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Abstract. We present a closed form solution to the nonrigid shape and motion
(NRSM) problem from point correspondences in multiple perspective uncali-
brated views. Under the assumption that the nonrigid object deforms as a linear
combination ofK rigid shapes, we show that the NRSM problem can be viewed
as a reconstruction problem from multiple projections fromP3K to P2. There-
fore, one can linearly solve for the projection matrices by factorizing a multifocal
tensor. However, this projective reconstruction inP3K does not satisfy the con-
straints of the NRSM problem, because it is computed only up to a projective
transformation inP3K . Our key contribution is to show that, by exploiting alge-
braic dependencies among the entries of the projection matrices, one can upgrade
the projective reconstruction to determine the affine configuration of the points in
R3, and the motion of the camera relative to their centroid. Moreover, ifK ≥ 2,
then either by using calibrated cameras, or by assuming a camera with fixed in-
ternal parameters, it is possible to compute the Euclidean structure by a closed
form method.

1 Introduction

Structure from motion (SfM) refers to the problem of reconstructing a 3-D rigid scene
from multiple 2-D images taken by a moving camera. This is a well studied problem
in computer vision (see for instance [1, 2]), which has found numerous applications
in image-based modeling, human-computer interaction, robot navigation, vision-based
control, etc.

A fundamental limitation of classical SfM algorithms is that they cannot be applied
to scenes containing nonrigid objects, such as scenes containing articulated motions,
facial expressions, hand gestures, etc. This has motivated the development of a family
of methods where a movingaffine calibratedcamera observes a nonrigid shape that
deforms as a linear combination ofK rigid shapes with time varying coefficients [3–
8]. This assumption allows one to recover nonrigid shape and motion (NRSM) using
extensions of the classical rigid factorization algorithm of Tomasi and Kanade [9]. For
instance, Bregler et al. [5] use multiple matrix factorizations to enforce orthonormal-
ity constraints on camera rotations. Brand [3] uses a non-linear optimization method
called flexible factorization. Torresani et al. [7] use a trilinear optimization algorithm
that alternates between the computation of shape bases, shape coefficients, and camera
rotations. Xiao et al. [8] provide a characterization of the space of ambiguous solu-
tions as well as a closed form solution by enforcing additionalshape constraintson the
shape bases. Their solution not only applies to shapes of full rank three, but can also be
extended to degenerate rank one and two shapes, as shown in [10].
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An important assumption made by these approaches is that the projection model is
affineand the camera iscalibrated. One way of extending affine methods to the pro-
jective case is to alternate between the estimation of the projective depths and the esti-
mation of shape and motion, similarly to the Sturm and Triggs algorithm [11]. This ap-
proach was indeed explored in [12] for the NRSM problem. However, it is well known
that iterative schemes are often very sensitive to initialization. In the rigid case the pro-
jective depths can be initialized using algebraic methods based on two-view geometry.
In the nonrigid case, the situation is obviously not as straightforward, and hence the
method of [12] simply assumes the initial depths to be all equal to one. To the best
of our knowledge, the only existing algebraic solution to the perspective NRSM prob-
lem can be found in [13], where it is shown that the problem is solvable for a number
of viewsF in the range(3K + 1)/2 ≤ F ≤ (3K + 1). However, the algorithm for
computing shape and motion relies on the factorization of a quintifocal tensor, and is
applicable only in the case of two shape bases seen in five calibrated perspective views.

In this paper, we present a closed form solution to nonrigid shape and motion recov-
ery for an arbitrary number of shape basesK and an arbitrary numberF of perspective
uncalibrated views in the range(3K + 1)/2 ≤ F ≤ (3K + 1). Our solution exploits
the fact that the NRSM problem can be viewed as a reconstruction problem fromP3K

to P2 where the projection matrices have a particular structure. As shown in [14], the
camera projections associated with any reconstruction problem fromPn to Pm can be
computed in closed form from the factorization of a multifocal tensor. However, the
projection matrices computed by this method do not necessarily conform with the par-
ticular structure of the NRSM problem, because they are computed up to a projective
transformation inP3K only. The main contribution of our work is to show that one can
solve for the projective transformation, and hence for the camera matrices, shape basis,
and shape coefficients, in closed form using linear algebraic techniques which do not
require the use of iteration. More specifically, we show that the NRSM problem can be
solved as follows:

1. Linearly compute a multifocal tensor from point correspondences in multiple views
of a nonrigid object.

2. Factorize the multifocal tensor intoP3K → P2 projection matrices, defined up to a
common projective transformation ofP3K .

3. Compute a normalizing projective transformation by enforcing internal constraints
on the projection matrices.

4. Compute the camera matrices, shape basis and shape coefficients from the normal-
ized projection matrices.

Using this method, we find the following results, when the number of shape bases
is K ≥ 2.

1. The structure of the point set may be determined in each frame, up to an affine
transformation common to all frames. This is in contrast with the classic recon-
struction problem with a single shape basis, where the structure may be computed
only up to a projective transformation.

2. If the cameras are calibrated, or have constant internal parameters, then the Eu-
clidean shape may be determined by closed form or linear techniques.
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3. Since the points are potentially moving (within the space spanned by theK shape
bases), it is possible to determine the camera motion only relative to the moving
points, and up to an individual scaling in each frame. This is the only ambiguity of
the reconstruction (other than a choice of the affine or Euclidean coordinate frame).
If the points are assumed to be centred at the origin, then the camera motion is
uniquely determined apart from a scale within the affine or Euclidean coordinate
frame.

Paper Contributions. This paper gives the first non-iterative solution for the general
nonrigid perspective structure-from-motion problem. Because of the deterministic na-
ture of the algorithm, it is guaranteed to find the correct solution at least for noise-free
data. This is not the case with previous iterative algorithms. (For the difficulties in-
volved with such iterative methods, see for instance [15].) Further, our analysis allows
us to discover the fundamental ambiguities and limitations of NRSM, both in the affine
and perspective cases. Our results clarify and complete the previous results on the am-
biguities of affine NRSM given in [16, 13].

2 Nonrigid Shape and Motion Problem

Notation. We make extensive use of the Kronecker or tensor productA ⊗ B, whereA
andB are matrices. This tensor product is given by

A⊗ B =

 a11B . . . a1nB
...

...
...

am1B . . . amnB

 ,

where theaij are the elements ofA. A basic property is that(A⊗B) (C⊗D) = (AC)⊗(BD)
whenever the dimensions are compatible so that this equality makes sense. Conse-
quently, ifA andB are square, then(A⊗ B)−1 = A−1 ⊗ B−1.

We use the notationstack(. . .) to represent the matrix or vector created by stacking
its arguments (matrices or vectors) vertically.

Bold font (X,x) is used to represent vectors (one-dimensional arrays) and type-
writer font (A, W, . . .) to represent matrices (two-dimensional arrays). Given a homoge-
neous vector, such asx or X, the corresponding non-homogeneous vector is denoted
with a hat, such aŝx or X̂. Notation such asΠa:b represents rowsa to b of Π.

Finally, for inline representation of simple matrices, we use the notation[a, b ; c, d],
where the elements are listed in row major order, rows separated by a semi-colon.

Problem statement.Let {xfp ∈ P2 | p = 1, . . . , P ; f = 1, . . . , F} be the perspective
projections ofP (possibly moving) 3-D points{Xfp ∈ P3} onto F frames from a
moving camera. LetPf =

[
Mf tf

]
∈ R3×4 be thecamera matrixassociated with frame

f . Then

λfpxfp = PfXfp, (1)
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whereλfp is an unknown scale factor, calledprojective depth. It follows that

W =

 λ11x11 · · ·λ1P x1P

...
...

λF1xF1 · · ·λFP xFP

 =

 P1X1

...
PF XF

 , (2)

whereXf =
[
Xf1 Xf2 · · · XfP

]
∈ R4×P is called thestructure matrixand is formed

from the homogeneous coordinates of all theP points in thef -th frame.
The structure from motion problem(SfM) refers to the problem of recovering the

camera matricesPf , and the structure matricesXf from measurements of the image
point trajectoriesxfp. Without some restriction on the moving 3-D points, the SfM
problem is of course not solvable.

When theP points lie on a rigid stationary object, the structure matrices are equal,
that isX1 = X2 = · · · = XF = X. Hence, given the depths one can factorizeW into
a motion matrixΠ ∈ R3F×4 and a structure matrixX ∈ R4×P asW = ΠX. This rank
constraint has been the basis for all factorization-based algorithms, e.g. [9, 11]. In fact,
one can solve the SfM problem by alternating between the estimation of the depths,
and the estimation of motion and structure [17], though care must be taken to avoid
converging to trivial solutions [15].

In this paper we study the case where the 3-D points lie on a nonrigid object, thereby
allowing the 3-D pointsXfp to move as a function of time. As suggested in [3–7], we
assume that theP points deform as a linear combination of a fixed set ofK rigid shape
bases with time varying coefficients. That is,X̂f =

∑K
k=1 cfkB̂k, where the matrix

X̂f = [X̂f1 · · · X̂fP ] ∈ R3×P is the object shapeat framef , the matrices{B̂k =[
B̂k1 · · · B̂kP

]
∈ R3×P } are theshape basesand{cfk ∈ R} are theshape coefficients.

Under this deformation model, the projection equation (1) can be rewritten as a
projection equation fromP3K to P2 of the form

λfpxfp = Mf

K∑
k=1

(cfkB̂kp) + tf =
[
cf1Mf · · · cfKMf tf

]


B̂1p

...
B̂Kp

1

 = ΠfBp. (3)

Therefore, the matrix of image measurementsW in (2) can be factorized into the product
of a motion matrixΠ ∈ R3F×(3K+1) and a basis matrixB ∈ R(3K+1)×P as

W =

 λ11x11 · · ·λ1P x1P

...
...

λF1xF1 · · ·λFP xFP

 =

 c11M1 · · · c1KM1 t1

...
...

...
cF1MF · · · cFKMF tF



B̂1

...
B̂K

1>

 = ΠB . (4)

Note that the motion matrixΠ has the formΠ = [diag(M1, . . . , MF )(C ⊗ I3) | t],
wheret = stack(t1, . . . , tF ). Furthermore, given the factorization in this form, we
may read off the camera matricesPf = [Mf | tf ] and the 3-D points from

stack(X̂1, . . . , X̂F ) = (C⊗ I3)stack(B̂1, . . . , B̂K) . (5)
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Note here, however, a basic ambiguity: the individual projection matrices can be de-
termined fromΠ only up to independent scale factors, since scalingMf can be balanced
by a corresponding inverse scaling to the corresponding row of the coefficient matrixC.

Iterative methods. The rank constraint implied by (4) has been the basis for exist-
ing projective NRSM algorithms. As shown in [12], when the depths are known, the
shape coefficients and shape basis may be computed from the factorization ofW using
a factorization technique similar to that in [8] for affine cameras. In [12], they solve the
perspective reconstruction problem by alternately solving for the depths and the shape
and motion parameters, in a similar way to [17]. In this paper, we seek an alternative
purely algebraic solution to the problem that does not rely on any iterative optimization.
In doing so, we are able to determine exactly what it is possible to compute uniquely,
and what are the unavoidable ambiguities.

3 Nonrigid Shape and Motion Recovery

In this section, we propose a closed form solution to the NRSM problem from mul-
tiple perspective views. The key to our approach is to observe from equation (3) that
the NRSM problem is a particular case of a reconstruction problem fromP3K to P2.
This interpretation will allow us to solve directly for the motion matrixΠ in (4) up to a
projective transformation inP3K×3K , as we will show in§3.1. We will then propose an
extremely simple linear algorithm for recovering the unknown projective transforma-
tion, hence the original camera matrices inP3×2, shape bases, and shape coefficients.

3.1 Recovery of the Projection MatricesP3K → P2

While factorization methods such as [9, 18, 8] are commonly used in affine reconstruc-
tion problems involving affine or orthographic cameras, they are not so useful for recon-
struction from perspective cameras, since they require iterative estimation of the depth
values [11, 17]. For such problems an alternative is to use tensor-based methods. The
standard methods used for rigid structure and motion problems involve the fundamental
matrix, trifocal or quadrifocal tensors [1]. It was shown in [14] that these tensor based
methods can be extended to projections between projective spacesPn andPm of arbi-
trary dimensions withn > m. We will rely heavily on this method. In the particular
case of relevance to the current problem,n = 3K andm = 2.

In brief, given a suitable number of projectionsPn → Pm, we may compute a
tensor that relates the coordinates of matching image pointsxfp in Pm. This tensor may
be computed linearly, and from it the set of projection matricesΠf may be extracted
using non-iterative techniques. Subsequently, pointsBp in Pn may be computed by
triangulation such thatλfpxfp = ΠfBp. Here, pointsBp and the corresponding image
pointsxfp are expressed in homogeneous coordinates and theλfp are unknown scale
factors, which do not need to be known for this reconstruction to be computed.

One may stack the projection matricesΠf as well as the pointsxfp on top of each
other and form an equation

W = stack(Π1, . . . , ΠF )[B1 . . .BP ] = ΠB , (6)
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which is of exactly the same form as the type of decomposition formulated in (4). It was
shown in [14] that this factorizationΠB is unique except for the (non-significant) mul-
tiplication of each of the camera matricesΠf by an arbitrary scale factorkf and except
for modifyingΠB to ΠAA−1B, whereA ∈ R(3K+1)×(3K+1) is an invertible matrix. This
is exactly analogous to the affine ambiguity inherent in affine factorization algorithms.
However, here the matrixA represents aprojectivetransformation, since we are using
homogeneous coordinates. Thus, using tensors, we may achieve a similar factorization
in the projective case as that computed by linear methods in the affine case. The only
difference is that the number of views that may be used is restricted.

In the case of projective nonrigid motion, the image projection may be expressed
asΠf : P3K → P2 and a factorizationW = ΠB may be computed from any number of
views between(3K + 1)/2 and3K + 1 (see [13]) using the tensor method. However,
this does not produce a solution of the particular required form, given in (4) and it
is impossible to extract the individualP3 → P2 projection matrices immediately. We
need to do some more work to find a matrixA that transforms eachΠf into the correct
form. However, as will be seen, we gain from this since the remaining ambiguity is only
affine or Euclidean (for calibrated cameras). Thus affine or Euclidean reconstruction is
possible. How we enforce the correct form on the projection matricesΠf will be the
main focus of the rest of this paper.

3.2 Recovery of the Projective Transformation

As a result of our analysis in the previous subsection, at this point we have computed a
projection matrixΠ ∈ R3F×(3K+1). Our task is to transform this projection matrix by a
matrixA ∈ R(3K+1)×(3K+1) such thatΠA is of the form[diag(M1, . . . , MF )(C⊗ I3) | t]
given in (4). To that end, we use the following steps.

Step 1. We assume that the matrixΠ is full rank and, without loss of generality, that
the top3K × 3K block of Π is non-singular. Hence, if we multiplyΠ by A1, where
A−1
1 = [Π1:K ; 0>, 1], we arrive at a matrix of a new form in which

(ΠA1)1:K =
[
IK ⊗ I3 0

]
. (7)

At this point, the firstK row-blocks (in the block-representation) ofΠA1 are of the
desired form, but the remaining rows may be arbitrary.

Step 2. We multiply the matrixΠA1 by the block-diagonal matrixA2, given byA2 =
diag(MK+1,1, . . . , MK+1,K , 1)−1. Here the matricesMK+1,k, k = 1, . . . ,K, are ob-
tained from the(K +1)-st row-block ofΠA1. Under a suitable assumption of genericity,
these matrices will be non-singular, as will be seen in the proof of Theorem 1 below.
This results in a matrix such that

(ΠA1A2)1:K+1 = diag(M1, . . . , MK , I3)
[
IK ⊗ I3 0
I3 · · · I3 tK+1

]
, (8)

where now the firstK+1 row-blocks ofΠA1A2 are in the desired form and the(K+1)-st
row-block contains only identity matrices.

Step 3. We are left with enforcing that the remainingF −K − 1 row-blocks ofΠA1A2

have the desired algebraic structure by multiplying by a further matrixA3. In order to
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preserve the block diagonal structure of the top3K × 3K block ofΠA1A2, we can only
multiply by a matrixA3 whose top3K×3K is also block diagonal. Therefore, we seek
a matrix A3 = [diag(N1, · · · , NK),0 ; s1

> · · · sK
>, 1]. In order for the(K + 1)-st

row-block to remain as identity matrices, it is easily verified thatNk = I3 − tK+1sk
>,

so we need only compute the values of eachsk.
For somef > K + 1, let Mfk be the matrix in position(f, k) of ΠA1A2, andtf

be the vector in position(f,K + 1). By multiplication byA3, Mfk is transformed to
M′fk = Mfk(I3 − tK+1sk

>) + tfsk
>, which we may write asMfk + vfksk

>, where
the only unknown issk. Our requirement on the form of the resulting matrixΠA1A2A3

is that for eachf > K + 1 andk > 1 we havec−1
fk M

′
fk = c−1

f1 M
′
f1 for some coefficients

cfk. This leads to equations

c−1
fk (Mfk + vfksk

>) = c−1
f1 (Mf1 + vf1s1

>) (9)

in which the unknowns are the vectorss1, . . . , sK and the coefficientsc−1
fk . Note that

these equations are not linear. However, they may be written in the form

cf1

cfk
(mfk + Vfksk) = mf1 + Vf1s1 (10)

for suitable known matricesVf1, Vfk ∈ R9×3 and vectorsmf1,mfk ∈ R9. Multiplying
this equation by a matrixΓfk ∈ R5×9 such thatΓfkmfk = 0 andΓfkVfk = 0 leads
to 5(F − K)K linear equations ins1 of the formΓfkVf1s1 = −Γfkmf1. Onces1 is
known, one may rearrange (9) so that the equations become linear in the remainingsk

and coefficientscfk/cf1. Notice that there are many alternative ways of solving the
equations in (9). Experimentation showed the the current method performs on par with
other techniques.

3.3 Recovery of the Camera Matrices and of the Nonrigid Shape

After applying the transformationA1A2A3 to Π, we obtain a matrix that is nominally
of the desired formΠ′ = [diag(M1, . . . MF )(C ⊗ I3) | t]. Indeed, the firstK + 1 row
blocks will be exactly of the desired form. However, because of measurement noise, the
remaining blocks, corresponding to projectionsΠ′f , f = K + 2, . . . , F , will not be, so
we need to correct this.

Consider a fixed framef > K + 1, and letΠ′f = [Mf1, . . . , MfK | tf ]. This matrix
will be nominally of the form[cf1Mf , . . . , cfKMf | tf ], but will be corrupted by noise.
Each correspondenceMfk = cfkMf may be seen as a set of9 bilinear equations in the
variablescfk andMf . We arrange the entries of all theMfk into a matrixE9×K , one
column for the entries of eachMfk. The set of all equations (for a fixedf ) may then
be written asE9×K = mfcf

> wherecf
> = (cf1, . . . , cfK) andmf is the vector of

entries of the matrixMf . We can then solve formf andcf by computing the best rank-
1 approximation ofE9×K . Vectorsmf andcf are computed up to a reciprocal scale
ambiguity, which is all that is possible, as remarked previously.

By this method, we compute allMf for f > K + 1 and the corresponding shape
coefficientscfk. The resulting matrixΠ′′ will be exactly in the required true form. A
solution for the shape basesB and projective depthsλfp is then obtained by linear
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triangulation using equation (4). Finally, the nonrigid shape is given byX̂ = (C⊗ I3)B̂,
and the camera matrices arePf = [Mf | tf ].

4 Algorithm Justification

In the previous section, a method was given for transforming the matrixΠ to the required
form given in (4). However, there is no justification given that the resulting camera
matrices and nonrigid shape will correspond to the ground truth. For instance, we did
not show that the equations in (9) have a unique solution for the vectorssk, hence the
matrixA3 may not be unique. In this section we show that, under suitable assumptions,
the resulting productΠA1A2A3 is unique.

To that end, we make various definitions. A matrixΠ = stack(Π1, . . . , ΠF ) is said
to be intrue formif it is of the form [diag(M1, . . . , MK)(C⊗ I3) | t], where all matrices
Mf are invertible. A matrix is said to be incanonical formif it is of the form given in
(8) with tK+1 6= 0, and intrue-canonical formif it satisfies both conditions. We now
state an important result.

Theorem 1. Let Π = stack(Π1, . . . , ΠF ) be a motion matrix, and assume that there
existsA such thatΠA is in true form. Subject to possible reordering of the rowsΠf of
Π and under suitable assumptions of genericity, there exists a matrixA′ such thatΠA′

is in true-canonical form. Furthermore, the true-canonical form is unique (for a fixed
ordering of the rowsΠf ).

The meaning of the assumption of genericity will be made clear in the proof. Broadly
speaking, it means that the motion of the camera is sufficiently general and independent
of the shape deformation, and that the shape space is indeedK-dimensional, spanned
by theK shape bases. In addition we assume that we can findK + 1 frames such that
noK of the corresponding shape matricesX̂f are linearly dependent. We will order the
frames so that theseK + 1 frames are numbered1, . . . ,K + 1. The firstK shapes will
serve as theK shape bases.

Granted the truth of this theorem, the algorithm in the previous section will lead to
the correct and unique solution. In particular, the matrixA3 used in step3 must lead to a
solution in true-canonical form. Therefore, the set of linear equations solved will have
a unique solution.

The proof of Theorem 1 given here is of necessity brief. In a possible expanded
version of this paper we can give more details, and in particular an exact analysis of the
required genericity conditions.

Existence. For the existence part of the proof, it is clear that it is enough to show the
existence of a matrixA′ that transforms a true form matrix to one in true-canonical form.
The steps of the proof follow the steps 1–2 of the algorithm of§3.2, except that we start
with a matrix of the formΠ = [diag(M1, . . . , MF )(C⊗ I3) | t].

In the first step, the required transformation matrix will be of the form[ C1:K ⊗
I3, t1:K ; 0>, 1 ]−1. This will exist as long asC1:K is invertible, which is the generic
case, meaning that the shape matrices{X̂f | f = 1, . . . ,K} span the complete shape
space. If not, then we can reorder the frames so that this is so.
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After the first step, the matrix remains in true form. Therefore, rowK + 1 will
be of the formΠK+1 = [c1M, · · · , cKM, tK+1]. We require thattK+1 6= 0, other-
wise we rearrange the matricesΠf so that this is so. The transformation matrixA2 =
diag(c1M, · · · , cKM, 1)−1 will transfer the matrix into canonical form. Observe thatM is
invertible by our assumption that the matrix is in true form. If one of theck is zero, this
means that the shapêXK+1 at frameK + 1 is in a space spanned by a proper subset of
the shape baseŝBk, which we rule out by an appeal to genericity. Since we started with
a matrix in true form, after these two steps, the matrix is now in true-canonical form.
This completes the existence part of the proof.

Uniqueness. For the uniqueness part of the proof, consider a possible transforma-
tion A3, which transforms a matrixΠ in true-canonical form toΠ′ = ΠA3, also in true-
canonical form. By the same argument as in§3.2, the matrixA3 must be of the form
A3 = [diag(N1, · · · , NK),0 ; s1

> · · · sK
>, λ], with λ 6= 0 andNk = I3 − tK+1sk

>.
Applying this transform to thef -th row-blockΠf = [cf1Mf , . . . , cfKMf , tf ] of Π, re-
sults in a new block with entriesM′fk = cfkMf (I3−tK+1sk

>)+tfsk
>. Since this new

row-block must be in true form, for any two indices1 ≤ j, k ≤ K, there must exist
constantsc′fk andc′fj such thatc′−1

fk M
′
fk = c′

−1
fj M

′
fj . This leads to

c′fj

(
cfkMf (I3−tK+1sk

>) + tfsk
>)

= c′fk

(
cfjMf (I3−tK+1sj

>) + tfsj
>)

, (11)

which may be rewritten as

(c′fjcfk − cfjc
′
fk)Mf = c′fk(tf − cfjMftK+1)sj

>− c′fj(tf − cfkMftK+1)sk
> . (12)

SinceMf is a matrix of rank3, and the two terms on the right are of rank1, this is
impossible, unlessc′fjcfk − cfjc

′
fk = 0 and

cfj(tf − cfkMftK+1)sk
> = cfk(tf − cfjMftK+1)sj

>, (13)

where we have used the fact thatcfj/cfk = c′fj/c′fk to replacec′fk by cfk. Since the
factorization of a rank-1 matrix is unique up to scaling the two factors, this relationship
means that one of the following conditions must be true.

1. tK+1 = 0. However, this is ruled out by hypothesis.
2. tf = 0. If this is so for allf > K +1 this implies that the position of these cameras

are dependent on the position of the firstK cameras. This is not a generic camera
motion.

3. The vectorstf andMftK+1 are linearly dependent. However, if this is true for all
f > K + 1, then it implies thatM−1

f tf is a multiple oftK+1. This is a non-generic

camera motion, since−M−1
f tf is the position of the camera at framef .

4. Finally, if MftK+1 andtf are linearly independent, then in order for the vectors
tf −cfkMftK+1 andtf −cfjMftK+1 to differ only by a scale factor, it is necessary
that cfj = cfk. This means that thef -th row-block of Π must be of the form
Πf = [cfI3, cfI3, . . . , cfI3, tf ], with all the coefficientscfk the same along this
row. Apart from a constant scale, these are the same set of coefficients as for the
(K + 1)-st row-block, which means that the shape of the scene is the same for this
frame as for frameK +1. If this is true for allf > K +1, it implies that the object
has the same shape, and does not deform for all of the framesK + 1 to F .
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If on the other hand, the deformation of the scene is generic, then none of the con-
ditions given above can be fulfilled. In this case the canonical form is uniquely deter-
mined. This concludes the proof.

5 Affine and Euclidean Shape Reconstruction

Having established the correctness of the proposed reconstruction algorithm, we now
turn to the question of uniqueness of the reconstructed shapes. In particular, we show
that, even though there are ambiguities in the reconstruction of shape bases and shape
coefficients, the reconstructed shape is actually unique. Moreover, we will show that
whenK ≥ 2, one may recover the shape up to an affine transformation, which repre-
sents a significant improvement with respect to the caseK = 1, where one can only
recover the shape up to a projective transformation.

Affine Shape Reconstruction.As a consequence of the proof of the uniqueness result
of Theorem 1, ifΠ andΠ′ are two matrices in true form, then they are related byΠ′ = ΠA,
whereA is some product of matrices of the form

A1 =
[
C′ ⊗ I3 0

0> 1

]
, A2 =

[
I3 ⊗ I3 t

0> 1

]
, A3 =

[
I3 ⊗ M 0
0> 1

]
(14)

(not the same as the matricesA1, A2, A3 in §3.2) and their inverses. HereC′ has dimen-
sion aK ×K, and the product matrixA may be written asA = [C′ ⊗ M, t ; 0>, 1].

In the factorization ofW = ΠB, the inverse transformations are applied toB. The first
of these transformations causes a change of the shape bases through linear combina-
tions. However, it does not change the shape of the pointsXfp. To see this, observe that
the corresponding change tôB is to replace it by(C′ ⊗ I3)−1B̂. At the same time, the
coefficients in the representation (4) ofΠ are multiplied byC′. However, from (5)X is
unchanged by this operation, sinceX̂ = (C⊗ I3)B̂ = (C⊗ I3)(C′⊗ I3)(C′⊗ I3)−1B̂ so
the matrix(C′ ⊗ I3) cancels with its inverse, leavinĝX unchanged.

The other two transformations effect an affine transformation of the shape bases.
By an application of the transformationA2 each of the shape bases may be translated
so that the points it consists of have their centroid at the origin. The resulting recon-
struction will be called “centred”. Since each of the shape bases is centred at the ori-
gin, so will the sets of pointsXf at any other frame, since they are linear combina-
tions of the shape bases. If desired, the reconstructionΠB may be centred by applying
a transformationΠ → ΠA4 andB → A−1

4 B, whereA−1
4 = [IK ⊗ I3,−w ; 0>, 1], and

ŵ = stack(ŵ1, . . . , ŵK) is made up of the centroidŝwk of the pointsB̂k1, . . . , B̂kP

in each shape basiŝBk. A centred reconstruction is unique up to a common linear trans-
formation of all of the shape bases and a corresponding transformation of each of the
camera matrices.

We see that the reconstruction is unique except for the following ambiguities.

1. Individual scaling applied to each frame independently, as pointed out in§2.
2. Individual translations of each of the shape bases. Thus, there is aK-fold trans-

lation ambiguity in the global reconstruction over all frames. This ambiguity may
be removed by computing a centred reconstruction, or by assuming that the firstK
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translations are zero. However, observe that the obtained translations do not neces-
sarily correspond to the ground truth.

3. An overall linear transformation. In the case of calibrated cameras, this is an overall
global rotation with respect to a global coordinate frame, which of course can not
be determined.

Euclidean Shape Reconstruction.If the cameras are calibrated, we may assume that
they are of the formPi = [Ri | − Riti], where each of theRi is a rotation. In this case,
any initially computed motion matrixΠ will be equivalent (under multiplication byA) to
aEuclidean true formmotion matrix (4), meaning all theMf are rotations. Furthermore,
the details of the existence part of Theorem 1 show thatΠ is then equivalent to a Eu-
clidean true-canonical form matrix. Since the true-canonical form is unique, this shows
that Euclidean reconstruction is possible and unique. Furthermore, the algorithm of§3
will naturally lead virtually without modification to the correct Euclidean solution. The
details are simple to verify.

Autocalibration. It is interesting and somewhat surprising that forK ≥ 2 our algo-
rithm gives an affine reconstruction even from uncalibrated cameras. This contrasts with
the rigid motion case (K = 1), where the reconstruction is only projective. It is easily
seen that the affine reconstruction is easily upgraded to a Euclidean reconstruction using
standard linear autocalibration techniques. Indeed in the standard method of stratified
reconstruction and autocalibration the upgrade from projective to affine reconstruction
is difficult, but to upgrade from affine to Euclidean, given mild assumptions on common
parameters of the cameras is simple and linear. Details may be found in [1].

6 Experiments

Synthetic Data. We first evaluate our algorithm on synthetically generated data. The
K = 2, 3 shape bases are generated by randomly drawingP 2-D points uniformly on
[−1, 1]×[−1, 1] and then scaling these points with a depth uniformly drawn in the range
of 100-400 units of focal length (u.f.l.). The shape coefficients are also randomly drawn
from a uniform distribution in[−1, 1]. The 3-D points are then generated by taking
a linear combination of the shape bases with the shape coefficients. These points are
rotated and translated according to rigid-body motions with a random axis of rotation
and a random direction of translation.F = 4 to 6 perspective views are obtained by
projecting these points onto an image with1000 × 1000 pixels. Zero-mean Gaussian
noise with a standard deviation ofσ ∈ [0, 2] pixels is added to the so-obtained point
correspondences.

We evaluate the accuracy of our algorithm with respect to four factors: amount of
noise, number of shape bases, number of frames, and number of point correspondences.
The performance measures are the angles between the estimated rotations and transla-
tions(M̂f , t̂f ) and the ground truth(Mf , tf ),

θM =
1
F

F∑
f=1

arccos
(
(trace(M̂

>
f Mf )− 1)/2

)
, θt =

1
F −K

F∑
f=K+1

arccos
(
t̂
>
f tf

)
,
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averaged over 1000 trials. Note that, due to the reconstruction ambiguities, we assume
that the firstK translations are zero. Moreover, recall that the remaining translations
are computed up to one scale factor per frame, hence the choice of the angle between
the true and estimated translation as an error measure.

Figure 1 shows average error versus amount of noise plots for several choices of
the parameters. The number of points is chosen either asP = 200, or as twice the
minimum number of points needed to reconstruct the multifocal tensor, i.e.,P ≥
3F /

∏F
f=1(3 − πf ), whereπf ∈ {1, 2} defines the tensor profile for thef -th frame.

As expected, the error increases with the amount of noise and reduces with the num-
ber of points correspondences. However, the error does not necessarily reduce as the
number of frames increases. WhenK = 2, this can be seen by comparing the curves
for (F, P ) = (4, 200) and (F, P ) = (4, 82), with those for(F, P ) = (5, 200) and
(F, P ) = (5, 62), respectively. This is because the number of unknowns in the mul-
tifocal tensor increases exponentially with the number of frames, and a number of
nonlinear constraints on the entries of the tensor are neglected when computing and
factorizing this tensor using linear techniques. Notice also by comparing the curves for
(K, F, P ) = (2, 5, 62) and(K, F, P ) = (3, 5, 486) that the error reduces as the num-
ber of shape bases increases. However, the improvement comes at the cost of increasing
the number of points needed. Indeed, when the number of points is increased from62
to 200, the performances for(K, F ) = (2, 5) and (K, F ) = (3, 5) are comparable.
Finally, notice also that the best existing affine algorithm by Xiao et al. [8] does not
perform well on perspective data. This algorithm requires a minimum ofF ≥ K2 + K
images, so we only evaluate it for(K, F ) = (2, 6). Our algorithm, on the other hand,
requires a minimum number of frames ofF ≥ (3K + 1)/2.

Fig. 1. Reconstruction errors as a function of noise, number of shape basis, number of frames,
and number of point correspondences.

Real Data. We now test the performance of our algorithm on a video sequence con-
taining two hands moving in front of a static background shown in Fig. 2. The sequence
is taken from [13], and consists ofF = 5 views taken by a moving camera observing
8 points on the static background and another 32 points on the gesturing hands. The 8-
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point algorithm was used to compute the ground truth camera motion from the 8 static
points. We then applied our algorithm and the algebraic algorithm of [13] forK = 2
shape basis andF = 5 views. We chose the first image as the reference. The errors in
the estimation of the rotations are shown in Table 6. Note that our algorithm outper-
forms that in [13] for 3 out of 4 frames. Translation errors are not computed, as with
real sequences one cannot assume zero translations for the firstK frames.

Fig. 2.Frames 1-5 of a sequence of gesturing hands used in [13].

Table 1.Errors in the estimation of the rotations for a sequence of gesturing hands.

Frame 2 3 4 5
Quintifocal method [13]0.1644◦ 5.9415◦ 2.5508◦ 54.5860◦

Our method 5.5174◦ 0.6773◦ 0.1642◦ 27.1583◦

7 Discussion and Conclusions

We have presented several theoretical results pertaining to the nonrigid shape and mo-
tion problem from multiple perspective views. Most notably, we have shown that a
highly multilinear problem admits a closed form, linear solution. Furthermore, we high-
lighted several similarities and differences between the rigid and nonrigid case.

While our theoretical framework does provide an algorithm for solving the recon-
struction problem, we did not explore algorithmic aspects in this paper, such as robust-
ness to noise or outliers. The reader can see that our proposed method is very simple,
involving essentially a series of matrix multiplications. Each one of those steps can be
made robust. We argue that the real bottleneck with the current method is not in our ap-
proach, but rather in the tensor estimation and factorization approach of [14]. Improving
on the robustness of these methods is an interesting avenue for future research.
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