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Abstract

We consider the least-squares (L2) triangulation prob-
lem and structure-and-motion with known rotatation, or
known plane. Although optimal algorithms have been given
for these algorithms under an L-infinity cost function, find-
ing optimal least-squares (L2) solutions to these problems
is difficult, since the cost functions are not convex, and in
the worst case can have multiple minima. Iterative methods
can usually be used to find a good solution, but this may be
a local minimum. This paper provides a method for verify-
ing whether a local-minimum solution is globally optimal,
by providing a simple and rapid test involving the Hessian
of the cost function. In tests of a data set involving 277,000
independent triangulation problems, it is shown that the test
verifies the global optimality of an iterative solution in over
99.9% of the cases.

1. Introduction

There has been much research into methods for solving
the simplest of geometric Vision problems, the triangula-
tion problem. However, no ideal method has been given to
guarantee an optimal least-squares solution. In fact, it may
not be possible to find an entirely acceptable algorithm that
guarantees an optimal solution. This paper, however, tries
a totally different approach, by giving a procedure for ver-
ifying whether an obtained solution actually is the global
optimum. Usually, in fact, it is.

Although the condition is a sufficient but not necessary
condition for the solution to be a global optimum, it works
in almost all cases. In the rare cases where the condition
fails it is usually because the point has large noise, in which
case in a large-scale reconstruction problem, the best option
is just to remove the point from consideration. Alternatively
it may be possible to apply one of the recent (considerably
more time-consuming) optimal algorithms ([7, 1]) for solv-
ing the problem.

Although known methods do not guarantee a globally
optimal solution, nevertheless, simple methods based on
initialization, followed by iterative refinement usually work
very well. They depend on the initial solution being within

the basin of attraction of the optimal solution. However,
until now there has been no way of verifying this require-
ment. In this paper, we address this problem and give a fast
and very satisfactory method of verifying that a given local
minimum is the global minimum. By experiments on a very
large set of triangulation problem, the test is seen to have a
99.9% success rate and runs in around 1.6ms on a desktop
computer of medium power. The fact that the success rate is
not 100% is probably not important. In many applications,
one can simply delete questionable points.

This paper introduces a new technique for proving con-
vexity. It seems hopeful that this technique can be used on
other problems. We include an analysis that shows that the
same analysis applies to a much more large-scale problem,
namely structure and motion knowing rotations. It has po-
tential to be applied in any quasi-convex optimization prob-
lem, since the location of the global minimum can be con-
strained to a convex set, usually small. Such problems have
been shown to abound in Vision ([5]).

How hard is the triangulation problem, really? It was
shown in [3] that the least-squares two-view triangulation
problem is solvable in closed form. However, up to three
local minima may exist. Much more recently, it has been
shown ([9]) that the solution for three views involves the
solution of a polynomial of degree 47, and higher degree
polynomials are required with more views. The degree of
the polynomial involved in the solution translates into num-
bers of possible local minima. It is certainly possible to find
explicit examples with multiple local minima. This suggests
that the problem is difficult.

On the other hand, it was shown in [2] that a single local
(and hence global) minimum occurs if an L∞ (minimax)
solution is sought, instead of a the least-squares solution.
However, the least-squares problem remains the problem of
primary interest. The L∞ solution is useful as an initial-
ization procedure for the least squares, but it does not guar-
antee an optimal solution. In a real data test it seems that
common algorithms get the right answer most of the time.
So, perhaps the problem is not so hard after all – if only one
knows whether one has the right solution. That problem is
effectively solved in this paper.



2. Bounding the Location of the L2 Global
Minimum

This paper is about verification that a solution obtained
to a geometric vision problem is the global minimum. We
assume that a candidate solution already exists, found by
some known technique. We describe the method in terms of
the triangulation problem, though the method is also appli-
cable to other problems.

The desired solution to the triangulation problem is a
point Xopt that represents a global minimum of the cost
function C(X) =

∑N
i=1 fi(X), where fi represents a

squared residual error measurement in the i-th of N images.
Thus fi(X) = ‖xi − Pi(X)‖2 where Pi(X) represents the
projection of the point X into the i-th image, xi is the mea-
sured projection point, and ‖ · ‖ represents Euclidean norm,
a distance measure in the image.

Now, suppose that X is a proposed solution to this prob-
lem with residual given by C(X) =

∑N
i=1 fi(X) = ε2.

This measurement gives a constraint on the position of the
optimal solution, which must satisfy

C(Xopt) =
N∑

i=1

fi(Xopt) ≤ ε2

Since the sum of terms fi(Xopt) must be less than ε2, so
must each individual term. Thus, for all i, fi(Xopt) ≤ ε2,
or ‖xi − Pi(Xopt)‖ ≤ ε. The set of points X in IR3 satis-
fying this condition constitutes a cone in IR3, as observed
in [2]. Since this condition must be satisfied by each of the
projections Pi, it follows that Xopt must lie in the intersec-
tion of all the cones. This is a convex region of IR3, since
each cone is a convex set. The convex region could be com-
puted using Second Order Cone Programming, but instead
we use Linear Programming, which gives a slightly larger
region, but is simpler.

The overall strategy. Here we summarize the general
approach of the paper. The existence of an approximate
solution X with error residual ε2 constrains the optimal so-
lution Xopt to lie in a convex region about X. Our strategy
is to provide tests that allow us to prove that the cost func-
tion must be convex on this convex region. If this is so, then
finding the optimal solution Xopt may be carried out using
standard convex optimization methods. More significantly,
if X already is a local minimum of the cost function, found
by any geometric optimization technique, then it must be a
global minimum.

2.1. The camera model.

We consider initially a calibrated camera model, with
different cameras having potentially different focal lengths.
For calibrated cameras, we prefer to think in terms of im-
age points being represented by points on a sphere, that is

unit vectors, rather than an image plane. Later in this paper
we will also consider standard projective cameras with an
image plane.

Image error is represented by the angular difference be-
tween a measured direction w and the direction vector from
the camera centre to the point X. Since resolution of differ-
ent cameras may vary, we allow for weighting the error by
a factor k, related to (perhaps identical with) focal length,
and potentially different for each camera. The total cost
function is the sum of squares of the weighted angle errors.

Initially, for simplification, our cost function will instead
be the square of the tangent of the angular error, rather than
the squared angle itself. Since errors are usually quite small,
the difference is insignificant, and the analysis is simpler. In
section 5, however, we will extend the result to minimiza-
tion of squared angle error.

2.2. The Hessian of the Cost Function

A function is convex on a convex region if and only if its
Hessian is positive semidefinite. Hence, we are led in this
section to consider the Hessian of the cost function.

Consider a vector w pointing from the origin in the di-
rection of the Z-axis. Now, let X = (x,y, z) be a point
lying close to the positive Z axis, such that the vector from
the origin to X makes an angle φ from the vector w. Con-
sider the error function given by

f(X, Y, Z) = k2 tan2 φ = k2(X2 + Y2)/Z2 . (1)

This represents the squared projection error of the point X

with respect to the “measured direction”, w.
The Hessian matrix of this function with respect to X, Y

and Z is easily computed to be

H =
2k2

Z2




1 0 −2X/Z

0 1 −2Y/Z

−2X/Z −2Y/Z 3(X2 + Y2)/Z2





Since the function is circularly symmetric about the vector
w, so is the Hessian, so we may simplify the Hessian by
evaluating it at a point with zero Y-coordinate, giving

H =
2k2

Z2




1 0 −2X/Z

0 1 0
−2X/Z 0 3X2/Z2



 (2)

and substituting τ for X/Z (this is actually the tangent of the
angle between the axis and point X), and writing d instead
of Z/k, to represent the depth of the point along the Z-axis
scaled by k, we get

H =
2
d2




1 0 −2τ
0 1 0

−2τ 0 3τ2



 . (3)



It may be verified that this matrix has two positive eigenval-
ues and one negative eigenvalue, meaning that the function
f is neither concave nor convex at any point.

Now this is not a very convenient value for the Hessian
since it is heavily dependent on the particular point X being
considered. Instead, we consider a different matrix, which
we would like to use instead, given by

H′ =
2
d2




1/3 0 0
0 1/3 0
0 0 −3τ2



 . (4)

This matrix is seemingly pulled out of a hat – the reasoning
that led to its choice was intricate, but its properties are sim-
ple enough. The key property of this matrix is the following
observation:

H− H′ =
2
d2




2/3 0 −2τ
0 2/3 0

−2τ 0 6τ2





is positive semi-definite. Indeed, it is easily seen that H− H′

has eigenvalues 0, 2/3 and 2(1 + 9τ2)/3, all non-negative.
We write H − H′ � 0, or H � H′. The matrix H′ is more
easily handled than H, since it is dependent on the point X

only through the values of d and τ , both of which can be
bounded, as we shall see.

The eigenvalues of H′ are obviously the diagonal entries.
We see that H′ has two positive and one negative eigenvalue.
The eigenvector corresponding to the negative eigenvalue is
directed along the Z axis, and the other two eigenvalues are
in the plane perpendicular to the Z axis. However, since the
two corresponding eigenvalues are equal, the eigenvectors
may be taken as any two orthogonal vectors perpendicular
to the Z-axis.

Now, we may write H′ as

H′ = (2/3d2)
(
I− (1 + 9τ2)diag(0, 0, 1)

)
.

We assume that the point X lies in a cone with angle
arctan τmax. Thus, τ ≤ τmax, and we see that

H � H′ = (2/3d2)
(
I− (1 + 9τ2)diag(0, 0, 1)

)

� H′′ = (2/3d2)
(
I− (1 + 9τ2

max)diag(0, 0, 1)
)

.

To verify the second line, simply observe that H′ − H′′ is
positive definite if τ < τmax. Note that this matrix H′′ is
a lower bound (in the semi-definite partial ordering) for the
Hessian of f at any point X lying in the cone. It depends
only on the depth d of the point from the vertex of the cone.

The computations above showed that H � H′ =
(2/d2)diag(1/3, 1/3,−3φ2) when H is evaluated at a point
with Y = 0. However, the error function is invariant under
rotation about the Z-axis. It follows from this condition that
RZ

�HRZ � RZ
�H′RZ = H′ where RZ is a rotation about the

Z-axis. This shows that the inequality holds at all points,
since RZ

�HRZ is the Hessian at an arbitrary other point.
We now consider a cone with axis represented by a unit

vector w, and a point X lying at depth d from the vertex.
Let f(X) = τ2, where τ < τmax is the tangent of the angle
between the axis and the vector from the vertex to X, and
let H be the Hessian of f . Then it follows easily that

H � (2/3d2)
(
I− (1 + 9τ2

max)ww�)
)

. (5)

3. L2 cost function from several measurements

Now, we consider a point X, subject to several measure-
ments, represented by vectors wi. We do not care where
the vertex of the cone (corresponding to the camera centre)
is located, but only that the depth of the point X in the i-th
cone is di. We suppose that the point X is situated in the
intersection of cones with angle arctan τmax. Let fi be τ2

i

where arctan τi is the angle of X from the axis of the i-th
cone. The L2 error associated with the point X is given by
f(X) =

∑
i fi(X) and the Hessian of f is H =

∑
i Hi. Now

applying the inequality (5) to each Hi, we get

H =
∑

i

Hi � 2/3
∑

i

(1/d2
i )

(
I− (1 + 9τ2

max)wiwi
�)

)
.

Writing N =
∑

i 1/d2
i and defining a matrix A by A =∑

i wiwi
�/d2

i we see that

H � 2/3
(
NI− (1 + 9τ2

max)A
)

.

It is our purpose to show (under certain conditions) that the
function f is convex inside the region of interest. To do
this, it is sufficient to show that H is positive definite, and
in light of the inequality above, this will hold if NI− (1 +
9τ2

max)A is positive-definite. A matrix M is positive-definite
if x�Mx > 0 for any vector x. We may assume that x is a
unit vector, and then applying this, we see that the required
sufficient condition is that

N − (1 + 9τ2
max)x

�Ax > 0

for any unit vector x. In other words,

N > (1 + 9τ2
max) max

x
x�Ax

where the maximum is taken over all unit vectors x. The
quantity maxx x�Ax is the matrix 2-norm, written ‖A‖,
equal to the largest eigenvalue (or singular value) of A. The
condition for the function f to be convex at the point X is
then that

(1 + 9τ2
max)‖A(X)‖ < N(X) . (6)

Here, by writing A(X) and N(X), we have explicity indi-
cated the dependency of the matrix A and the value N on



the particular point X considered, lying inside the region of
interest.

Observe that the inequality ‖A(X)‖ ≤ N(X) always
holds. The convexity condition (6) represents only a slightly
more stringent condition. If τmax is small, which will be
true in all cases of real interest, then the condition is only
very slightly stronger. In this case we may expect the con-
vexity condition to be satisfied.

4. Conditions for Convexity

Let D be the convex domain formed as the intersection
of cones with angle equal to arctan τmax. We are interested
in showing that the L2 error function f is convex on the
domain D.

In (6), we note that both sides of the inequality are posi-
tive quantities. We will be able to show that the function
f is convex on the domain D if the maximum value of
‖A(X)‖ on the domain D is less than the minimum value
of N(X)/(1 + 9τ2

max). This allows us to derive conditions
for convexity. However, before doing this, we rearrange the
inequality as follows:

9τ2
max‖A(X)‖ < N(X) − ‖A(X)‖ . (7)

This is a sufficient condition for the function to be con-
vex at point X. An important point is that it is still the case
that both sides of this inequality are positive. The point now
is that the left hand side of this equation is a small quantity
(assuming τmax is small). Note also that the left and right
hand sides of this inequality correspond to the contributions
of the negative and positive eigenvalues of the individual
Hessian matrices H′i given in (4).

We now rewrite the definitions of N(X) and the matrix
A(X).

N(X) =
∑

i

g2
i (X) ; A(X) =

∑

i

gi(X)2wiwi
� (8)

where we have written gi(X) instead of 1/di. We will call
the values gi the weight coefficients. For simplicity of no-
tation, we will generally write gi instead of gi(X), but it
should be remembered that the weight coefficients gi are
different for each different point X. Writing gi instead of
1/di simplifies the notation very slightly, but this is done
for better reasons than notational convenience, as we will
see later on.

We look a little more carefully at the right-hand side of
(7). We write λ(·) to be the smallest eigenvalues of a ma-
trix. Since ‖A(X)‖ is the largest eigenvalue of A(X), we can

write −‖A(X)‖ = λ(−A(X)), and since N(X) is a scalar,

N(X) − ‖A(X)‖ = λ(N(X)I− A(X))

= λ

(
∑

i

g2
i (I− wiwi

�)

)

= λ

(
∑

i

g2
i (uiui

� + vivi
�)

)

= λ(A′(X))

where ui and vi are two orthogonal unit vectors perpen-
dicular to wi. The second-last line holds because I =
uiui

� + vivi
� + wiwi

�. The matrix A′ thus defined is
positive-semi-definite, since it is the sum of positive semi-
definite matrices.

A sufficient condition for convexity of the function f on
the domain D is then that

9τ2
max max

X∈D
‖A(X)‖ < min

X∈D
λ(A′(X)) . (9)

Now, suppose that for each index i, we can bound gi

between two values gi,min and gi,max, namely gi,min ≤
gi(X) ≤ gi,max. Correspondingly, we may bound the val-
ues of ‖A(X)‖ and λ(A′(X)) expressed in terms of these
upper and lower bounds. This gives

max
X∈D

‖A(X)‖ ≤ ‖Amax‖
λ(A′min) ≤ min

X∈D
λ(A′(X)) (10)

where A′min and Amax are matrices defined just like A′(X)
and A(X) but using the weight coefficients gi,min and gi,max

instead of gi(X). Now, consider the condition

9τ2
max ‖Amax‖ ≤ λ(A′min) . (11)

Combining this inequality with (10) yields (9). Since (9) is
a sufficient condition for convexity of the L2 error function
on D, so is (11).

Finally, since λ(A′min) = Nmin −‖Amin‖ where Nmin =∑
i g2

i,min, we may replace (11) by

9τ2
max‖Amax‖ + ‖Amin‖ ≤ Nmin , (12)

which is an alternative form of the convexity condition (11).

Bounded max/min ratio. We consider a special case
where there exists a value γ > 1 such that γgi,min ≥ gi,max

for all i. In this case, we may assert that ‖Amax‖ ≤
γ2‖Amin‖. Thus, consider the condition

(1 + 9τ2
maxγ

2) ‖Amin‖ ≤ Nmin . (13)

Since (12) may be deduced from (13), it follows that (13) is
a sufficient condition for convexity.

To summarise this section, the equations (12) and (13)
are alternative sufficient conditions for convexity of the er-
ror function. The second condition is slightly weaker.



4.1. How to use these conditions.

We now give the details of how to prove convexity. Con-
sider a set of cameras with centres Ci, and let wi be a di-
rection vectors representing the measured direction of an
observed point X from Ci. Let ui and vi be two unit vec-
tors orthogonal to wi constituting (along with wi) an or-
thogonal coordinate frame. These may be the three rows of
the rotation matrix for the camera, oriented with principal
direction pointing in the direction wi ([4]).

Step 1. Bounding the region. Let X be a 3D point con-
stituting a potential solution to the triangulation problem.
The cost of this point is the value of the cost function

∑

i

fi(X) =
∑

i

ui
�(X − Ci)

wi
�(X − Ci)

2

+
vi

�(X − Ci)
wi

�(X − Ci)

2

.

Let the value of this cost for the given point X be ε2.
We may then define a region of space in which the opti-

mal point Xopt lies according to the inequalities.

− ε ≤ ui
�(Xopt − Ci)

wi
�(Xopt − Ci)

≤ ε (14)

and similar inequalities involving vi instead of ui. Since
wi

�(Xopt−Ci) > 0 (the cheirality constraint that the point
must lie in the direction it is observed), we can multiply out
by wi

�(Xopt −Ci) to obtain a total of four linear inequal-
ities in the positions of the point Xopt, constraining it to a
polyhedral region of space, D.

Step 2. Finding depth bounds. The next step is to find
minimum and maximum of di on the region D. Since di is
defined to be wi

�(X − Ci), determining its minimum and
maximum over the polyhedral region D are simply a pair of
linear programming problems.

Step 3. Performing the test. We can now compute the
matrices Amin, Amax and the scalar Nmin defined by (8) in
terms of the values gmin = 1/dmax and gmax = 1/dmin.
The 2-norms of Amin and Amax are now computed by find-
ing their maximum eigenvalues, and the inequality (12) is
tested. If the inequality is true, then the cost function is
convex on the region D. If the initial estimate X is a local
minimum, then it is also a global minimum.

4.2. Infinite region

If the domain D is infinite, or very extended, then the
conditions (12) and (13) are not very useful in the case
where gi(X) = 1/di(X), since in this case gi,max becomes
zero. However, it is possible to choose gi differently.

In particular, suppose we choose gi(X) = α(X)/di(X),
where α(X) is any non-negative function of the point X

(independent of i however), then the theory will work as

before. In particular, the basic sufficient condition for con-
vexity is (9):

9τ2
max max

X∈D
‖A(X)‖ < min

X∈D
λ(A′(X))

which is a sufficient condition for convexity, provided that
the matrices A(X) and A′(X) are defined in terms of weight
coefficients gi = 1/di. Thus, A(X) =

∑
i wiwi

�/di(X)2.
Multiplying by α(X)2, we get

α(X)2 A =
∑

i

(α(X)/di(X))2wiwi
�

=
∑

i

gi(X)2wiwi
�

where we have defined gi = α(X)/di(X). The effect is to
multiply A, and hence its matrix-norm ‖A‖ by α(X)2. The
same is true of the minimum eigenvalue, λ(A′(X)). Thus,
using weights gi = α(X)/di(X) has the effect of multi-
plying both sides of (9) by the non-negative value α(X)2,
which results in an equivalent inequality.

The conclusion is that (9) defined in terms of weights
gi = α(X)/di is a sufficient condition for complexity of f
on the domain D. From this, all the other sufficiency condi-
tions follow in the same way as before. This is the reason
that the analysis in section 3 was carried out with arbitrary
weights gi(X).

A suitable choice of the weight coefficients α(X) is
some linear function of the weights di. Thus, let α(X) =∑

i αidi(X), where the αi are fixed non-negative constants.
The reason for this choice is that it is then easy to find the
minimum and maximum of gi(X) = α(X)/di(X) on the
convex domain D.

Possible reasonable choices of the weight function α(X)
are

1. α(X) = 1. In this case gi = 1/di. This will be suitable
for a small domain D in which the ratio of maximum
to minimum depth is small. However, if the domain D
stretches towards infinity, then it is not suitable.

2. α(X) = (1/n)
∑n

i=1 di(X). Thus w measures the
average depth, and for each i, the coefficient gi =
α(X)/di(X) is the ratio of the average depth of a point
X to the i-th depth di(X). Even for domains D reach-
ing to infinity, this ratio will remain within reason-
able maximum and minimum bounds, since the aver-
age depth α(X) increases to infinity at the same rate as
any specific depth di.

We now may summarize the previous discussion by stat-
ing the complete convexity theorem.

Theorem 4.1. Let domain D be the intersection of a set of
n cones with axes represented by unit vectors wi, and with



angle bounded by arctan τmax. For a point X ∈ D, let
di(X) represent its depth from the vertex of the i-th cone.
Define a function α(X) = α0+

∑n
i=1 αidi(X) and gi(X) =

α(X)/di(X). Let gi,max and gi,min be the maximum and
minimum values of gi on D. Define matrices

Amax =
n∑

i=1

g2
i,maxwiwi

� Amin =
n∑

i=1

g2
i,minwiwi

�

and values

Nmax =
n∑

i=1

g2
i,max Nmin =

n∑

i=1

g2
i,min

Then (12) and (13) are both sufficient conditions for the
least-squares error function f to be convex of D. ��

5. Minimizing squared angle

In the previous discussion, the error function used was
the sum of squares of the tangents of the angles, as given
by (1). This leads to a relatively simple result in terms of
computing and bounding the Hessian. On the other hand,
it would be more natural to wish to minimize the sum of
squares of the error angles, and not their tangents. The dif-
ference is very small, but for exactness, we now derive a
similar result for this error function.

In the following discussion, we give the outline of the
argument. To verify the details, the reader may need to use
a computer algebra system, such as Mathematica. Now, un-
der the same conditions as before, we define the error func-
tion

f(X, Y, Z) = φ2 = arctan

(√
X2 + Y2

Z

)2

. (15)

We compute the Hessian at a point with (X, Y, Z) with re-
spect to the coordinates X, Y and Z. Subsequently, evaluat-
ing with X ≥ 0 and Y = 0, and making the substitutions φ
for arctan(X/Z), radial distance r for

√
X2 + Z2 and tanφ

for X/Z, we arrive after some computation at the expression
for the Hessian given in Fig 1. This matrix has eigenval-

ues 2φ/(r2 tan(φ)) and
(
1 ±

√
1 + 4φ2

)
/r2, namely two

positive and one negative eigenvalue.
Similarly as before1, let H′ be the matrix

(2/r2)diag(1/4, 1/4,−4φ2). We claim that H − H′ is
positive semi-definite. Unfortunately, the proof is a little
more intricate than before.

First, we observe that (0, 1, 0)� is an eigenvector of
H − H′, with eigenvalue (2/r2)(φ/ tan(φ) − 1/4), which

1By analogy with section 2.2 one may be tempted to define H′ =
(2/r2)diag(1/3, 1/3,−3φ2) which gives a slightly better bound, but this
does not work in this case.

Figure 2. Plot of the function D(φ)/φ2 demonstrating that the
product of the eigenvalues of H− H′ is positive for φ < 0.3.

is positive at least for φ < 1. The other two eigenvalues are
the eigenvalues of the reduced-size matrix obtained by elim-
inating the second row and column from H−H′. This matrix
will have two positive eigenvalues, as long as its trace and
determinant are both positive. Apart from the factor 1/r2

the trace is equal to 8φ2 + 3/2 which is positive. The deter-
minant is equal to

D(φ) = −1 + (1 + 16φ2)(cos(2φ) − 2φ sin(2φ)) .

This function is positive for φ < 0.3 as may be shown by
plotting the function D(φ)/φ2 (see Fig 2). A more formal
proof can be given by computing the series expansion of
this function.

The result of this computation is the following result.

Lemma 5.2. If H is the Hessian of the error function (15)
evaluated at a point with error less than angle φ < 0.3,
then

H � (2/r2)diag(1/4, 1/4,−4φ2) .

From here on, conditions for convexity of the error function
in the intersection of a set of cones with angle bounded by
φmax procedes just the same as previously.

6. Projective Transform

If the direction of a point is virtually the same from all
cameras (the point is at infinity for instance) the proposed
method will not work, because there will be no cancellation
of the negative eigenvalues. In this case, the situation can
be saved by the application of a projective transformation.
Effectively, we will reparametrize the domain of the error
function, which can often turn a non-convex function into a
convex one. If the view directions for several cameras are
similar, this implies that the point X is near to infinity. We
apply a projective transformation that maps this point to a
point closer to the cameras, so that the viewing rays are no
longer near parallel.

This method has been verified on simple examples, but
can not be discussed further here.
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Figure 1. Hessian for cost function (15)

Figure 3. Representation of the dataset used for triangulation ex-
periments. Thanks to Noah Snavely for supplying this data.

7. Experiments

We tried the triangulation experiment out on virtually all
points in the “Notre Dame” image set ([8]). A reconstruc-
tion of the point cloud and some of the camera positions
from this set are shown in Fig 3. Some points were re-
moved from this data set, since they were obviously bad
matches, with residual projection errors up to 25 pixels. All
points with projection errors less than 10 pixels were re-
tained. This resulted in a total of 277, 887 points which
were triangulated. The initial points X were computed us-
ing bundle adjustment in [8], and those were the points that
we used. The results were as follows.

1. Our primary test is the condition (12) with gi(X) =
1/di(X). Of the 277, 887 points, only 281 failed to
pass the test – about 0.1%.

2. Test (13) is slightly weaker. It failed on 284 cases.

3. We also ran the test with the weight function gi(X) =∑n
k=1 dk(X)/(ndi(X)) discussed in section 4.2. This

test is slower than the primary test. This is because it
is more difficult to find the maximum and minimum
of the function gi(X) on the region of interest. For this
reason we apply it only when the other test fails. Of the
281 failure cases for the primary test, 130 were shown
to be convex on the region of interest by this test. In
other words 151 cases still failed. We were unable to
prove convexity for these 151 out of 277, 887 points.

4. It is possible, perhaps likely that the method involv-
ing applying a projective transformation, described in
section 6 would work for the majority of the remain-
ing cases, since they all were for cameras with closely
aligned principal rays. To verify this, we plot the ra-
tio ‖Amin‖/Nmin for the points that failed the primary
test. This ratio can be equal to 1.0 only when all the

Figure 4. Left: Plot of the ratio ‖Amin‖/Nmin for the points that
failed the primary convexity test. The ratio is close to 1.0 indicat-
ing that the viewing rays are nearly parallel. Right: Plot of RMS
reprojection error per for the points that failed. Many points have
quite high residual, implying a bad point match.

direction rays are in the same direction. The result is
shown in Fig 4 where it is seen that in almost all cases,
this value is very close to 1.

5. The time taken for all 277, 887 convexity tests was 7
minutes and 23 seconds – that is less than 1.6 milisec-
onds per point – on a 3.2GHz Pentium. The program
was written in C++ with optimation flags on.

8. Structure and Motion knowing Rotations

In this final section, we indicate that this method might
be applicable to other much bigger problems. Although the
theory is worked out below, implementation and testing of
this method falls in the category of future work.

It was shown in [2] that the structure-and-motion prob-
lem with known rotations has a unique global minimum un-
der the L∞ norm, and in [5, 6] it was shown that this may
be found using Second Order Cone Programming. The so-
lution of this problem is not very much different from the
simple triangulation problem considered so far, and it is not
surprising that we may achieve similar results. This will be
shown in this section.

The problem may be stated as follows. We are given a
set of cameras with centres Ci and a set of 3D points rep-
resented by Xj . The problem is to estimate all the cam-
era centres Ci and the points Xj given only some measure-
ments of the direction vector from the camera centres to the
points. Ideally, we have

vij =
Xj − Ci

‖Xj − Ci‖ .

Thus, the measurements, vij are unit vectors. We do not
assume that vij is known for all i and j.



Of course, in the presence of noise, the measurements are
not exact, and so we seek an approximate solution that min-
imizes the sum-of-squares angle distances. For the present,
instead we use the tangents of the angles instead of the ac-
tual angles. The sum-of-squares cost function is then

∑

i,j

‖vij × (Xj − Ci)‖2

(
vij

�(Xj − Ci)
)2 . (16)

The sum is over all i, j for which a measurement vij is
available.

In order to avoid an obvious ambiguity of scale and trans-
lation, we may remove these so-called gauge-freedoms by
constraining one camera centre C0 to be at the origin, and
some specified point Xj , visible from camera with centre
C0, to satisfy v0j

�Xj = 1, effectively meaning that it at
unit distance from the origin.

As before we wish to compute the Hessian of a single
term of this sum. In doing so, we may assume that the vec-
tor vij is directed along the positive Z axis, and that the
point Ci is located at the coordinate origin. Further, we as-
sume that Xj is located in the plane Y = 0. Under these
circumstances, the Hessian with respect to the coordinates
of Ci and Xj may be computed to be the 6 × 6 matrix

G =
[

H −H
−H H

]

,

where H is the Hessian involved in the triangulation prob-
lem given in (3). It is easily seen that the eigenvectors of
this matrix G are as follows. There are three eigenvectors
(1, 0, 0, 1, 0, 0)�, (0, 1, 0, 0, 1, 0)� and (0, 0, 1, 0, 0, 1)�

with zero eigenvalues. In addition, there are three eigenvec-
tors (y�,−y�)� where y is one of the eigenvectors of the
matrix H. The corresponding eigenvalues are simply twice
the corresponding eigenvalues of H. Thus, the matrix G has
three zero eigenvalues along with two positive eigenvalues
(close to 2/Z2) and one small negative eigenvalue.

As before, we may find a lower bound (in terms of the
positive-definite partial ordering) for this matrix, given by

G′ =
[

H′ −H′
−H′ H′

]

,

where H′ is the diagonal matrix given in (4). We see that G−
G′ is positive-definite. This follows from the fact, previously
verified that H−H′ is positive definite. In fact, it is clear that
the non-zero eigenvalues of G − G′ are just double those of
H− H′.

With this observation, the analysis of this problem fol-
lows virtually identically the analysis for the one-point tri-
angulation problem.

9. Conclusions

The tests described here are extremely effective at veri-
fying convexity, and hence global optimality of a local min-

imum. Test (13) seems to do almost as well as (12), but
neither condition is difficult to compute, so one might as
well use the stronger condition. Using a different weight-
ing function as in section 4.2 can resolve some but not all
remaining cases. Probably most remaining cases can be re-
solved by applying a projective transformation as in sec-
tion 6, but this is untried.

The theory also applies to the problem of n-view struc-
ture and motion with known rotation. Experimental evalu-
ation of its effectiveness on this problem belongs to further
work. Space dictates that we omit the theoretical analysis
from the present version of the paper.
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