest of this paper.

3.2 Recovery of the Projective Transformation

As a result of our analysis in the previous subsection, at this point we have computed a
projection matrixi € R37*GBK+1) QOur task is to transform this projection matrix by a
matrix A € RGK+DxBK+1) gych thatia is of the form[diagM;, . .. ,Mp)(C ® I3) | t]

given in (4). To that end, we use the following steps.

Step 1. We assume that the matrikis full rank and, without loss of generality, that
the top3K x 3K block of Il is non-singular. Hence, if we multipl by 4,, where
Afl = [M.x ; 07, 1], we arrive at a matrix of a new form in which

(A1) 1.k = [Ik ® I3 0]. (7)

At this point, the firsti’ row-blocks (in the block-representation) &, are of the
desired form, but the remaining rows may be arbitrary.

Step 2. We multiply the matrixtiA; by the block-diagonal matrix,, given byA, =
diagMg 411, --,Mr+1,5,1) 7. Here the matricedy 14, & = 1,..., K, are ob-
tained from thg K + 1)-st row-block offlA; . Under a suitable assumption of genericity,
these matrices will be non-singular, as will be seen in the proof of Theorem 1 below.
This results in a matrix such that

. Ix®Izs O
(HA1A2)1:K+1 = dlaqu,...,MK,Ig) K 3 (8)
Ig---Ig tk+
where now the firsi + 1 row-blocks off1A; A, are in the desired form and th& +1)-st

row-block contains only identity matrices.

Step 3. We are left with enforcing that the remainidg— K — 1 row-blocks offiA; A5
have the desired algebraic structure by multiplying by a further magrixn order to
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preserve the block diagonal structure of the 3¢9 x 3K block of1A; A5, we can only
multiply by a matrixA; whose toB K x 3K is also block diagonal. Therefore, we seek
a matrix Az = [diag\Ny,--- ,Ng),0; sy ---sg ', 1]. In order for the(K + 1)-st
row-block to remain as identity matrices, it is easily verified that= I3 — tx s ',
so we need only compute the values of eggch

For somef > K + 1, let My, be the matrix in positior{f, k) of IA;4, andty
be the vector in positiofif, K + 1). By multiplication byAs, My, is transformed to
My = Mg (T — trr1Sk ) + tysg |, which we may write a8y, + v sy |, where
the only unknown is;. Our requirement on the form of the resulting mattitq Ao Ag
is that for eacty > K + 1 andk > 1 we havec;klM’fk = c;llM'fl for some coefficients
cri. This leads to equations

C;kl(Mfk + kaSkT) = C;f(MJq + vflslT) 9

in which the unknowns are the vectars ..., sx and the coefficients;,gl. Note that
these equations are not linear. However, they may be written in the form

S (mpy o+ Vypsy) = vy 10

o Rk FkSk) = myy + Vs (10)
for suitable known matrice, V¢, € R?*? and vectorsngi, my;, € R°. Multiplying
this equation by a matriky;, € R%*9 such thatl ppmy, = 0 andTVy, = 0 leads
to 5(F — K)K linear equations is; of the formTy,Vyis; = —Tgpmyi. Onces; is
known, one may rearrange (9) so that the equations become linear in the rensaining
and coefficients:s;,/c;1. Notice that there are many alternative ways of solving the
equations in (9). Experimentation showed the the current method performs on par with
other techniques.

3.3 Recovery of the Camera Matrices and of the Nonrigid Shape

After applying the transformation; A5A3 to II, we obtain a matrix that is nominally
of the desired formil’ = [diag(My,...Mp)(C ® I3) | t]. Indeed, the firs& + 1 row
blocks will be exactly of the desired form. However, because of measurement noise, the
remaining blocks, corresponding to projecti(ﬂ}s f=K+2,...,F,wilnotbe, so
we need to correct this.

Consider a fixed fram¢ > K + 1, and letll}; = [M1,...,Msk | ty]. This matrix
will be nominally of the form[cs 1My, ..., cyrMy | ty], but will be corrupted by noise.
Each correspondeneg) = cy,M; may be seen as a set®bilinear equations in the
variablescy, andM;. We arrange the entries of all thig,, into a matrixEg, x, one
column for the entries of eadiy,. The set of all equations (for a fixef) may then
be written asg« x = mycy ' Wherecs ' = (cf1,...,csx) andmy is the vector of
entries of the matri¥ ;. We can then solve fam ; andc; by computing the best rank-
1 approximation ofy . Vectorsm; andcy are computed up to a reciprocal scale
ambiguity, which is all that is possible, as remarked previously.

By this method, we compute all; for f > K + 1 and the corresponding shape
coefficientscyy,. The resulting matriX1” will be exactly in the required true form. A
solution for the shape bas®sand projective depthay, is then obtained by linear
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triangulation using equation (4). Finally, the nonrigid shape is givek By(C ® I3)B,
and the camera matrices &g = [My | ty].

4  Algorithm Justification

In the previous section, a method was given for transforming the niatoithe required
form given in (4). However, there is no justification given that the resulting camera
matrices and nonrigid shape will correspond to the ground truth. For instance, we did
not show that the equations in (9) have a unique solution for the vegtphence the
matrix A3 may not be unique. In this section we show that, under suitable assumptions,
the resulting produdlA; Ao A3 is unique.

To that end, we make various definitions. A matlix= stack(Ily,...,IIr) is said
to be intrue formif it is of the form [diag(My, . .., Mk )(C ® I3) | t], where all matrices
My are invertible. A matrix is said to be icanonical formif it is of the form given in
(8) withtx 1 # 0, and intrue-canonical fornif it satisfies both conditions. We now
state an important result.

Theorem 1. Letl = stack(Il,...,Ir) be a motion matrix, and assume that there
existsA such thatlA is in true form. Subject to possible reordering of the rdwysof

1 and under suitable assumptions of genericity, there exists a mitsxch thatra’

is in true-canonical form. Furthermore, the true-canonical form is unique (for a fixed
ordering of the rowsly).

The meaning of the assumption of genericity will be made clear in the proof. Broadly
speaking, it means that the motion of the camera is sufficiently general and independent
of the shape deformation, and that the shape space is ifdegichensional, spanned
by the K shape bases. In addition we assume that we carifird1 frames such that
no K of the corresponding shape matri&?sare linearly dependent. We will order the
frames so that thesE + 1 frames are numbered. .., K + 1. The firstK shapes will
serve as thdd shape bases.

Granted the truth of this theorem, the algorithm in the previous section will lead to
the correct and unique solution. In particular, the matgixised in ste3 must lead to a
solution in true-canonical form. Therefore, the set of linear equations solved will have
a unique solution.

The proof of Theorem 1 given here is of necessity brief. In a possible expanded
version of this paper we can give more details, and in particular an exact analysis of the
required genericity conditions.

Existence. For the existence part of the proof, it is clear that it is enough to show the
existence of a matrix’ that transforms a true form matrix to one in true-canonical form.
The steps of the proof follow the steps 1-2 of the algorithr§i302, except that we start
with a matrix of the fornil = [diagMy, ..., Mr)(C® I3) | t].

In the first step, the required transformation matrix will be of the fofgy.x ®
I3,t1.x; O7,1]7L. This will exist as long as;.x is invertible, which is the generic
case, meaning that the shape matri{:fe§| f =1,..., K} span the complete shape
space. If not, then we can reorder the frames so that this is so.
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After the first step, the matrix remains in true form. Therefore, dgw- 1 will
be of the formllx.1 = [e1M, -+, cxM, tx41]. We require that ., # 0, other-
wise we rearrange the matricBg so that this is so. The transformation mathix =
diag(ciM, - - -, cxM, 1)~ will transfer the matrix into canonical form. Observe tMas
invertible by our assumption that the matrix is in true form. If one ofdhés zero, this
means that the shapig,, at frameK + 1 is in a space spanned by a proper subset of
the shape bas@&;, which we rule out by an appeal to genericity. Since we started with
a matrix in true form, after these two steps, the matrix is now in true-canonical form.
This completes the existence part of the proof.

Uniqueness. For the uniqueness part of the proof, consider a possible transforma-
tion A3, which transforms a matrik in true-canonical form t@l' = IIAs, also in true-
canonical form. By the same argument ag¥2, the matrixA; must be of the form

A3 = [dianl, v ,NK)7O ; SlT . '-SKT7>\], with A 7é 0 ande = I3 — tK+1S]€T.
Applying this transform to the/-th row-blockIly = [cf1My, ..., cpxMy, ty] Of TI, re-

sults in a new block with entrigg;, = c,M; (I3 —tx 18 ') +tysy . Since this new
row-block must be in true form, for any two indicés< j, k < K, there must exist
constants’,, andc/;; such that’ ;; M}, = ¢';,/M} ;. This leads to

i (epMp(Is—trqase ') +tpsp ') =y (cpMp(Is—trias; ') +tys; 7)), (11)
which may be rewritten as

(criern —cpiCruMyp = Cpp(ty —cpMptria)s; | —cf(ty —cpMptirn)si’ . (12)

SinceM; is a matrix of rank3, and the two terms on the right are of rahkthis is
impossible, unless; ;cyi, — cyjc’y;, = 0 and

ij(tf — kaMftK+1)Sk,T = ka(tf — ijMftK+1)SjT, (13)

where we have used the fact thaf /cs, = c);/c},, to replacec’, by cyy. Since the
factorization of a rank-1 matrix is unique up to scaling the two factors, this relationship
means that one of the following conditions must be true.

1. tx+1 = 0. However, this is ruled out by hypothesis.

2. t; = 0. Ifthisis sofor allf > K + 1 this implies that the position of these cameras
are dependent on the position of the fifStcameras. This is not a generic camera
motion.

3. The vectors andMt . are linearly dependent. However, if this is true for all
f > K +1, then itimplies thaM;ltf is a multiple oft i 1. This is a non-generic
camera motion, sinceMJ:ltf is the position of the camera at franfie

4. Finally, if Mstx1 andty are linearly independent, then in order for the vectors
ty —cppMet g1 andt  —cp;Mrt i1 to differ only by a scale factor, it is necessary
thatcs; = cyi,. This means that th¢-th row-block of I must be of the form
Oy = [cfIs,crls,...,crI3,t5], with all the coefficients:;, the same along this
row. Apart from a constant scale, these are the same set of coefficients as for the
(K + 1)-st row-block, which means that the shape of the scene is the same for this
frame as for framdy + 1. If this is true for allf > K + 1, itimplies that the object
has the same shape, and does not deform for all of the frémed to F'.
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If on the other hand, the deformation of the scene is generic, then none of the con-
ditions given above can be fulfilled. In this case the canonical form is uniquely deter-
mined. This concludes the proof.

5 Affine and Euclidean Shape Reconstruction

Having established the correctness of the proposed reconstruction algorithm, we now
turn to the question of uniqueness of the reconstructed shapes. In particular, we show
that, even though there are ambiguities in the reconstruction of shape bases and shape
coefficients, the reconstructed shape is actually unique. Moreover, we will show that
when K > 2, one may recover the shape up to an affine transformation, which repre-
sents a significant improvement with respect to the ddse 1, where one can only
recover the shape up to a projective transformation.

Affine Shape Reconstruction.As a consequence of the proof of the uniqueness result
of Theorem 1, ifl andIl’ are two matrices in true form, then they are related’oy 114,
whereA is some product of matrices of the form

C®Is30 Is®Iz t Is@M0
A1:|: OT ’ 1:|7 A2: |: 30T N 1:|7 ASZ |: 30T 1:| (14)

(not the same as the matricks A, A3 in §3.2) and their inverses. He@ has dimen-
sion aK x K, and the product matrik may be written ast = [¢' @ M,t; 0T, 1].

In the factorization ol = IIB, the inverse transformations are applie@td he first
of these transformations causes a change of the shape bases through linear combina-
tions. However, it does not change the shape of the p&ipjs To see this, observe that
the corresponding change &ais to replace it by(C’ ® I3)~!B. At the same time, the
coefficients in the representation (4)ofre multiplied byc’. However, from (5X is
unchanged by this operation, sirte- (C ® I3)B = (C® I3)(C' ® I3)(C' ® I3) 'Bso
the matrix(C’ ® I3) cancels with its inverse, leavifgunchanged.

The other two transformations effect an affine transformation of the shape bases.
By an application of the transformatian each of the shape bases may be translated
so that the points it consists of have their centroid at the origin. The resulting recon-
struction will be called “centred”. Since each of the shape bases is centred at the ori-
gin, so will the sets of point¥; at any other frame, since they are linear combina-
tions of the shape bases. If desired, the reconstruaomay be centred by applying
a transformationl — 1A, andB — A, 'B, whereA; ' = [Ix ® I3,—w; 0',1], and
w = stack(W1, ..., Wg) is made up of the centroids;, of the pointsBy1, ..., Byp
in each shape basis . A centred reconstruction is unique up to a common linear trans-
formation of all of the shape bases and a corresponding transformation of each of the
camera matrices.

We see that the reconstruction is unique except for the following ambiguities.

1. Individual scaling applied to each frame independently, as pointed @@t in

2. Individual translations of each of the shape bases. Thus, theréigadd trans-
lation ambiguity in the global reconstruction over all frames. This ambiguity may
be removed by computing a centred reconstruction, or by assuming that the first



Perspective Nonrigid Shape and Motion Recovery 11

translations are zero. However, observe that the obtained translations do not neces-
sarily correspond to the ground truth.

3. Anoverall linear transformation. In the case of calibrated cameras, this is an overall
global rotation with respect to a global coordinate frame, which of course can not
be determined.

Euclidean Shape Reconstruction.If the cameras are calibrated, we may assume that
they are of the fornP; = [R; | — R;t;], where each of thg; is a rotation. In this case,

any initially computed motion matrik will be equivalent (under multiplication by) to
aEuclidean true forrmotion matrix (4), meaning all the; are rotations. Furthermore,

the details of the existence part of Theorem 1 show Ihiatthen equivalent to a Eu-
clidean true-canonical form matrix. Since the true-canonical form is unique, this shows
that Euclidean reconstruction is possible and unigue. Furthermore, the algoriff@n of
will naturally lead virtually without modification to the correct Euclidean solution. The
details are simple to verify.

Autocalibration. It is interesting and somewhat surprising that for> 2 our algo-

rithm gives an affine reconstruction even from uncalibrated cameras. This contrasts with
the rigid motion caseK = 1), where the reconstruction is only projective. It is easily
seen that the affine reconstruction is easily upgraded to a Euclidean reconstruction using
standard linear autocalibration techniques. Indeed in the standard method of stratified
reconstruction and autocalibration the upgrade from projective to affine reconstruction
is difficult, but to upgrade from affine to Euclidean, given mild assumptions on common
parameters of the cameras is simple and linear. Details may be found in [1].

6 Experiments

Synthetic Data. We first evaluate our algorithm on synthetically generated data. The
K = 2,3 shape bases are generated by randomly drawi2gD points uniformly on
[—1,1]x[-1, 1] and then scaling these points with a depth uniformly drawn in the range
of 100-400 units of focal length (u.f.l.). The shape coefficients are also randomly drawn
from a uniform distribution in[—1, 1]. The 3-D points are then generated by taking

a linear combination of the shape bases with the shape coefficients. These points are
rotated and translated according to rigid-body motions with a random axis of rotation
and a random direction of translatioR. = 4 to 6 perspective views are obtained by
projecting these points onto an image withD0 x 1000 pixels. Zero-mean Gaussian
noise with a standard deviation ef € [0, 2] pixels is added to the so-obtained point
correspondences.

We evaluate the accuracy of our algorithm with respect to four factors: amount of
noise, number of shape bases, number of frames, and number of point correspondences.
The performance measures are the angles between the estimated rotations and transla-
tions (M;, t ) and the ground trutti;, t /),

F F
Z arccos trace(Mf Mf) —1)/2), 6y = . ! % Z arccos (t;tf),
f: f=K+1
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averaged over 1000 trials. Note that, due to the reconstruction ambiguities, we assume
that the firstK translations are zero. Moreover, recall that the remaining translations
are computed up to one scale factor per frame, hence the choice of the angle between
the true and estimated translation as an error measure.

Figure 1 shows average error versus amount of noise plots for several choices of
the parameters. The number of points is chosen eithd? as 200, or as twice the
minimum number of points needed to reconstruct the multifocal tensor,R.e>
3t/ H?Il(S — my¢), wherer; € {1,2} defines the tensor profile for theth frame.

As expected, the error increases with the amount of noise and reduces with the num-
ber of points correspondences. However, the error does not necessarily reduce as the
number of frames increases. Wh&h= 2, this can be seen by comparing the curves

for (F, P) = (4,200) and (F, P) = (4,82), with those for(F, P) = (5,200) and

(F, P) = (5,62), respectively. This is because the number of unknowns in the mul-
tifocal tensor increases exponentially with the number of frames, and a number of
nonlinear constraints on the entries of the tensor are neglected when computing and
factorizing this tensor using linear techniques. Notice also by comparing the curves for
(K,F,P) = (2,5,62) and (K, F, P) = (3,5,486) that the error reduces as the num-

ber of shape bases increases. However, the improvement comes at the cost of increasing
the number of points needed. Indeed, when the number of points is increaseg2from

to 200, the performances fofK, F) = (2,5) and (K, F) = (3,5) are comparable.
Finally, notice also that the best existing affine algorithm by Xiao et al. [8] does not
perform well on perspective data. This algorithm requires a minimufm of K2 + K

images, so we only evaluate it fOK', F') = (2, 6). Our algorithm, on the other hand,
requires a minimum number of framesBf> (3K + 1)/2.

—200, profile = [222 1]
=82, profile =[222 1]
200, profile =22 11 1]

200, profile =[222 1]
, P=82, profile =[222 1]
, P=200, profile=[22111]
62, profile=[22111]
486, profile =[222 2 2]

FHi

—62, profile =[2211 1]
=486, profile = (2222 2]
=200, Xiao-Kanade
=46, Xiao-Kanade
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Fig. 1. Reconstruction errors as a function of noise, number of shape basis, number of frames,
and number of point correspondences.

Real Data. We now test the performance of our algorithm on a video sequence con-
taining two hands moving in front of a static background shown in Fig. 2. The sequence
is taken from [13], and consists éf = 5 views taken by a moving camera observing

8 points on the static background and another 32 points on the gesturing hands. The 8-
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point algorithm was used to compute the ground truth camera motion from the 8 static
points. We then applied our algorithm and the algebraic algorithm of [13kfor 2
shape basis an# = 5 views. We chose the first image as the reference. The errors in
the estimation of the rotations are shown in Table 6. Note that our algorithm outper-
forms that in [13] for 3 out of 4 frames. Translation errors are not computed, as with
real sequences one cannot assume zero translations for the fiates.

Fig. 2. Frames 1-5 of a sequence of gesturing hands used in [13].

Table 1. Errors in the estimation of the rotations for a sequence of gesturing hands.

Frame 2 3 4 5
Quintifocal method [13D.1644 5.9415 2.5508 54.5860
Our method 5.5174 0.6773 0.1642 27.1583

7 Discussion and Conclusions

We have presented several theoretical results pertaining to the nonrigid shape and mo-
tion problem from multiple perspective views. Most notably, we have shown that a
highly multilinear problem admits a closed form, linear solution. Furthermore, we high-
lighted several similarities and differences between the rigid and nonrigid case.

While our theoretical framework does provide an algorithm for solving the recon-
struction problem, we did not explore algorithmic aspects in this paper, such as robust-
ness to noise or outliers. The reader can see that our proposed method is very simple,
involving essentially a series of matrix multiplications. Each one of those steps can be
made robust. We argue that the real bottleneck with the current method is not in our ap-
proach, but rather in the tensor estimation and factorization approach of [14]. Improving
on the robustness of these methods is an interesting avenue for future research.
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