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Abstract

In this paper a general procedure is given for reconstruction of a set of feature
points in an arbitrary dimensional projective space from their projections into lower
dimensional spaces. This extends the methods applied in the well-studied problem
of reconstruction of scene points in P3 given their projections in a set of images.
In this case, the bifocal, trifocal and quadrifocal tensors are used to carry out this
computation. It is shown that similar methods will apply in a much more general
context, and hence may be applied to projections from Pn to Pm, which have been
used in the analysis of dynamic scenes, and in radial distortion correction. For
sufficiently many generic projections, reconstruction of the scene is shown to be
unique up to projectivity, except in the case of projections onto one-dimensional
image spaces (lines), in which case there are two solutions.

Projections from Pn to P2 have been considered in work of Wolf and Shashua,
where they were applied to several different problems in dynamic scene analysis.
They analyzed these projections using tensors, but no general way of defining such
tensors, and computing the projections was given. This paper settles the general
problem, showing that tensor definition and retrieval of the projections is always
possible.



1 Introduction

The bifocal tensor (fundamental matrix), trifocal tensor and quadrifocal tensor have been
much studied as a means of reconstucting a 3-dimensional scene from its projection in
two, three or four images. It is well known that given sufficiently many point (or line)
correspondences between the views, it is possible to compute the multiview tensor and
subsequently extract from it the original projection matrices of the cameras, up to an
unavoidable projective equivalence. There have been too many papers related to this to
cite them all, and so we refer here only to the following papers: [6, 4, 8]. The algorithms
previously given for extracting the projection matrices from the bifocal, trifocal and
quadrifocal tensor have been quite different, and it was not clear that a general method
exists.

Projections from Pn to P2 have been considered in work of Wolf and Shashua ([14]),
where they were applied to several different problems in dynamic scene analysis. Typical
of the problems they considered was that of 3D dynamic scene analysis for a configu-
ration of points each moving independently with constant velocity. In this case, each
point may be represented by a vector (x,y, z, 1, dx, dy, dz)> consisting of its position in
homogeneous coordinates and its velocity. The projection of the points into an image
may therefore be modelled as a projective mapping from P6 to P2. They use tensorial
techniques involving 4 views to compute the image projections and the motion of the
points. It follows from the present paper that tensors involving any number between 4
and 7 views can be used to solve this problem. However, the applications treated in [14]
are considered largely on a case-by-case basis. No general method is given for defining
these tensors, or extracting the projection matrices afterwards.

More recently, such tensors have been used in [2] to compute non-rigid structure and
motion under perspective projection. Assuming that a set of 3D points deform within a
space spanned by k independent modes of deformation, the projection of the points into
an image may be naturally modelled as a projection from P3k into P2. The reconstruction
algorithm described in the present paper is used in [2] to compute the projections P3k →
P2, and hence solve the non-rigid reconstruction problem.

At the other end of the scale, Quan, Faugeras and others ([10, 1]) have studied pro-
jections between low-dimensional spaces, namely projections from P2 to P1, and solve
the reconstruction problem using a trifocal tensor. Quan shows ([9]) that in this case,
there are two possible reconstructions. The paper [1] pertains to self-calibration of a
camera undergoing motion in a plane. The standard 3D to 2D image projection is used
to induce a projection onto the horizon line, a 1D projective space. This projection is
then analyzed using a 2D trifocal tensor.

Tensors involving projections from P2 to P1, and P3 to P1 have also been used in
the analysis of images with radial distortion, and for radial distortion correction ([13,
12]). The context here is that with unknown radial distortion in an image, the correct
projective image of a point in space can not be determined exactly, but may be measured
to lie on a radial line through the radial distortion centre (assumed to be the same as
the principal point). This projection may be modelled as a mapping from the 3D world
onto the 1-dimensional projective space of lines through the radial distortion centre, that
is, as a mapping from P3 to P1. From four views, a quadrifocal tensor-based method is
used for structure and motion recovery and ultimately to compute the radial distortion.

This paper unifies all this previous work by showing that reconstruction from projections
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Figure 1: Illustration of point-line-line situation of trifocal tensor.

of Pn into arbitrary dimensional projective spaces is always possible, and is almost
always projectively unique. The method involves a generalization of the multiview tensors
for projections P3 → P2 (referred to subsequently as the “classical” tensors). The
exceptional case is where all the projections are onto one-dimensional projective spaces
(lines). In this case, two reconstructions are always possible.

The Grassmann tensor. We consider a sequence of projections from Pn to Pmi ,
for i = 1, . . . , r. Thus, we do not assume that the image space always has the same
dimension. For each i, we select integers αi satisfying 1 ≤ αi ≤ mi and

∑r
i=1 αi = n+1.

These values represent the codimension of affine subspaces to be specified in each of the
image spaces. Thus, when αi = mi, the affine subspace is a point (codimension mi,
hence dimension 0), and when αi = 1, the affine subspace is a codimension-1 hyperplane.
A set of affine subspaces with these dimensions are said to correspond when there exists
at least one point X in Pn that maps via each projection to a point in the given affine
subspace in the corresponding image space.

For instance in three views we say that x ↔ l′ ↔ l′′ is a point-line-line correspondence
if there exists a point X in P3 that maps to x in the first image, and to points on the
lines l′ and l′′ in the other two images. This is illustrated in Fig 1. Since the projections
are all from P3 to P2 in this case, we see that n = 3 and mi = 2 for all i. In addition,
the codimensions αi of point, line and line are 2, 1 and 1 respectively, and we verify that∑

αi = 4 = n + 1. This configuration leads to the classical trifocal tensor relationship
([6]) for corresponding point and lines, namely

∑
i,j,k xil′j l

′′
kT jk

i = 0.

In the general case now being considered, there also exists a tensor relating the coordi-
nates of a set of corresponding affine subspaces in the set of images. However, to assign
coordinates to affine subspaces of arbitrary dimension, we need to use Grassmann co-
ordinates (described later). For points and lines in P2, the Grassmann coordinates are
nothing more than the homogeneous coordinates of the point or line. It is only when
we consider image spaces of higher dimension that the correct generalization in terms
of Grassmann coordinates becomes apparent and useful. In this case, the tensor relates
the Grassmann coordinates of the corresponding affine subspaces in each image. The
relationship is of the form∑

σ1,σ2,...σr

|S1

σ̂1
| |S2

σ̂2
| . . . |Sr

σ̂r
| Aσ1σ2...σr

= 0

The notation |Si

σ̂i
| represents the σi-th Grassmann coordinate of the subspace Si, where
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the index σi is explained later. Recall that Si is a subspace of codimension αi in Pmi .
The vector of Grassmann coordinates has dimension Cαi

mi+1 (this notation is also known
as “(mi + 1)-choose-αi”), the number of values that the index σi can take. The sum is
over all combinations of Grassmann coordinates. The notation σ̂i is to be read “not” σi.
What this means is not made clear until later, but the reader may safely ignore the ,̂
for it is only a notational convenience (or perhaps inconvenience). In some respects thê sign is analogous to the use of upper and lower indices in the classical tensor notation.
We refer to A as a Grassmann tensor.

Computation of the Grassmann tensor Given a correspondence between subspaces
of codimension αi in each Pmi , we obtain a single linear relationship between the elements
of the Grassmann tensor.

If we are given a correspondence between subspaces T i of greater codimensions, this
information is clearly a stronger constraint on the tensor, and by choosing subspaces
Si of codimension αi such that T i is contained in Si we obtain from the Si a linear
condition on the Grassmann tensor as before. Since there are many ways to choose such
“enveloping” subspaces Si we get several linear constraints on the tensor. For example, in
the case of the trifocal tensor, a 3-point correspondence x ↔ x′ ↔ x′′ has codimensions
(2, 2, 2) which is too large in the sense that in the identity

∑
i αi = n + 1 the left hand

side is too large: 2+2+2 = 6 > 4 = 3+1. But “adjusting” the last two correspondences
from points to line leads to four linear relations. These are obtained by choosing any two
lines passing through x′ and any two lines passing through x′′. Each choice of lines leads
to a point-line-line correspondence, from each of which one obtains a linear relation. This
same idea allows us to derive linear relations for Grassmann tensors in higher dimension,
given a correspondence between subspaces of higher codimension. The exact number of
linearly independent correspondences generated in this way is not explored in this paper,
though it is well understood in the P3 → P2 case [7, 6]. In any case, given sufficiently
many correspondences the Grassmann tensor may be computed linearly.

For clarification, it should be pointed out that for a set of projections Pn → Pmi , there
may be many different tensors, depending on the choice of the sequence of codimensions
(α1, α2, . . . , αr). The only restrictions are that 1 ≤ αi ≤ mi and

∑
i αi = n + 1. In the

well-known case of the trifocal tensor, there are actually three different tensors depending
on which of the three images is chosen to have the contravariant index. The three tensors
have codimension sequences (2, 1, 1), (1, 2, 1) and (1, 1, 2) respectively. In the general
case, we call the sequence of codimensions (α1, α2, . . . αr) the profile of the corresponding
tensor. Each such profile corresponds to a different tensor. If we are computing a tensor
from point correspondences across several views, then it is necessary to choose in advance
which profile to use, since any profile consistent with the dimensions of the image spaces
can be used.

Extraction of projection matrices. Having computed a Grassmann tensor from
a set of affine subspace correspondences, we now seek to extract the projection matri-
ces. Ad-hoc techniques for computing the projections from multiview tensors have been
proposed in the past, both for the standard case of P3 → P2 as well as for higher di-
mensional cases ([14]). We shall give a general procedure for doing this, and show that
(at least for generic projections) the projection matrices are determined uniquely by a
Grassmann tensor up to projective equivalence, except in the case where each mi = 1.
In this latter case, there will always be two projectively non-equivalent solutions, and
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indeed this represents a basic ambiguity for projective reconstruction from projections
onto lines. This ambiguity persists however many point correspondences are involved.
The two projective reconstructions are related to each other by a Cremona transform,
which is a non-linear transformation of Pn ([11]).

2 Definition of the Grassmann tensors

We begin by recalling the derivation of the bifocal tensor (fundamental matrix) and
trifocal tensor relating corresponding points in two and three views in the familiar case
of projections from P3 to P2. This theory is covered in [6], but we review it here for
convenience of the reader, but also (more importantly) because the formalization will be
slightly different, in order to allow generalization to higher dimensions.

2.1 The fundamental matrix

We suppose two projection matrices A and A′ represent projections from P3 to P2. Let
x ↔ x′ be the images of a common point X. We may write this relationship in terms of
a single matrix equation [

A x 0
A′ 0 x′

] X

λ
λ′

 = 0

From the existence of a solution to this equation set, we deduce that the 6× 6 matrix on
the left must be singular, and hence have zero determinant. Expanding the determinant
down the last two columns we obtain an equation

3∑
i=1

3∑
j=1

xix
′
jF̂i,̂j

= 0 . (1)

This notation needs a little explanation. The notation ̂ is to be read “not”. Thus î
means “not i”. Then F̂

i,̂j
is a 3 × 3 array indexed by i and j, and each F̂

i,̂j
is the

determinant of a 4× 4 matrix made up of two rows from each of A and A′. Specifically,

F̂
i,̂j

= (−1)i+j

∣∣∣∣∣ Â
i

A′
ĵ

∣∣∣∣∣
where Â

i
means the matrix obtained from A by deleting the i-th row.

Note here that x and x′ may be thought of as affine subspaces of P2 of codimension 2
(that is, dimension 0). Furthermore, each F̂

i,̂j
is expressed in terms of a matrix containing

two rows from each projection matrix. For these reasons, we refer to the fundamental
matrix as having a profile (2, 2).

2.2 The trifocal tensor.

Now, consider three projection matrices A, A′ and A′′. The natural correspondence in-
volving the trifocal tensor is a point-line-line correspondence x ↔ l′ ↔ l′′, which is to be
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interpreted to mean that there exists a 3D point X that maps to the point x in the first
image, and to some points on the lines l′ and l′′ in the other two images.

We choose two points x′ and y′ on the line l′, and similarly two points x′′ and y′′ on
the line l′′. There must therefore exist constants (λ′, µ′) such that X maps to the point
λ′x′ + µ′y′ on the line l′. Similar constants (λ′′, µ′′) exist for the third image. As in the
fundamental matrix case, we may express the correspondence relation in a single matrix
equation as follows (blank entries are zero).

 A x
A′ x′ y′

A′′ x′′ y′′




X

λ
λ′

µ′

λ′′

µ′′

 = 0 .

As before, the matrix here is square, and has zero determinant. We may expand the
determinant explicitly as a sum of signed products of matrix elements, each product
involving just one element from each row and each column of the matrix. Any such non-
zero product term arises from choosing a non-zero entry from each of the last 5 columns.
We may then strike out the rows containing the elements so chosen. What remains is a
matrix containing 2 rows from A, and one row from each of A′ and A′′.

The resulting relation may be written as

∑
i,j,k

xi |x′y′ |̂j |x
′′y′′ |̂

k
(−1)i+j+k

∣∣∣∣∣∣
Â

i
A′j
A′′k

∣∣∣∣∣∣ =
∑
i,j,k

xi |x′y′ |̂j |x
′′y′′ |̂

k
T̂

ijk
= 0 , (2)

where T̂
ijk

is defined by this equality. Here, the expression |x′y′ |̂
j

has the following
meaning. The two column vectors x′ and y′ together form a 3× 2 matrix. Then |x′y′ |̂

j

is the value of the 2× 2 determinant formed by deleting the j-th row of this matrix.

In this case, the entries of the tensor T̂
ijk

are determinants of matrices formed from 2
rows of A and 1 row from each of A′ and A′′. We say that the tensor has profile (2, 1, 1).

Grassmann coordinates. Consider the affine subspace of Rn spanned by a set
of k vectors {xi}, and form an n × k matrix in which these vectors are the columns.
The k × k minors of this matrix are known as the Grassmann coordinates of the affine
space (since k ≤ n the matrix is “tall” and so these minors are the maximal minors of
the matrix). Thus, in the case above for instance, the |x′y′ |̂

j
are (for varying j) the

Grassmann coordinates of the affine space spanned by x′ and y′.

In the case of a single point, x, the Grassmann coordinates are of course equal to the
coordinates of the point itself. In the case of a line in P2 spanned by two points x and
y, the Grassmann coordinates are, with correctly chosen sign, simply the homogeneous
coordinates of the line. More precisely, if l = x× y, then lk = (−1)k+1|xy|̂

k
. Using this

relationship, we could write (2) in the more standard form xilj l
′′
kT jk

i = 0, where T jk
i is

the usual trifocal tensor ([6]), related to T̂
ijk

by T jk
i = (−1)j+kT̂

ijk
.

Thus, (1) and (2) may be interpreted as linear relations between the Grassmann co-
ordinates of corresponding affine subspaces, expressed by the appropriate tensor. This
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is the correct way of generalizing these results to higher dimensions, where indeed the
Grassmann coordinates of the appropriate subspaces are related via a multiview tensor.
The distinction between contravariant and covariant indices, which occurs in the case of
the trifocal tensor is not relevant in the general case, where the tensors transform un-
der coordinate transforms according to the corresponding transformation of Grassmann
coordinates. The covariant transformation rule for indices corresponding to lines is an
accident based on the fact that the homogeneous coordinates of the line are the same as
the Grassmann coordinates.

2.3 The general case

A mapping from Pn to Pm is represented by a matrix of dimension (m + 1) × (n + 1),
acting on homogeneous coordinates. We consider a set of r such mappings, where the
i-th mapping is from Pn to Pmi . Thus the dimension of the image of this mapping may
be different in each case. The matrix representing the i-th mapping will be denoted by
Ai and has size (mi + 1)× (n + 1); though these matrices may have different numbers of
rows they all have n + 1 columns.

We introduce the concept of an ordered partition of n + 1. This is an ordered tuple
of non-negative integers (α1, α2, . . . , αr) that sum to n + 1. We are interested in those
partitions of n for which each αi lies in the range 1 to mi. We will show that for each such
ordered partition, there exists an r-view tensor (where r is the length of the partition)
relating the coordinates of matched codimension-αi affine subspaces in r images.

Thus when n = 3 and each mi = 2, the possible ordered partitions of 4 = 3 + 1 are
(2, 2), (2, 1, 1), (1, 2, 1), (1, 1, 2) and (1, 1, 1, 1). These partitions correspond to the well-
known multiview tensors for 2, 3 and 4 views. We see that there is a bifocal tensor (the
fundamental matrix) corresponding to the partition (2, 2), three trifocal tensors corre-
sponding to the three partitions of length 3, and one quadrifocal tensor, corresponding
to the partition (1, 1, 1, 1).

We will call the ordered partition corresponding to a given tensor the profile of the tensor.
How the tensor with a given profile is defined will now be explained.

Given d+1 points spanning a d-dimensional affine subspace of some projective space, we
assemble the points as the columns of a matrix S. The affine subspace is simply the span
of the columns of S and any point in this subspace can be written in the form Sv for
some suitable vector v. We may speak of the matrix S as representing the subspace. The
condition for a point X in Pn to map into the subspace under a mapping represented by
A is that AX + Sv = 0 for some v.

Now, choose a set of affine subspaces each of codimension αi in its projective space Pmi

and let Si be the matrix representing the subspace. Thus, Si has dimension (mi + 1) ×
(mi − αi + 1). Suppose that there exists a point X in Pn that maps under a projection
(represented by Ai) to a point lying in the subspace Si. If this condition holds for all i,
we will see that it induces a single constraint on the set of projection matrices Ai.

The fact that this same X projects into each of the subspaces may be written in one
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matrix equation as follows.


A1 S1

A2 S2

...
. . .

Ar Sr




X

v1

v2

...
vr

 = 0 . (3)

Note that the matrix on the left is square. To check this: the number of rows is equal to∑r
i=1(mi + 1), whereas the number of columns is equal to

(n + 1) +
r∑

i=1

(mi + 1− αi) =
r∑

i=1

(mi + 1) since
r∑

i=1

αi = (n + 1) .

In order for a non-zero solution to this set of equations to exist, it is necessary that the
determinant of the matrix be zero. If the coordinates of the subspaces (the matrices Si)
are given, then this provides a single constraint on the entries of the matrices Ai. To
understand the form of this constraint, we need to expand out this determinant, and to
do that, we shall need to use Grassmann coordinates.

Grassmann coordinates. Given a matrix M with q rows and p columns, where
p ≤ q, we define its Grassmann coordinates to be the sequence of its maximal minors
(determinants of all its p × p submatrices). It is a well known fact that the Grassmann
coordinates of a (full-rank) matrix determine its column span. Specifically, the Grass-
mann coordinates determine the matrix up to right-multiplication by a p×p matrix with
unit determinant. Let σ represent a sequence of p distinct integers in the range 1 to q,
in ascending order. Let |Mσ| represent the determinant of the matrix that consists of the
rows of M specified by the sequence σ. Then the values of the determinant |Mσ|, as σ
ranges over all such sequences, are the Grassmann coordinates of the matrix.

Now, given such a sequence σ indexing the rows of a matrix, let σ̂ represent the sequence
consisting of those integers not in σ. and define sign(σ) to be +1 or −1 depending on
whether the concatenated sequence σσ̂, which is a permutation, is even or odd (here we
use the standard notion of the sign, or parity, of a permutation).

sign(σ) = sign(σ σ̂)

Thus, for example the sequence σ = 125 has sign +1, since σ̂ = 34 and 12534 is an even
permutation, being the 3-cycle (3 5 4).

Given a square matrix divided into two blocks, for instance [A|B], its determinant may
be expressed in terms of the Grassmann coordinates of A and B. In particular

|[A|B]| =
∑

σ

sign(σ) |Aσ| |Bσ̂
| (4)

where the sum is over all ascending sequences σ of length equal to the number of columns
of A. The particular case where A consists of a single column is just the familiar cofactor
expansion of the determinant.
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Generalizing the factorization (4), or applying it repeatedly, one may derive a precise
formula for the determinant of the matrix on the left of (3), namely

±
∑

σ1,σ2,...,σr

sign(σ1) . . . sign(σr) |Aσ1σ2...σr | |S1

σ̂1
||S2

σ̂2
| . . . |Sr

σ̂r
| . (5)

In this formula, each σi is an ordered sequence of αi integers in the range from 1 to
mi + 1, the length of the sequence being equal to the co-dimension of the subspace
Si. The notation |Aσ1σ2...σr

| means the determinant of the matrix obtained by selecting
the rows indexed by σi from each Ai. The notation |Si

σ̂i
| represents the determinant of

the matrix obtained from Si by deleting the rows indexed by σi. This is a Grassmann
coordinate of the subspace represented by the columns of Si. The overall sign, whether
+ or −, does not concern us. The set of values

Aσ1σ2...σr
= sign(σ1)sign(σ2) . . . sign(σr) |Aσ1σ2...σr

| (6)

forms an r dimensional array whose elements are (up to sign) minors of the matrix A
obtained by stacking the projection matrices Ai. The only minors are ones corresponding
to submatrices of A, in which αi rows are chosen from each Ai. Recalling that the sequence
(α1, . . . , αr) in which

∑r
i=1 αi = n + 1 is called a profile, we will call the array Aσ1σ2...σr

the Grassmann tensor corresponding to the profile (α1, . . . , αr).

The tensor A gives a linear relationship between the Grassmann coordinates of affine
subspaces defined in each of the image spaces Pmi :∑

σ1,σ2,...,σr

Aσ1σ2...σr |S1

σ̂1
||S2

σ̂2
| . . . |Sr

σ̂r
| = 0 . (7)

This relationship generalizes the classical bifocal and trifocal relations ([6]). The clas-
sical tensors involve relations between point and line coordinates in P2. However, the
Grassmann coordinates of a single point (a 0-dimensional affine space) are simply the
homogeneous coordinates of the point. Similarly, for a line in P2, the Grassmann coor-
dinates are the same as the homogeneous coordinates, except for sign.

2.3.1 Coordinate-free formulation and coordinate changes

Readers familiar with exterior algebra may appreciate that our construction can be car-
ried out in a coordinate-free setting without reference to minors, determinants or matri-
ces. Readers who are not interested can safely skip this section.

We replace the underlying vector space Rn+1 of Pn with any vector space V of dimension
n+1 and for each Pmi we introduce a vector space Vi of dimension mi+1. The projection
matrices Ai then become linear maps Ai : V → Vi. The codimension-αi subspaces Si of
Vi are represented by elements of ΛαiV ∗

i , the αith exterior power of the dual V ∗
i of Vi. If

the sub-space is cut out by αi linear forms θ1, θ2, . . . θαi ∈ V ∗
i then the required element

is θ1∧θ2∧ . . . ∧θαi
∈ ΛαiV ∗

i . Earlier we described our subspaces as given by mi +1−αi

generators x1, x2, . . . , xmi+1−αi
from the original spaces Vi rather than αi generators

from the dual space; in this case one forms the product Si = x1 ∧ x2 ∧ . . . ∧ xmi+1−αi
∈

Λmi+1−αiVi and uses the isomorphism ∗ : Λmi+1−αiVi → ΛαiV ∗
i . (The isomorphism

corresponds to a choice of a non-zero element of Λmi+1Vi and so is only determined up
to scale, meaning that there is a 1-parameter family of such isomorphisms; they are all
scalar multiples of each other.)
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Turning to projection, each linear map Ai sends an element X ∈ V to an element AiX ∈ Vi

that may or may not lie in the subspace Si. One way to determine if X projects to the
subspace is to “pull back” the linear forms θ cutting Si out of Vi to the linear forms
θAi on V and test whether θAiX = 0 for each form θ. Another way to express this
condition is to note that the pulling back is effected by the transpose (or dual) linear
map Ai> : V ∗

i → V ∗ and taking exterior powers of this we get a linear map

ΛαiAi> : ΛαiV ∗
i → ΛαiV ∗

that maps the element representing Si to an element representing the pre-image of Si

under Ai, itself an affine subspace of codimension (at most) αi. Since we have assumed
that

∑
i αi = n + 1 we see that these subspaces of V have dimensions adding up to the

dimension of V and we can answer the question of whether there is a non-zero element
X contained in all them by testing for vanishing of the wedge product

Λα1A1>(∗S1) ∧ Λα2A2>(∗S2) ∧ . . . ∧ ΛαrAr>(∗Sr) ∈ Λn+1V ∗

Because the dualizing operator ∗ is linear, each map ΛαiAi> is linear, and the wedge
product ∧ is bilinear, the expression is multi-linear in the Grassmann coordinates of
the spaces Si. The expression is just another form of equation (7) but written without
reference to coordinates.

It is not hard to apply this formula to the coordinate case and arrive at the previous
formulation. A useful byproduct is that it shows what the correct rule for coordinate
transforms of the tensor is. Suppose we wanted to use different coordinates in the ith
image, and that we have the (square, invertible) change-of-basis matrix B for that image;
this corresponds to a linear map B : Vi → Vi. The coordinate-free expression shows that
the Grassmann vectors naturally live in the exterior power Λmi+1−αiVi

∼= ΛαiV ∗
i and so

the ith “slot” of the tensor must live in the dual ΛαiVi of this. Hence the only possible
natural way to transform the ith “slot” of the tensor is to use the (square, invertible)
exterior power ΛαiB.

We analyze this in the familiar case of the 2, 1, 1 trifocal tensor, which is an object that
lives naturally in the tensor product V ∗

1 ⊗ V2 ⊗ V3:

• The first factor here is V ∗
1 because the first “slot” of the tensor is for a point (an

element of V1). A coordinate change of P(V1) that involves multiplying homoge-
neous 3-vectors by a 3× 3 (homography) matrix B would act on the tensor in the
only possible natural way, by acting along the first index as the coordinate change
would act on lines (elements of V ∗

1 ). In matrix terms, this means pre-multiplying
the matrices T j1

i , T j2
i , T j3

i with B−>, or Λ2B.

• The second factor is V2 because the second “slot” of the tensor is for a line (an
element of V ∗

2 ). A coordinate change that acts as matrix B on homogeneous coor-
dinate in the second image would act on the second index as B too. However, in
the matrices T j1

i , T j2
i , T j3

i , the second index is written along the rows and so we
should post-multiply them with B>. The transpose is just an artifact of writing the
index of vectors left-to-right instead of top-to-bottom. It is similar to the situation
for the fundamental matrix where transposes are used on one side of the matrix
but not on the other.

• The third slot is similar to the second, except that the third index runs “across”
the three matrices and there is no standard matrix operation to describe the action.

10



It could of course be achieved by relabelling images 2 and 3, post-multiply with B>

(as before) and then relabelling again.

2.4 Simplified Notation for dimension 2

The tensor Aσ1σ2...σr
defined in (6) is indexed by the σi, which are increasing sequences

of αi integers in the range 1, . . . ,mi + 1. In the case where each mi = 2, for instance the
familiar case of projections into a 2-dimensional “image”, such sequences σi have length
either 1 or 2. For simplicity, we denote a sequence of length 1 by the value of the single
integer in the sequence. Thus, by a slight abuse of notation, we denote by i the sequence
of length 1 consisting of the integer i. Here, i lies in the range 1, . . . , 3. Sequences of
length 2, will be denoted by the missing element. Thus, 1̂ represents the sequence (2, 3).
Likewise, 2̂ represents the sequence (1, 3) and 3̂ represents the sequence (1, 2).

For the trifocal Tσ1,σ2,σ3 with profile (α1, α2, α3) = (2, 1, 1), the sequence σ1 has length
2, whereas σ2 and σ3 have length 1. Consequently, the tensor may then be denoted by
T̂

i,j,k
, where i, j and k are all integers, representing sequences of length 1. For aesthetic

reasons we simplify this notation by omitting the commas, resulting in the notation T̂
ijk

.

In a similar way, the fundamental matrix is represented by F̂
îj

and the quadrifocal tensor

by Qijkl. Note that the indices î correspond to the covariant indices, and those without̂ correspond to the contravariant indices in the usual ([6]) notation Fij , T jk
i and Qijkl

for these tensors.

3 Solving for the Grassmann tensor.

Suppose we have a set of r projections from Pn to Pmi and a profile (α1, . . . , αr) such
that

∑r
i=1 αi = n + 1. Let r affine subspaces be given with codimension αi, in the

respective image spaces, and suppose there exists at least one point X that maps into
all of the affine subspaces. (Such a set of subspaces are said to “correspond.”) Then
(5) gives a linear relationship between the entries of the Grassmann tensor with profile
(α1, . . . , αr).

Given sufficiently many sets of corresponding subspaces, we may solve linearly for the
entries of the tensor. In the case of projections from P3 to P2, this gives the well-known
method of solving for the fundamental matrix, trifocal tensor or quadrifocal tensor.

As in the case of the trifocal tensor (see [6]) we may obtain linear relationships when
different dimensional subspaces are in correspondence. For instance, the trifocal tensor
naturally relates correspondences between a point in one image and lines in the other two
images, that is a point-line-line correspondence. This is a correspondence with profile
(2, 1, 1), corresponding to the codimensions of the subspaces. Suppose that we have
instead a point-point-point correspondence. One obtains point-line-line correspondences
by choosing arbitrary lines passing through the points in the second and third images.
Since we may choose two independent lines passing through any point, we obtain four
different point-line-line correspondences in this way. The same idea works in higher
dimensions. Thus, given a tensor with a given profile (α1, . . . , αr), and given a subspace
with higher codimension than αi, we may choose a set of independent codimension αi

subspaces that meet in the given subspace, and for each such choice obtain a linear
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equation in the entries of the tensor. Details of this procedure and investigation of the
number of independent equations so obtained are left to the reader. We summarize this
discussion as follows.

Theorem 3.1. Given r projections from Pn to Pmi and integers (α1, . . . , αr) satisfying
1 ≤ αi ≤ mi and

∑r
i=1 αi = n + 1, there exists an r-dimensional Grassmann tensor

A relating the Grassmann coordinates of corresponding codimension-αi affine subspaces.
Thus, each set of corresponding affine subspaces of the Pmi contributes a linear rela-
tionship given by (5) between the entries of the tensor. Given sufficiently many such
corresponding subspaces, the tensor may be determined linearly.

4 Solving for the projection matrices

We now consider the problem of determining the projection matrices from a Grassmann
tensor. As in the standard case of 3D reconstruction from uncalibrated image measure-
ments, we can not expect to determine the projection matrices more exactly than up to
projectivity. In addition, since the projection matrices are homogeneous objects, their
overall scale is indeterminate. Thus, we make the following definition:

Definition 4.2. Two sequences of projection matrices (A1, . . . , Ar) and (Ā1
. . . , Ār) are

projectively equivalent if there exists an invertible matrix H as well as scalars λi such
that Āi = λiAiH for all i.

Now, let A be formed by stacking all the Ai on top of each other, resulting in a matrix
of dimension (

∑r
i=1(mi + 1)) × (n + 1). We accordingly associate the matrices Ai with

successive vertically stacked blocks of the matrix A. Corresponding to definition 4.2, we
may define an equivalence relation on matrices with this block structure, as follows.

Definition 4.3. Two matrices A and Ā made up of blocks Ai and Āi of dimension (mi +
1)× (n + 1) are block projectively equivalent if there exists an invertible (n + 1)× (n + 1)
matrix H, and scalar matrices λiIi of dimension (mi + 1)× (mi + 1) such that

Ā = diag(λ1I1, . . . , λrIr)AH .

It is easily seen that this definition is equivalent to the projective equivalence of the
sequences of matrices (A1, . . . , Ar) and (Ā1

. . . , Ār) as stated in definition 4.2. It is evident
that this is an equivalence relation on matrices with this given block structure.

We note that the notion of block projective equivalence arises from the group action
defined by H and the λi and that the Grassmann tensor is invariant to this action.

4.1 The trifocal tensor

We give an example of how to retrieve the projection matrices from the trifocal tensor.
Since this case involves three views instead of two for the simpler fundamental matrix,
the computation is a little involved, and requires the solution of a quadratic equations,
as we will see. The case of the fundamental matrix does not display the full range
of complications and the reader could do this case as an exercise to test his or her
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understanding. For concreteness and clarity, we carry out the computation on a specific
numerical example.

Let the trifocal tensor be

T =


 1̂11 1̂12 1̂13

1̂21 1̂22 1̂23
1̂31 1̂32 1̂33

 2̂11 2̂12 2̂13
2̂21 2̂22 2̂23
2̂31 2̂32 2̂33

 3̂11 3̂12 3̂13
3̂21 3̂22 3̂23
3̂31 3̂32 3̂33


=


 −1 8 −6

5 −15 10
−5 5 −2

 −2 13 −11
4 −12 8
−6 4 2

 1 −9 7
−6 18 −12
6 −6 2

 (8)

where the array in the first line indicates the positions of the different entries T̂
ijk

of the
tensor.

Step 1. Normalization. We begin by choosing a non-zero element of T , and scaling
T so that this element becomes equal to 1. In the discussion below, we assume T

3̂11
= 1

(as in the numerical example being discussed). If another element of T is non-zero, we
may permute the indices and scale as necessary to ensure that T

3̂11
= 1. Let G be the

matrix formed from the first two rows of A1 and the first row of each of A2 and A3. The
determinant |G| = T

3̂11
= 1 (so in particular, G is invertible). Of course, the matrices Ai

are unknown; it is our purpose to find them. However, whatever they are, multiplying
them by G−1 will reduce them to a projectively equivalent set of matrices for which the
matrix G formed as above is the identity matrix. The stacked matrix looks like this:

A =



1 0 0 0
0 1 0 0
a b c d
0 0 1 0
e f g h
j k m n
0 0 0 1
p q r s
t u v w


,

where the values a, b, . . . , w are yet to be determined values. We have also partitioned
the columns of the matrix A according to the profile α = (2, 1, 1). By applying this
normalization, at one stroke we have determined most of the matrices Ai. Henceforth,
we may assume that they are of the form

A1 =

 1 0 0 0
0 1 0 0
a b c d

 A2 =

 0 0 1 0
e f g h
j k m n

 A3 =

 0 0 0 1
p q r s
t u v w

 .

A crucial observation concerns the positions of the 1-entries in this block decomposition
of the matrix A. They occur only in the diagonal blocks of A. This observation will be
used in the next step of the algorithm.

Step 2. Forming the reduced matrix. From the previous normalization step, we
have reduced some of the rows of the matrices Ai to simple form, the rows of an identity

13



matrix. These rows will be called the reduced rows of the Ai. We already know the form
of these rows, and need to determine the entries of the remaining rows of the Ai. Consider
the matrix formed by stacking the remaining rows of all the Ai on top of each other to
form a block-partitioned matrix

B =


a b c d
e f g h
j k m n
p q r s
t u v w

 =

 B11 B12 B13

B21 B22 B23

B31 B32 B33

 . (9)

If we can determine the entries of B, then we have the complete matrices Ai, and are
finished.

In order to continue, it is essential to understand the relationship between the profile-
shaped minors of the matrix A (i.e. those chosen with αi rows from each Ai) and certain
minors of the matrix B.

Consider a profile-shaped minor of the matrix A. Notice that such a minor of A inherits
the block structure of A and furthermore has square diagonal blocks. In general, such
a minor will consist of some of the reduced rows of the Ai and some non-reduced rows,
which are identical to the rows of B. As an example, consider the profile-shaped minor

T
1̂12

= −

∣∣∣∣∣∣∣∣
0 1 0 0
a b c d
0 0 1 0
p q r s

∣∣∣∣∣∣∣∣
in which the first and third rows are reduced rows of A. In taking the determinant of this
matrix, we can eliminate the reduced rows and corresponding columns, as follows:

T
1̂12

= −

∣∣∣∣∣∣∣∣
0 1 0 0
a b c d
0 0 1 0
p q r s

∣∣∣∣∣∣∣∣ =
∣∣∣∣ a d

p s

∣∣∣∣ (10)

The resulting minor on the right of this expression is a minor of the matrix B. Now the
key observation here is that any 1 entries in the matrix (10) occur, if at all, only in
the diagonal blocks. Therefore, when deleting rows and columns from matrix B, we must
delete row-column pairs from corresponding row and column blocks. Equivalently, the
minors of B that may occur in this way are precisely those that correspond to a choice
of rows from some set of row blocks, and a choice of columns from the correspondingly
numbered column blocks. We will call such a minor of B a block-principal minor.

This terminology is derived from the term principal minor of a matrix, which is the
determinant formed from a square matrix by selecting a sequence σ of rows, the same
sequence of columns, and forming the submatrix that consists of elements in the selected
rows and columns.

In a block-principal minor of a block partitioned matrix, B = [Bij ], we select rows from
a sequence σrow and columns from a sequence σcol such that for each k, σrow

k and σcol
k

belong to the same numbered row and column blocks of B.

We thus have the important observation:
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The entries of the tensor A are equal up to well-determined sign to the block-principal
minors of the reduced matrix B = [Bij ].

Thus, if we are able to determine the matrix B from its block-principal minors, then we
are able to determine the projection matrices Ai from the tensor, which is our goal. As
it turns out, this is not quite possible, but it is true up to a certain equivalence, as we
shall see. From now on, we concentrate on the computation of the reduced matrix B,
given knowledge of its block-principal minors. Our goal will be to fill in the entries of B
one by one.

Step 3. Using 1 × 1 determinants. The 1 × 1 block-principal minors of B are
simply the entries in the diagonal blocks of B. Hence we are able to determine these
values a, b, g, m, s, w directly from the corresponding entries of the tensor. In particular,
we have

a = −T
1̂11

= 1
b = −T

2̂11
= 2

g = −T
3̂21

= 6
m = +T

3̂31
= 6

s = −T
3̂12

= 9
w = +T

3̂13
= 7 .

So far, we have identified the diagonal blocks of B, which now have the following form.

B =


1 2 c d
e f 6 h
j k 6 n
p q r 9
t u v 7

 .

Step 4. Using 2 × 2 determinants. We use the 2 × 2 block-principal minors of
B next to determine other entries. The most representative case is the computation of
the unknown elements in the last two row and column blocks, namely the elements h,
n, r and v. To do this, we use as before 2 × 2 block-principal minors of B consisting of
rows and columns from the last two row and column blocks. In this way, we obtain four
equations, bilinear in (h, n) and (r, v), namely

hr = 36 ; hv = 30 ; nr = 48 ; nv = 40 .

As an example, the first of these equations arises from the 2× 2 minor of B∣∣∣∣ g h
r s

∣∣∣∣ =
∣∣∣∣ 6 h

r 9

∣∣∣∣ = 54− hr = T
3̂22

= 18 .

The remaining three equations are similarly obtained by considering T
3̂23

, T
3̂32

and T
3̂33

.
The set of 4 equations can be written as a single matrix equation[

h
n

] [
r v

]
=

[
36 30
48 40

]
=

[
3
4

] [
12 10

]
.
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The matrix on the right has rank 1. In the presence of noise, this might not be the case,
but we can use the Singular Value Decomposition (SVD) to enforce this condition, and
find a solution. The solution is determined only up to an unknown scale. In this case,
we get (h, n) = ν(3, 4) and (r, v) = ν−1(12, 10) for some constant ν.

In this way, we were able to find the entries in a single pair of symmetrically opposite
blocks of B. In the same way we are able to compute the other symmetrically placed
blocks, each up to a different unknown scale factor, obtaining the following form for B
(so far).

B =


1 2 λ µ

1/λ 8/λ 6 3ν
1/λ 6/λ 6 4ν
1/µ 5/µ 12/ν 9
1/µ 3/µ 10/ν 7


Step 5. Reciprocal scale equivalence. At this point we may exercise the freedom
of choosing one solution among the family of equivalent ones, to fix the value of some of
the unknown scales. We are free to multiply each Ai on the right by a diagonal matrix
diag(λ1I2×2, λ2I1×1, λ3I1×1) and each Ai on the left by the constant λ−1

i , where λ1, λ2

and λ3 are arbitrary constants. (In the general case with profile α = (α1, . . . , αr) we
would multiply on the right by the matrix diag(λ1Iα1×α1 , . . . λrIαr×αr ). This operation
preserves the normalized rows of the Ai.

It may be verified that the effect of this operation on the block matrix (9) is to multiply
the i-th block column [B1i; B2i; B3i] by λi and the corresponding block row [Bi1, Bi2, Bi3] by
λ−1

i . This operation leaves the diagonal blocks unchanged, and (as one may verify) also
leaves unchanged the values of any block-principal minors. The effect of this operation
on an arbitrary block Bij is to multiply it by λiλ

−1
j .

We may now exercise this freedom to select the constants that appear in the first row-
block. Thus, in our example, we may choose λ = µ = 1, leading to a solution

B =


1 2 1 1
1 8 6 3ν
1 6 6 4ν
1 5 12/ν 9
1 3 10/ν 7

 .

The value of ν can not be set to a chosen value, but must remain indeterminate at this
point. In the next step, we will determine the value of ν.

Step 6. Using 3 × 3 determinants. We want to find the unknown value ν to
complete the computation of the matrix B, and hence (up to equivalence) the three
camera matrices Ai. To do this, we use 3 × 3 block-principal minors of B, consisting of
one row and column from each block. There are various choices. One such minor is
obtained by using rows (1, 3, 4) and columns (1, 3, 4) of B. This gives a minor∣∣∣∣∣∣

1 1 1
1 6 4ν
1 12ν−1 9

∣∣∣∣∣∣ = −9 + 4ν + 12/ν = T
1̂32

= 5
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This leads to a quadratic equation 4ν + 12/ν − 14 = 0, or 4ν2 − 14ν + 12 = 0, which has
solutions ν = 2 or ν = 3/2.

Another choice of rows (1, 3, 5) and column (1, 3, 4) gives equations∣∣∣∣∣∣
1 1 1
1 6 4ν
1 10/ν 7

∣∣∣∣∣∣ = −11 + 4ν + 10ν−1 = −T
1̂33

= 2

which has solutions ν = 2, ν = 5/4. The common solution to these two equations is
ν = 2, which must therefore be the correct value. This leads to the final value of

B =


1 2 1 1
1 8 6 6
1 6 6 8
1 5 6 9
1 3 5 7


and finally the projection matrices

A1 =

 1 0 0 0
0 1 0 0
1 2 1 1

 A2 =

 0 0 1 0
1 8 6 6
1 6 6 8

 A3 =

 0 0 0 1
1 5 6 9
1 3 5 7


In this computation, we found the value of ν as the common root of two quadratic
equations. An alternative is to consider the pair of equations involved here as a pair of
simultaneous “linear” equations in the two variables ν and ν−1, ignoring the fact that
they are reciprocals. In the above example:

[
4 −14 12
4 −13 10

] ν
1

ν−1

 = 0

The 2 × 3 matrix has a 1D null-space and dividing by the 2nd entry of any generator
allows us to recover ν (and ν−1). In the presence of noise, the two quadratic equations
do not have an exact common root, whereas the two linear equations have a solution for
ν (though the solution for ν−1 may not be the exact reciprocal). A further advantage
of this linear solution is that there are (in this case) 8 possible 3 × 3 minors giving
equations in ν and ν−1, corresponding to the 8 trifocal tensor entries T̂

ijk
where i ∈ {1, 2}

and j, k ∈ {2, 3}. The set of 8 equations can then be solved using linear least-squares
techniques. This finds the solution that requires the least-squares adjustment to the
entries of the tensor (but ignores the condition that ν and ν−1 are reciprocals).

Obviously, this example has been carefully chosen for numerical simplicity, but the tech-
niques are generally applicable.

4.2 Projections onto P1.

The techniques developed above for the trifocal tensor are sufficient to solve most cases.
Unfortunately there is a further complication in the case where all the projections are
onto P1.
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We choose an example of four projections P3 → P1, with projection matrices equivalent
to

A1 =
[

1 0 0 0
1 2 3 4

]
; A2 =

[
0 1 0 0
1 8 6 6

]
;

A3 =
[

0 0 1 0
1 6 6 8

]
; A4 =

[
0 0 0 1
1 5 3 9

]
.

In this case there is only one possible profile (1, 1, 1, 1) and the corresponding tensor
Aijkl has 2× 2× 2× 2 = 16 elements.

The reduced matrix B corresponding to these projection matrices Ai is equal to

B =


1 2 3 4
1 8 6 6
1 6 6 8
1 5 3 9

 (11)

and all the blocks of this matrix have dimensions 1× 1. The elements of the tensor are
equal (up to sign) to the block-principal minors of B. Since all the blocks consist of a
single element the block-principal minors are just the standard principal minors in this
case.

In our problem, we do not know this matrix (11), but we do know the corresponding
tensor, whose entries (up to sign) are the principal minors of this matrix. Thus, we
assume that we know any of the principal minors of (11), and our task is to find the
matrix B itself.

Let us start with a symbolic value for B, given by

B =


a b c d
e f g h
j k l m
n p q r


Proceeding as with the first steps of the algorithm of section 4.1, we arrive at a form for
B as follows.

B =


1 1 1 1
2 8 g h
3 36/g 6 m
4 30/h 24/m 9


In the reciprocal scaling step (step 5) of the algorithm, we made a choice of the scale
factors. We assume that the choice was made so as to set the first row of B to all 1s,
though other choices are possible, and as can be seen, this choice leads to a different
solution from (11).

Using the 3 × 3 minors. To establish the values of the remaining values g, h and
m, we consider 3 × 3 principal minors. The first minor consisting of the first 3 rows
and columns gives rise to a quadratic equation −24 + 3g + 72g−1 = 6. We obtain two
solutions: g = 6 and g = 4. Unfortunately, we are not able to obtain a second equation
for g, as we did in the trifocal tensor case. The difference is that all the blocks of B have
dimension 1× 1; we need a block with at least two elements to obtain a second equation.
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There is no way to choose between the two solutions, so we need to consider them both.
First, consider the solution g = 4. This leads to

B =


1 1 1 1
2 8 4 h
3 9 6 m
4 30/h 24/m 9


We may obtain three other equations involving the remaining variables h and m by taking
the 3 × 3 principal minors of B omitting the first, second and third rows and columns.
The three equations and their solutions are:

348− 216(m/h)−1 − 120(m/h) = 0 ⇒ m/h = 2; m/h = 9/10
36− 72m−1 − 4m = 0 ⇒ m = 3; m = 6

32− 60/h− 4h = 0 ⇒ h = 3; h = 5

Each of these equations has two solutions, but there is only one consistent solution,
namely h = 3; m = 6. This gives the following solution for B.

B1 =


1 1 1 1
2 8 4 3
3 9 6 6
4 10 4 9

 (12)

The other solution g = 6 leads via a simular set of equations to solutions h = 5; m = 3,
and hence a second solution

B2 =


1 1 1 1
2 8 6 5
3 6 6 3
4 6 8 9

 (13)

The transpose solution. Note that the two solutions are apparently dissimilar, and
neither is the same as the original “true” value of B. However, note that the second
solution (13) is the transpose of the original value given in (11). In addition, multiplying
B1 given in (12) on the right by diag(1, 2, 3, 4) and on the left by its inverse yields the
original “true” value of B in (11). Thus, the two solutions that we have obtained are
equivalent to (11) and its transpose.

In fact, it is clear that a matrix and its transpose yield the same set of principal mi-
nors. But we demonstrated in the above computation that there are just two possible
equivalence classes of solutions for B given the set of all its principal minors. These must
therefore be the matrix itself, and its transpose. It may seem optimistic to call the above
arguments a proof, but in fact, the above computation contains all the ingredients of a
complete proof. The general case will be considered more formally (and briefly) later.
Effectively, we have shown the following result.

Theorem 4.4. For a generic square matrix, the set of principal minors determines the
matrix up to transposition and reciprocal scaling.
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2D example. For a simpler example, consider a set of three projections from P2 to
P1 given by matrices

A1 =
[

1 0 0
a b c

]
; A2 =

[
0 1 0
d e f

]
; A3 =

[
0 0 1
g h j

]
and an alternative set

A′1 =
[

1 0 0
a d g

]
; A′2 =

[
0 1 0
b e h

]
; A′3 =

[
0 0 1
c f j

]
.

Since the corresponding reduced matrices are

B =

 a b c
d e f
g h j


and its transpose, the corresponding trifocal tensors for these two sets of matrices are
the same, and the two configurations can not be distinguished by the corresponding
point projections. In fact, one may easily verify that if X = (x, y, z) in homogeneous
coordinates, and

X′ =

 x(dg x + dh y + fg z)
y(gb x + hb y + ch z)
z(cd x + fb y + cf z)


then AiX = A′iX′ for all i. The mapping from X to X′ is a quadratic mapping, or Cre-
mona transformation. There are in general three fundamental (singular) points, namely
the centers of projection in P2. Figure 3 shows the effect of applying a mapping of this
type to a simple checker-board pattern. The resulting pattern is an alternative interpre-
tation of the checker-board pattern, derived from reconstruction of the plane from point
correspondences in three views.

Genericity. We state our assumption of genericity. All projections from Pn to Pm are
assumed to be “generic”, which means in effect that improbable special cases are ruled
out. Any polynomial expression in the coordinate representation of the projections, or
related points may be assumed to be non-zero, unless it is always (identically) zero. Thus
the results we prove will hold, except on a set of positive co-dimension (hence of measure
zero).

The result of Theorem 4.4 is true only for generic matrices, that is for all matrices except
for some exceptions lying in a nowhere dense exceptional set. Exceptions do exist for
which more than two solutions are possible. For instance, all upper triangular matrices
with the same diagonal have the same set of principal minors. However, upper triangular
matrices form an n(n+1)/2-dimensional subspace of the n2 dimensional space of all n×n
matrices.

Throughout these proofs or examples, in arguing the existence of a single solution (or a
pair of solutions), we relied on the fact that certain elements of the tensor were non-zero,
or that sets of polynomials did not by chance have more than one common solution. In
all such cases, the tensor entries or polynomials involved relied on independent elements
of the matrix B. Thus, accidents such as zero-elements of the tensor, or polynomials with
more than one common solution could be avoided by small perturbations of elements of
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Figure 2: An alternative reconstruction of a simple checker-board pattern, reconstructed
from projections of the plane onto three 1-dimensional images. The two reconstructions
(this and the checker-board) are related via a Cremona transformation.

21



Entries of tensor

projective equivalence
Projections up to A up to block

projective equivalence

minors of BProfiled minors of A Block−principal

B up to reciprocal−
scale equivalence

Figure 3: The stages of the recipe presented in this paper, for retrieving the projection
matrices from the Grassmann tensor.

B, and hence the projection matrices Ai. Thus, the results hold for generic though not
all projections.

It is outside the scope of this paper to investigate exceptional configurations where more
than the generic number of solutions exist.

5 General proof

In this section we give a more general description of the method for reconstruction pre-
sented in this paper. The recipe is summarized in Fig 3 which shows the stages of the
construction.

We assume that there are sufficiently many such projections that
∑r

i=1 mi ≥ n + 1. Let
(α1, . . . , αr) be an ordered partition of (n + 1) with the property that 1 ≤ αi ≤ mi. We
may form square matrices of dimension (n + 1) × (n + 1) by selecting exactly αi rows
from each matrix Ai. We may then take the determinant of such a square matrix. Of
course, we may select αi rows from each Ai in many different ways – to be exact, there are∏r

i=1 Cαi
mi+1 ways of doing this, and that many such subdeterminants of A corresponding

to the given partition.

We now state the main theorem of this part of the paper.

Theorem 5.5. Let A be a generic matrix with blocks Ai; i = 1, . . . , r of dimension (mi +
1)× (n + 1), and let (α1, . . . , αr) be any fixed ordered partition of n + 1. If at least one
mi is greater than one, then the matrix A is determined up to block projective equivalence
by the collection of all its minors, chosen with αi rows from each Ai. If all mi = 1, then
there are two equivalence classes of solutions.

We refer to the partition (α1, . . . , αr) as the profile of the minors. Thus, the theorem
states that the matrix A is determined up to projective equivalence by its collection of
minors with a given fixed profile.

Proof. The strategy of the proof is to provide an explicit method by which A may be
reconstructed (up to equivalence) from knowledge of its α-minors.

By assumption, there exists at least one non-zero minor, and without loss of generality
(by rearranging rows if required), this may be chosen to belong to the submatrix of A
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in which the first αi rows are chosen from each Ai. Let this submatrix be denoted by G.
Choosing H = G−1, we may transform any solution A into an equivalent solution AH in
which the matrix G is replaced by the identity matrix.

After this transformation, the form of the matrix A is simplified. The first αi rows from
each block are known, consisting of zeros, except for one unit element in each such row.
We refer to these rows of A as the reduced rows. The elements of the remaining rows of A
are still to be determined. We show that they can be determined (up to block projective
equivalence) from other minors of the matrix.

We consider a finer block decomposition of the matrix A into blocks indexed by (i, j)
where the block Aij has dimension (mi + 1)× αi as shown: A11 . . . A1r

...
. . .

...
Ar1 . . . Arr

 .

The first αi rows of each such Aij are reduced, so

Aii =
[

I
Bii

]
and Aij =

[
0
Bij

]
for i 6= j

The reduced rows of A form an identity matrix, having unit determinant. Let B be the
matrix obtained from A by removing the reduced rows. Then B has the same type of
block structure as A. We investigate the relationship between minors of A and those of B.

By α-minors of A, we mean those chosen according to the given profile, with αi rows
from each Ai. These minors are in one-to-one correspondence with (and equal up to a
well-determined sign to) the block-principal minors of B.

Corresponding to the concept of projective equivalence of the set of projection matrices Ai,
we define a different type of equivalence relation on block matrices of the form B = [Bij ],
where i, j = 1, . . . , r.

Definition 5.6. Two matrices B = [Bij ] and B̄ = [B̄ij ] will be called reciprocal-scale
equivalent if there exist non-zero scalars λi such that B̄ij = λiλ

−1
j Bij .

We will show that the block-principal minors of B determine B up to reciprocal-scale equiv-
alence. This is sufficient, however, because reciprocal-scale equivalence of two matrices
B and B̄ implies that the corresponding matrices Ai and Āi are projectively equivalent,
which is all we need. This is true because

Āi = λiA
idiag(λ−1

1 Iα1 , . . . , λ
−1
r Iαr

)

follows from the fact that B̄ij = λiλ
−1
j Bij .

The proof of Theorem 5.5 will be completed therefore by proving the following lemma.

Lemma 5.7. A matrix B = [Bij ] is determined up to reciprocal-scale equivalence by its
collection of block-principal minors.

In fact, it will be sufficient to consider only minors up to dimension 3× 3.
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Step 1 - the 1 × 1 minors. The 1 × 1 block-principal minors are nothing other
than the elements of the diagonal blocks Bii, and hence these 1× 1 minors determine the
diagonal blocks.

Step 2 - the 2× 2 minors. As shown in the example of section 4.1, the 2× 2 block-
principal minors of B = [Bij ] determine the entries of the blocks Bij and Bji for i 6= j up
to multiplication by scale factors µij , where µij = µ−1

ji .

The only thing that can go wrong here is that, when solving the bilinear problems, the
right-hand sides are all zero and so one factor is zero while the other is undetermined.
But this a non-generic case, which we have excluded.

Step 3 - Normalization of the first row and column blocks. The requirement
to reconstruct B only up to reciprocal-scale equivalence allows us to set the unknown
scale factors in the first row and column blocks of B. It remains then to determine the
scale factors for the other blocks.

Step 4 - consistent choice of scale factors. Once we have chosen the scale factors
µ1j and µi1, then the rest of the scale factors µij , and hence the matrix B, will be
determined uniquely. The exception is when mi = 1 for all i, that is all the projections
are onto P1. In this case, there are two solutions. Consider block-principal 3× 3 minors
of B, in which one row is taken from the first row block, and one row each from each of
two other row blocks. Columns are chosen from the corresponding blocks. The 3 × 3
minor is of the form ∣∣∣∣∣∣

a b c
d e µf
g µ−1h k

∣∣∣∣∣∣ (14)

Equating this determinant with its known value (the block-principal minor of B, assumed
known) gives a quadratic equation in µ, for which there are generically two solutions for
µ. In most situations we may obtain a second equation for the same µ which will also
have two solutions, but there will be only one solution common to both equations.

To see this, we need to make an assumption that the first projection matrix A1 =
[A11 . . . A1r] has more than two rows – its dimension is m1 + 1 ≥ 3. This is possi-
ble without loss of generality provided that there exists at least one projection matrix
with at least three rows, for it may be chosen as the first. The number of rows chosen
from A1 is α1 which is in the range 1 ≤ α1 ≤ m1. Now, suppose that the rows and
columns of (14) are chosen from the row and column blocks numbered 1, i and j. Thus,
the entries of (14) are drawn from the block matrix B11 B1i B1j

Bi1 Bii Bij

Bj1 Bji Bjj

 . (15)

Now, the dimension of the matrix Bij is (mi +1−αi)×αj . Specifically, Bi1 has dimension
(mi+1−αi)×α1, and B1j has dimension (m1+1−α1)×αj . However, since 1 ≤ α1 ≤ m1

and m1 > 1, it must follow that either α1 > 1 or m1 + 1− α1 > 1. Thus, either Bi1 has
at least two columns, or B1j has at least two rows. In either case, there is more than
one way of selecting rows and columns from (15) to obtain a submatrix of the form (14).
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Each such choice will give a different equation for µ. Generically, there will only be one
common solution to the two equations.

The exception to this argument is the case where each mi = 1. In this case, it is possible
to find only one quadratic equation in any one of the unknown scale factors µij . Recall
that we may assume (calling upon our freedom afforded by reciprocal-scale equivalence)
that µ1j = µj1 = 1 for all i and j. As shown in the example of section 4.1 there will then
be two possible values for any other given µij . However, once one of these values (say
µ23) is chosen from the two possible values, then the choice of all the other values µij

is forced by the requirement of consistency among the solutions arising from the other
3 × 3 principal minors. As was shown in section 4.2, the two possible solutions for B in
this case are (up to reciprocal-scale equivalence) transposes of each other.

The proof is now complete, since we have given a specific method for reconstructing the
matrix B (up to reciprocal-scale equivalence) given its set of block-principal minors.

6 Practical Algorithmic Considerations

The main result of this paper is the theoretical existence proof of the possibility of
reconstruction from projections between projective spaces. Nevertheless, the algorithm
for reconstruction outlined in section 4.1 represents the basis for a practical method for
reconstruction. In this section, we describe some of the engineering decisions necessary
to make this into a good quality functioning algorithm.

6.1 Normalization

As with any of the linear tensor-based algorithms for projective reconstruction, it is
necessary to normalize the point coordinates before computing the tensor. In the most
important case, the projections will be from a space Pn into P2, a normal 2-dimensional
image. In this case, we use the simple normalization technique described in [3]. This
involves applying a scale change and translation to image coordinates, and subsequently
correcting the computed projected matrices accordingly.

6.2 Row Permutation

In step 1 of the algorithm, we choose an element of the tensor and scale the tensor so that
this entry is 1. It is important that the element of A we choose should be non-zero. In
the description of the algorithm, it was assumed that this element could be conveniently
chosen so that it corresponded to the leading rows of the camera matrices Ai, and that
hence the matrix formed by these rows could be inverted. If another element is chosen,
it is simplest to rearrange the tensor, and the projection matrices so that this will be
the case. For instance, for the example given with profile (2, 1, 1), the tensor should be
rearranged so that the non-zero chosen element is A

3̂11
. In doing this, it is important

(and tricky) to get the signs correct.

Let π be a permutation of the integers 1, . . . ,m, and τ a sequence of integers (i1, i2, . . . , ir),
in the range 1, . . . ,m, We may define the sequence π(τ) = (π(i1), . . . , π(ir)). Now, sup-
pose that the rows of each projection matrix Ai are rearranged according to a permuation
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πi to form a new matrix A′i defined by A′ik = Ai
π(k), where A′ik means the k-th row of A′i.

According to (6), the tensor corresponding to the new set of matrices is given by

A′
τ1...τr

= sign(τ1) . . . sign(τr) |A′τ1...τr
|

= sign(τ1) . . . sign(τr) |Aπ(τ1)...π(τr)| .

The elements of each permutation π(τi) are not in general in ascending order. We
define σi to be the sequence of integers π(τi) rearranged into ascending order. Now, we
correspondingly rearrange the rows of the matrix Aπ(τ1)...π(τr). This will change the sign
of the determinant in the above expression. Continuing the calculation, we get

A′
τ1...τr

=
r∏

i=1

sign(τi) sign(π(τi)) sign(σi) |Aσ1...σr |

=
r∏

i=1

sign(τi) sign(π(τi)) Aσ1...σr . (16)

This gives a formula for the tensor corresponding to the rearranged projection matrices
in terms of the entries of the original tensor. It suggests an algorithm to compute the
projection matrices, starting from the tensor A, as follows

1. Select permutations πi for i = 1, . . . , r and compute the reordered tensor A′ using
(16).

2. Use the algorithm of section 4.1 to compute the corresponding projection matrices
A′i from tensor A′.

3. Rearrange the rows of each A′i to get the projection matrices Ai, according to the
formula Ai

π(k) = A′ik .

The result of this algorithm depends significantly on the permutation being used, but in
a somewhat unpredictable way. The quality of the reconstruction may be evaluated by
computing the associated algebraic or geometric error. We have found that best results
are achieved by trying a few different permuations, and choosing the best result.

6.3 Algebraic Minimization

An improved estimate of the projection matrices may be obtained using a technique de-
scribed in [4] for computing the quadrifocal tensor. This involves finding the geometically
consistent tensor that minimizes algebraic error, as defined in [5].

Specifically, the linear method of computing the tensor (either the classical trifocal or
quadrifocal tensors, or the Grassmann tensors discussed here) involves finding the least-
squares solution of a set of linear equations of the form Mt = 0, where M is a matrix
computed from the point or subspace correspondences, and t is a vector containing the
elements of the tensor. The solution is the vector t of unit norm that minimizes ‖Mt‖.
As is well known, the tensor A corresponsing to the solution t is not a well-formed
tensor, in the sense that there exist projection matrices Ai corresponding to A according
to the relation (6). The main weakness of the tensor-based reconstruction methods is
that the tensor obtained by linear methods does not satisfy the constraints implied by
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this relationship. Improved results may be obtained by minimizing the algebraic error
‖Mt‖ over all t corresponding to well-formed tensors A. This is a non-linear optimization
problem. In order to carry out this optimization, we need a method of parametrizing the
set of all well-formed Grassmann tensors for a given profile. This is provided from the
entries of the reduced matrix (9). Consider the function f defined as follows.

f : B 7→ A 7→ A 7→ t 7→ Mt/‖t‖ .

Here, the reduced matrix B is completed to form the stack of all projection matrices,
A. The corresponding tensor A is computed according to (6) and its elements are made
into a vector t. Finally, t is normalized to unit length and multiplied by the matrix M
to give a vector consisting of the algebraic errors corresponding to each correspondence.
The optimization task is to minimize ‖Mt‖/‖t‖ over all the entries of matrix B. This is
accomplished using the Levenberg-Marquardt algorithm, starting from the initial reduced
matrix B computed using the non-iterative algorithm described in this paper.

One small refinement of this algorithm will save some computation time. We replace the
matrix M by its orthogonal row-reduction M′, This is computed by taking the singular value
decomposition M = UDV> and then defining M′ = DV>. It is easily seen that M>M = M′>M′,
and so ‖Mt‖ = ‖M′t‖ for any vector t. If the number of correspondences is large, then M′

will be considerably smaller than M, and so the amount of computation is substantially
decreased.

6.4 Bundle adjustment

A final bundle adjustment will give the best achievable solution. This involves a large-
scale non-linear optimization over the parameters of the reduced projection matrix B
(which provide a convenient parametrization of the projection matrices), as well as the
coordinates of the points Xj being matched. The initial coordinates of these points may
be computed using a linear triangulation procedure.

Non-linear optimization seeks to minimize the reprojection error in each of the images.
In the general case, this is the Euclidean distance between the projected point and an
affine subspace in Pmi , represented by Si.

The suggested overall method for carrying out the reconstruction consists of three steps.

1. From affine subspace correspondences, compute the Grassmann tensor linearly, and
extract the projection matrices Ai using the non-iterative method outlined in this
paper (section 4.1). For best performance two or three iterations of the permutation
method of section 6.2 should be used and the best result retained.

2. Refine this initial solution using non-linear optimization to minimize the algebraic
error, as in section 6.3.

3. Obtain a best-achievable solution through full-scale bundle-adjustment minimizing
geometric reprojection error.

The second step may be skipped here, but we have found that it leads to better results
by providing a better initial solution for the final bundle adjustment. In addition, it is
easy to implement, and runs fast.
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7 Experimental Results

The algorithm of this paper has been implemented for projections between spaces of arbi-
trary dimension. Some results have been given in [2] in the context of the application to
dynamic perspective structure and motion. In this paper, we show results for projections
from P3 to P2, and compare against the standard algorithms involving the bifocal, trifo-
cal and quadrifocal tensors. Each of these problems has been studied carefully and good
quality methods are available. The algorithm given in this paper is a general one, not
optimized to any of the particular problems addressed by the classical tensor algorithms.
Nevertheless, it will be seen that it performs nearly as well, and has the advantage of
offering a single approach that works in for all dimensions, and any number of views
within the scope of tensor-based reconstruction.

The experiments we carry out are for synthetic data generated as follows. A set of 50
points are randomly generated within a cube centred at the origin, with half-side length
equal to one unit. Between two and four cameras are placed approximately three units
distance from the origin, and oriented roughly towards the origin (but with non-incident
principal rays). Thus, the points subtend an angle of around 60◦ in each image – roughly
equivalent to the field of view of a 35mm camera. The angle between the directions of
view varies from 0 to about 40◦ with average about 30◦. Thus, the imaging geometry
approximates a set of snapshots taken from different viewing directions ranging over
about 40◦.

The experiment is carried out with 50 different random configurations, and the calculation
is repeated 50 times with different instantiations of Gaussian image noise with varying
variance. We report results for a noise level of 0.01× focal-length. Thus, with the given
viewing geometry, if the image is 1000 × 1000 pixels, then the noise level is about 10
pixels. Thus, we consider very high noise levels. Despite this, the algorithm is shown to
perform close to perfectly in most cases.

The usual way to report the results of such reconstructions is to show graphs of the root-
mean-squared (RMS) reprojection error as a function of noise. In this case such graphs
are not informative, since even with high levels of noise, the algorithm performs perfectly
for most cases. Occasionally, the algorithm fails to find the best minimum, in which case
the reprojection error can be quite large, thus badly skewing the RMS error estimate.
Instead, we focus on one noise level (0.01× focal-length) and run 2500 tests. In each
graph, we show the results of one algorithm, and plot the RMS reprojection error (over
50 points) for each of the 2500 tests. The horizontal axis represents the test number,
and the vertical axis the RMS reprojection error. The tests are ordered according to the
resulting RMS reprojection error.

Expected reprojection error One may compute the expected residual error for the
optimum solution to these reconstruction problems using the formula

E(δopt) = σ
√

1− d/N

where N is the number of measurements and d is the number of degrees of freedom. In
this case with p points, r views, this gives N = 2pr and d = 11r + 3p − 15. Thus, with
σ = 0.01, we expect E(δopt) to equal 0.0046, 0.0066 and 0.0074 for r = 2, 3, 4.

28



7.1 Two-view tests

We compare various two-view algorithms, described in [6].

1. 2-8-point. The normalized 8-point algorithm ([6], algorithm 11.1, page 282).

2. 2-algebraic. The algebraic minimization algorithm is described in ([6], section 11.3)
and consists of the first two steps of algorithm 11.2.

3. 2-iterative. This algorithm is described in [6], algorithm 11.2. It finds the funda-
mental matrix that minimizes algebraic error as defined in {sectalgebraic-minimization,
while satisfying the singularity constraint det(F) = 0.

4. 2-grassman. This is the non-iterative algorithm described in this paper.

5. 2-grassman-algebraic. This starts from the 2-grassman algorithm, and follows it
with iteration to minimize algebraic error, as described in section 6.3.

The algorithm 2-iterative is most closely comparable with 2-grassman-algebraic, since
both seek to minimize the algebraic error over all well-formed fundamental matrices.
We also compare the results of bundle-adjustment initiated by the results of all these
algorithms.

The results of the comparison are shown in Fig 4. If the algorithm achieves the optimal
solution, then the graph of residuals takes on the characteristic shape appearing in the
right-hand graph of Fig 4. The residuals will be distributed about the optimal expected
value (in this case 0.0046).

7.2 Three-view tests

We compare the algorithm of this paper with a number of different 3-view algorithms
described in [6], pages 395–397. The algorithms tested are as follows.

1. 3-linear. This is the “Algebraic Minimization” algorithm described in [6], page
395. It is a two-step linear algorithm that computes first the epipoles, and then the
remaining elements of the camera matrices from the trifocal tensor. It minimizes
the algebraic error constrained by the initial estimated positions of the epipoles.

2. 3-iterative. This is an iterative algorithm ([6], page 396) that minimizes alge-
braic error by adjusting the positions of the epipoles. This algorithm, followed by
bundle-adjustment is recommeded in [6] as the preferred “gold-standard” method
for computing the trifocal tensor.

3. 3-grassman and 3-grassman-algebraic are the same as for the two-view case.

In Fig 5 are shown the results of the comparison of the different 3-view algorithms.

In Fig 6. we also show results illustrating the effect of the permutuation (section 6.2)
and algebraic minimization (section 6.3) methods. These results show that the algebraic
minimization step is essential for good quality results.
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Figure 4: Comparison of two-view algorithms. On the left are the results of the different
algorithms without final bundle adjustment. On the right are the results after bundle ad-
justment. The graphs show the reprojection error for 2500 separate tests, and the results
are sorted (separately for each method) according to increasing reprojection error. On the
left, the algorithms are, from top to bottom, 2-grassman, 2-grassman-algebraic, followed
by the other algorithms, largely indistinguishable. After bundle-adjustment (right) there
is no distinguishable difference between the algorithms. All algorithms achieve the global
minimum. The horizontal line indicates the expected RMS error of 0.0046.

Figure 5: Comparison of three-view algorithms. Left before, right after bundle adjustment.
From top to bottom (left) are 3-grassman-algebraic, 3-linear, 3-iterative and for reference,
3-iterative-b, which represents the optimal bundle-adjusted solution. The residual errors
for the 3-grassman-algebraic algorithm are about 5% to 10% larger than those for the
specialized trifocal tensor algorithms. Note also that all three algorithms result in large
residuals (go off the top of the graph) for some small percentage of cases. Nevertheless,
all the algorithms find solutions close enough to the minimum to give optimal results
after bundle adjustment.
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Figure 6: Different versions of the Grassman algorithms. Each graph shows the reprojec-
tion error (blue) before and (red) after bundle-adjustment. Three different versions are
shown: left, the non-iterative Grassman algorithm, 3-grassman; middle, best of 5 permu-
tations of 3-grassman (see section 6.2); right, algorithm 3-grassman-algebraic, initialized
by 2 permutations of 3-grassman. Each point on the horizontal axis represents one test
out of 2500. In the top row of graphs, the tests are ordered according to increasing error
after bundle adjustment. Thus each blue dot represents one test, and bundle adjustment
reduces the error to the near optimal value represented by the point on the red curve
directly below. This provides a visualization of the improvement effected by bundle ad-
justment. The bottom row of graphs shows the same results, but with the tests ordered
according to increasing error before bundle adjustment. This allows a more qualitative
visualization of the results of each test. Thus, from the left-bottom graph, we see that the
3-grassman algorithm results in quite large errors for all but the best 1000 out of 2500
tests. Nevertheless, in most cases, the optimum is achieved after bundle adjustment (rep-
resented by the broad red band below). Isolated red dots correspond to tests in which the
optimal reprojection error was not achieved. Multiple row-permuation (middle graphs)
is not sufficient to ensure an optimal solution in all tests, but does improve the results.
However, the 3-grassman-algebraic algorithm (right) achieves close to the optimal for at
least 90% of the tests, and in all cases, the optimal is achieved after bundle adjustment.

31



Figure 7: Comparison of four-view algorithms. Graphs show the reprojection error for
each of 2500 separate tests (each curve sorted individually). On the left, results before
bundle-adjustment, the algorithms are from the top: 4-linear, 4-grassman, 4-iterative-1,
4-grassman-algebraic and 4-iterative-2. After the bundle adjustment (right), from the top,
4-linear, 4-iterative-1 and the other three algorithms, 4-grassman, 4-grassman-algebraic
and 4-iterative-2, are almost indistinguishable – all find the global optimal in almost all
cases. The exception is 4-grassman, which fails to find the optimal in about 50 (2%)
cases (see right end of the graph, light blue curve).

7.3 Four-view tests

We compare our Grassman algorithms with various classical quadrifocal tensor algo-
rithms, described in [4].

1. 4-linear. This algorithm is a non-iterative algorithm for computation of the quadri-
focal tensor, given in [4], section 3.1.

2. Two iterative algorithms are described in [4], section 3.2. We refer to them as
4-iterative-1 and 4-iterative-2. The second of these algorithms minimizes algebraic
error over all reduced quadrifocal tensors. The first one, algorithm 4-iterative-1,
is faster but does not do a full minimization of algebraic error. The algorithm
4-iterative-2, followed by bundle-adjustment is the best algorithm we know for
computing the quadrifocal tensor.

3. We also consider algorithms 4-grassman and 4-grassman-algebraic, which are anal-
ogous to the similarly named three-view algorithms.

The algorithm 4-iterative-2 is most closely comparable with 4-grassman-algebraic, since
both seek to minimize the algebraic error over all well-formed quadrifocal tensors. We
also compare the results of bundle-adjustment initiated by the results of these algorithms.

The results of the comparison are shown in Fig 7.

8 Discussion of Experiments and Conclusion

This paper shows how the classical multiview tensor extends to higher dimensions, and
allows reconstruction of a scene from projections in any dimension. The solution is
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(generically) unique except in the case of projections onto lines. The basic algorithm of
this paper gives a unified method for reconstruction from projections between arbitrary
dimension, and is in fact the only known algorithms to do this.

From a practical point of view, the basic algorithm, when enhanced by iterative methods,
performs nearly as well as the best known 2, 3 and 4-view algorithms. In the 4-view case,
only the most involved of previously known quadrifocal tensor algorithms performs better.
The results of the Grassman algorithms are sufficiently close to the optimal solution that
subsequent bundle-adjustment converges to the optimal solution.

The papers of Wolf and Shashua ([14]) and Hartley and Vidal [2] describe applications
of higher dimensional projections, where the methods described in this paper may be
utilized.
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