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Abstract

This paper presents a general method, based on Galois Theory, for
establishing that a problem can not be solved by a ‘machine’ that is ca-
pable of the standard arithmetic operations, extraction of radicals (that
is, m-th roots for any m) and Singular Value Decomposition, as well as
extraction of roots of polynomials of degree smaller than n, but no other
numerical operations.

The method is applied to two well known structure from motion prob-
lems: five point calibrated relative orientation, which can be realized by
solving a tenth degree polynomial [9, 8], and L2-optimal two-view trian-
gulation, which can be realized by solving a sixth degree polynomial [5].
It is shown that both these solutions are optimal in the sense that an ex-
act solution intrinsically requires the solution of a polynomial of the given
degree (10 or 6 respectively), and cannot be solved by extracting roots of
polynomials of any lesser degree.

1 Introduction

Many structure and motion problems can be reduced to the solution of a sys-
tem of polynomial equations, and such systems of equations can in principle be
reduced by elimination [3] to a single polynomial in one variable. If the poly-
nomial is of degree 4 or less, then it may be solved in closed form by radicals
(extraction of roots). For higher degree polynomials, numerical methods must
generally be used. The number of solutions and an actual algorithm for solving
the problem can be obtained by computing a Gröbner basis for the polynomial



equations [11, 12, 13]. This in principle gives a method for solving the prob-
lems, and as the papers just cited demonstrate, for many cases it gives excellent
algorithms.

However, if the system of polynomials is large, this method can be complex
and unstable, and solution of a polynomial of high degree is difficult in general.
It is therefore advantageous to discover methods of solving structure and motion
problems that require the solution of polynomials of as small degree as possible.
The ideal is a solution that requires only the solution of 4-th degree equations,
since the problem can then be solved in closed form (by radicals).

The purpose of the present paper is to present a method for placing a lower
bound on the degree of such a polynomial needed to solve a particular problem.
As examples of the technique, we consider the 5-point relative motion, and
two-view triangulation problems. These can be solved by finding the roots of
single polynomials of degree 10 or 6 respectively ([9, 5]). We show here that to
solve the 5-point relative motion problem exactly, we essentially need to solve
a polynomial of degree 10. No solution exists that involves only the solution
of polynomials of lesser degree, even if we allow extraction of radicals (m-th
roots) of any order. Similarly, the two-view L2 triangulation problem requires
the solution of a polynomial of degree 6. Since known algorithms exist involving
solutions of polynomials of these degrees, these algorithms are optimal in the
sense of the degree of the polynomial that needs to be solved. In particular, it
follows that these problems have no solution in closed form by radicals.

The Singular Value Decomposition (SVD) is a popular and useful technique
in structure from motion. Because of its reliability, algorithms that use SVD
are often referred to as linear, although this is not strictly speaking a linear
technique. We also show how the results of this paper can be extended to apply
to SVD. Even adding this technique to our list of allowable operations can not
avoid the necessity of solving polynomials of the indicated degree.

1.1 Brief Overview of the Proof

We briefly give an overview of what is to be proved, and the proof methodology.
Recall that our goal is to demonstrate that certain problems – we are interested
specifically in geometric vision problems – require the solution of a polynomial
of a given minimum degree. As an example, we will show that the relative
orientation problem for two views requires solution of a 10-th degree polynomial.

For this example, we show that one can not solve this problem by solving
polynomials of degree 9 or less. We also allow the ordinary arithmetic opera-
tions, as well as extraction of radicals (square roots, cube roots, etc) up to any
degree, and even Singular Value Decomposition (SVD). Still the problem can
not be solved.

Our basic tool in proving our results is Galois Theory, which was invented
in order to examine the question of what polynomials equations can be solved
by extraction of radicals. The main study of Galois Theory is the so-called
Galois group of a polynomial. If the Galois group is not solvable ([2]) then the
polynomial is not solvable in terms of radicals. In particular, this holds if the
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Galois group is the symmetric group Sn or alternating group An (defined later)
for n ≥ 5. A simple extension of this result, stated in Theorem 2.4, shows that
if the Galois group of a polynomial is Sn or An with n ≥ 5, then it can not be
solved by extraction of radicals, or by finding the roots of a polynomial of any
lower degree.

This is the theoretical basis of our non-solvability results. We explain how
this may be applied to geometric vision problems. Many such problems have
been solved by methods that involve the solution of a polynomial. The class of
problems that can be solved in this way is quite broad, and in theory extends to
the general structure and motion problem. In fact any problem whose solution
involves minimizing a cost-function that is a rational expression in the problem
parameters can be solved this way, since the partial derivatives of the cost
function are also rational. The required solution is a point at which the partial
derivatives with respect to all the variables vanish, and all such points may be
found by solving a system of polynomial equations. This may be reduced to the
solution of a single equation by methods such as Gröbner bases. (Of course this
approach is practical only for small problems.)

To be concrete, think of the relative orientation and triangulation problems.
Just because solutions exist involving polynomials of a given degree, (n = 10
or n = 6 in the problems above), does not mean that the problems can not be
solved perhaps in several steps by solving polynomials of smaller degree. To
show that this is in fact not possible, we examine the polynomial that arises in
the problem solution, and show that it has Galois group Sn. This implies that
the roots of the polynomial can not be found other than by explicitly solving a
polynomial of degree n, or higher. This is not enough, however, since perhaps
there is a quite different solution that involves different polynomials, or perhaps
even linear techniques. Our goal is not to show that the polynomial involved in
a specific solution is of a given complexity, but rather to show that the problem
itself has such a complexity.

The gap is filled by showing that the roots of the polynomial involved in a
specific solution are closely linked arithmetically to the numbers that appear in
the solution of the problem itself. Often this is very easily shown. More precisely,
we argue that the problem of finding one of the roots of a specific polynomial
can be reduced to solving a given instance of the problem in question. If we can
solve the problem, then we can find one of the roots of the polynomial. But,
since finding one of the roots of the polynomial involves solving a polynomial of
degree n, so must the problem itself. This method of reduction is illustrated in
Fig 1. The terminology used in Fig 1 is explained later.

1.2 Number of Solutions and Symmetries

A measure of the degree of difficulty of a problem is the number of possible
solutions it allows. However, this is not an infallible guide. Some polynomials
of high degree may be solved more easily than their degree (and number of
solutions) indicates. As a simple example, a polynomial az6 + bz4 + d has
degree 6, and generally 6 distinct solutions. However, we may find its roots by
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Figure 1: An algorithm to solve a problem P with input X may involve the
solution of a polynomial f . If the Galois group of f is Sn or An, with n ≥ 5,
then finding any one of the roots z of f intrinsically requires solving an n-th
degree polynomial. We say f is not Pn−1-solvable. Now, consider the set of
numbers Y occurring in the solution of problem (P,X). The reduction step is
to demonstrate that z can be computed from Y without involving a degree n
polynomial; thus z is Pn−1-computable from Y. It follows that the solution Y

can not be Pn−1 solvable given the problem instance (P,X), otherwise z would
be Pn−1-solvable.

first solving ay3 +by2 +d, and then taking square roots to find the roots z. This
method avoids directly solving a 6-th degree equation. More general examples
are discussed in section 4.1.

In structure from motion problems, such behaviour arises from geometric
structure or symmetries specific to the problem in question. As an example of
this, in the relative orientation problem, because of twisted pairs of solutions
([6]) there are actually 20 solutions for rotation ([7]). Nevertheless, solving
this problem via the essential matrix requires solution of only a 10-th degree
polynomial. Each essential matrix gives rise to two solutions, a twisted pair.
Thus, despite having 20 solutions, this problem requires the solution of only a
10-th degree polynomial.

Another example is the three point perspective pose problem [4], which can
be solved in closed form with four symmetric pairs of solutions. The symmetry
corresponds to reflection of the projection center across the plane of the three
points, an ambiguity that can be removed (after all the solutions have been
computed) by requiring that the points reside in front of the camera. This
example is particularly enlightening, because if the camera is non-central, the
symmetry is no longer apparent. In this case an eighth degree polynomial can be
used to solve this problem ([10]); with our method we have shown conclusively
(details are omitted) that indeed an 8-th degree polynomial is required.
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2 Preliminaries

All polynomials up to and including degree four are solvable in closed form (by
radicals). The Greeks were able to solve the quadratic by geometric methods,
see for example Euclid (325-270 BC), while formulas for the cubic and quartic
were established around 1545. The quintic resisted solution and in 1824, Abel
proved that the quintic is not solvable in general. Galois gave a general theory
for when a polynomial is solvable in radicals.

The essence of Galois Theory is the connection between the theory of fields,
particularly as it relates to solutions of polynomials, and group theory. The
connection is made via the Galois group of a polynomial, or of a field extension.
Essential to our approach is the ability to compute Galois groups of polynomials.
To do this we use the Magma algebraic software system, [1].

We assume the reader is familiar with the basic concepts of group theory,
such as group, homomorphism, normal subgroup and quotient group. In addition
we assume some knowledge of field theory, including extension fields. Excellent
information on these topics is available on line. We recommend the Wikipedia
[14] articles on these topics which are easily found, via a web search.

Groups. We are interested in two particular groups, the symmetric group
Sn, which is the group of all permutations of n symbols, and the alternating
group An, which is the group of all even permutations of n symbols. Group Sn

has order n! and An has order n!/2. It is an important fact that for n ≥ 5,
the group An has no proper normal subgroups (that is, normal subgroups other
than itself and the trivial group). Furthermore, Sn has only one proper normal
subgroup, namely the alternating group An. This fact is basic to the application
of Galois theory in showing the non-solvability of generic polynomial equations
for degree 5 or greater. It is also the basis of our results.

Fields and field extensions. We denote the field of rationals by Q. If
x1, . . . , xa are real or complex numbers, then Q(x1, . . . , xa) is the smallest field
containing Q and all the xi. We may also sometimes write Q(X), where X =
(x1, . . . , xa). A number is in this field if and only if it may be written as
C(x1, . . . , xa)/D(x1, . . . , xa), where both C and D are multivariate polynomials
over the rationals.

All fields that we consider will have characteristic zero, which simply means
that they contain a copy of the integers. This assumption is harmless, and is
necessary only to avoid certain technical difficulties in the next paragraph.

Given a polynomial p over a field F , we say that an extension field K of F is
a splitting field for p if the polynomial splits into linear factors over K, but not
over any smaller field. Another way of saying that K is a splitting field of some
polynomial over F , is to say that K is a finite normal extension of F , or more
briefly a normal extension, and denote this by F / K. If K is an extension of
a field F , we are interested in the automorphisms of K that fix every element
of F . Such automorphisms form a group, known as the Galois group of the
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extension K/F . If K is a splitting field of a polynomial p over F , then we also
refer to this as the Galois group of the polynomial.

2.1 Definitions

Problems. We begin by defining a “problem”. In our formulation, a problem
is simply a mapping that takes a vector of real numbers as inputs, and produces
an output vector. More general definitions are possible, but this will serve our
purposes.

Definition 2.1. A problem is a mapping P : IRa 7→ IRb. The problem P takes
an input vector X = (x1, . . . , xa) ∈ IRa and associates to it a solution vector
Y = (y1, . . . , yb) = P (X) ∈ IRb.

Thus, for instance in the triangulation problem, the input is a vector of
numbers denoting the internal and external calibration of a set of cameras, plus
a set of coordinates of corresponding image points. The solution is the vector
consisting of the coordinates of the optimal 3D point.

In the relative orientation problem, the input consists of the coordinates of
a set of matching points in two images. The solution is the vector consisting of
the entries of the essential matrix (or alternatively, the entries of the rotation
and translation of the relative motion). Note that this problem actually has
multiple solutions. Our definition of a problem still applies; we may assume
either that the mapping P arbitrarily picks one of these solutions, or provides
all solutions concatenated into one vector.

A problem instance is a pair (P,X), consisting of a problem and a specific
input.

Classes of polynomials. We are interested in problems that can be solved
by finding the roots of polynomials of a restricted kind. Most specifically, we
are interested in polynomials belonging to a class, which we will denote by Pn,
consisting of

1. polynomials of degree at most n; and

2. polynomials of the form p(z) = zm − a for any m.

We note that the Galois group of a polynomial of degree at most n must be a
subgroup of Sn, whereas the Galois group of the polynomial zm − a is abelian.
Other wider (or more restrictive) classes C of polynomials are also of potential
interest, as we shall see. We focus on numbers that may be computed by solving
a sequence of polynomials of a given class.

Definition 2.2. Let C be a set of polynomials. A number y is C-computable
over a base field F0, if there exists a sequence of fields F0 / F1 / . . . / FN such
that y ∈ FN and each Fi+1 is obtained from Fi by adjoining all the roots of
some polynomial over Fi belonging to the class C.
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In this definition, we could instead have specified that each Fi+1 is obtained
by adjoining only some of the roots of a polynomial but it is easily seen that
this is an equivalent definition. The concept of C-computability extends also to
problems, as follows.

Definition 2.3. A problem instance (P,X) with X = (x1, . . . , xa) ∈ IRa is C-
solvable if each entry yi in the solution vector Y = (y1, . . . , yb) is C-computable
over the field F0 = Q(x1, . . . , xa). A problem P is C-solvable if every instance
(P,X) is C-solvable for all inputs X ∈ IRa.

To understand this definition, note that if we start with an input vector
(x1, . . . , xa) and apply arithmetic (addition, subtraction, multiplication or divi-
sion) operations, we obtain numbers in the base field F0 = Q(x1, . . . , xa). Next,
by taking one or more roots of a polynomial p0, followed by further arithmetic
operations, we obtain numbers that lie in the extension field F1. Taking roots
of further polynomials, and applying further arithmetic operations extends the
set of numbers that we can compute to the extension fields Fi, until eventually
we reach a field in which the number yi lies.

We will also have occasion to use terms such as C-extension, C-reducible and
others, which involve solution of polynomials in the class C in a way that should
be obvious from the context.

The main theorem that enables us to evaluate the degree of difficulty of a
problem can now be stated.

Theorem 2.4. Let y be a root of a polynomial p of degree n ≥ 5 over a field F0.
If the Galois group G(p) is equal to An or Sn, then y is not Pn−1-computable
over F0.

Although this theorem is a relatively standard application of Galois Theory, we
will present a relatively complete proof so as to give the reader some feeling for
why it is true.

3 Reduction

In proving that certain problems are not C-solvable over a field F0, our strategy
is to demonstrate that some number y related to the solution of the problem is
not C-computable. This number will generally not be precisely the solution to
the problem in question. However, we will be able to reduce the computation of
y to solving the original problem. Thus, let (P,X) be a problem instance and
suppose that P is C-solvable. If starting from the solution to (P,X) we could
easily compute the value y, then it would follow that y would be C-computable.
Equivalently, if we know that y is not C-computable, then it follows that P can
not be C-solvable.

This argument can be made more formal, as follows. Given that the problem
P is C-solvable, a solution to a problem instance (P,X) is a vector Y of numbers
lying in an extension field FN of F0 = Q(X) Now, suppose that in turn, the
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number y is C-computable over FN , then it follows that y is C-computable over
F0, since we can extend the field hierarchy

F0 / F1 / . . . / FN

by a further sequence of C-computable extensions, until ultimately we reach a
field extension containing y.

We make the following definition of reducibility.

Definition 3.5. Let Y = (y0, y1, . . . , yb) be the solution to a problem instance
(P,X) and let F0 = Q(X). If a number y lies in a C-extension of the field
F0(Y) = Q(X,Y), then the problem of computing y is said to be C-reducible to
solving the problem instance (P,X).

In other words, we can compute y starting from the inputs X and the solution Y

using only arithmetic operations and solving polynomials in the class C. Often,
as in the problems considered in this paper, arithmetic operations alone suffice
to compute y, and we do not need to use the input values X.

General Strategy. The strategy for proving that a given problem P is not
C-solvable is as follows.

1. Consider a specific problem instance (P,X) with solution Y.

2. Find a number y with the properties that

(a) y is not C-computable over F0 = Q(X), but

(b) y is C-computable over Q(Y).

It then follows that the specific problem instance (P,X) is not C-solvable, and
hence neither is problem P . The number y mentioned here is typically a root
of a polynomial arising from an algorithm used to solve the problem.

In carrying out this strategy to prove that a particular problem is not C-
solvable, it is sufficient to choose any convenient problem instance (P,X). In
practice, we choose a problem instance in which each of the components xi of
the input vector X is a rational number, or more usually an integer. Then, the
base field F0 = Q(x1, . . . , xa) is equal to the field of rationals, Q.

Later in section 8 of this paper we will consider the problem of generic inputs
and show that problem instances (P,X) are non-C-solvable for almost all inputs
X.

4 The Theory

We require a basic result, known as the Fundamental Theorem of Galois Theory,
which we will state in the following form.
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Theorem 4.6 (Fundamental Theorem of Galois Theory) . Let F / K be
a normal field extension, and let E be an intermediate normal extension of F ;
thus F / E < K. Then, there exists a homomorphism φ mapping G(K/F ) onto
G(E/F ) with kernel G(K/E). Thus

G(K/F )
G(K/E)

≈ G(E/F ).

We will not give a complete proof of this result, but it is worthwhile to get a
feeling for this theorem by outlining a proof. An element τ of G(K/F ) is an
automorphism of K, fixing F . Its restriction to the intermediate field E induces
an isomorphism of E. We need to show that τ maps E to itself, thus inducing
an automorphism of E, namely an element of the Galois group G(E/F ). Since
E is a normal extension of F it is the splitting field of some polynomial over F .
Since τ fixes the base field F , it maps any root of p to some other root. Hence, τ
simply permutes the roots of p, and hence maps the splitting field of p, namely
E, to itself. The restriction mapping φ : τ 7→ τ |E , is therefore a homomorphism
of G(K/F ) into G(E/F ).

We consider the kernel of this mapping, in other words, what elements τ of
G(K/F ) restrict to the identity automorphism of E. Such an element τ fixes
E, and hence is an element of G(K/E). Thus, G(K/E) is the kernel of the
homomorphism φ, as required.

It remains to show that φ maps G(K/F ) onto G(E/F ), namely that every
automorphism of E, fixing F is the restriction of some automorphism of K. We
do not prove this fact here. It depends on the assumption that K is a normal
extension of F . ut

We now use this theorem to prove a result about pairs of normal extensions.

Lemma 4.7. Let Fp and Fq be normal extensions of a field F , splitting fields of
the polynomials p and q respectively. Denote by Fpq the smallest field containing
both Fp and Fq. Then, Fpq is a normal extension of F , and also of Fp and Fq.
Moreover, G(Fpq/Fp) is isomorphic to a normal subgroup of G(Fq/F ).

The relationship between the different field extensions is as shown in the
following diagram.

F / Fp

4 4
Fq / Fpq

(1)

Proof. First, Fpq is a normal extension of Fp, since it is the smallest extension
of Fp containing the roots of polynomial q. Thus, it is the splitting field of q
over Fp. Similarly Fq / Fpq. In addition, Fpq is the smallest field containing the
roots of both p and q, hence it is the splitting field of the polynomial pq.

Now, since F /Fq/Fpq, according to Theorem 4.6, there is an epimorphism φ :
G(Fpq/F ) → G(Fq/F ) with kernel G(Fpq/Fq). Also, since F /Fp/Fpq, according
to Theorem 4.6, G(Fpq/Fp) is a normal subgroup of G(Fpq/F ). Restricting φ
to G(Fpq/Fp) therefore maps G(Fpq/Fp) onto a normal subgroup of G(Fq/F ).
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Finally, we inquire what elements of G(Fpq/Fp) map in this way to the identity
of G(Fq/F ). Such an element is an automorphism of Fpq that fixes Fp. Since
it maps to the identity in G(Fq/F ), it must lie in the kernel of φ, namely
G(Fpq/Fq). Hence, τ fixes Fq. However, since τ fixes both Fp and Fq it must
fix Fpq, which is the smallest field containing both Fp and Fq. In other words,
τ is the identity element in G(Fpq/F ). Thus the homomorphism φ restricted
to G(Fpq/Fp) has trivial kernel. This shows that G(Fpq/Fp) is isomorphic to a
subgroup of G(Fq/F ) as required. ut

We now show that under certain circumstances, a field that contains one
root of a polynomial must contain them all.

Theorem 4.8. Consider a sequence of field extensions

F0 / F1 / . . . / FN−1 / FN

where each Fi is a normal extension of Fi−1. Let p be a polynomial of degree
n ≥ 5 over F0 with Galois group Sn or An. If FN contains one of the roots
of p, then it contains all the roots of p. Furthermore, if FN is the first field
in this sequence containing the roots of p, then p is irreducible over FN−1 and
G(FN/FN−1) has a quotient group isomorphic to Sn or An.

Proof. Let Fi(p) be the splitting field of the polynomial p over Fi, that is, the
smallest field containing Fi and the roots of p. We have a network of field
extensions of the form

F0 / . . . / FN−1 / FN

4 4 4
F0(p) / . . . / FN−1(p) / FN (p)

. (2)

Now, starting from the left end, and applying the first part of lemma 4.7, we
see that Fi(p)/Fi is a normal extension, and so is Fi(p)/Fi−1 for all i. Now,
according the the conclusion of lemma 4.7, we see that

G(FN (p)/FN ) /→ G(FN−1(p)/FN−1)
/→ . . .

/→ G(F0(p)/F0)
/→ Sn.

where A
/→ B means that A is isomorphic to a normal subgroup of B. However,

since the only normal subgroups of Sn are Sn, An or the trivial group, it follows
that G(FN (p)/FN ) must be isomorphic to one of these groups. Assume now
that FN contains at least one root of polynomial p. In this case, FN (p) is
actually a splitting field of a polynomial of degree at most n−1 over FN , and so
G(FN (p)/FN ) can not be An or Sn. It follows that G(FN (p)/FN ) is the trivial
group, and so FN (p) = FN . Thus FN contains all the roots of p.

Next, suppose that FN−1 contains no root of p. As before,
G(FN−1(p)/FN−1) is isomorphic to a normal subgroup of G(F0(p)/F0) / Sn.
This time, however, G(FN−1(p)/FN−1) is not trivial, since FN−1 contains no
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roots of p. Therefore G(FN−1(p)/FN−1) is isomorphic to An or Sn. It follows
that p is irreducible over FN−1. Finally, from the inclusion

FN−1 / FN−1(p) / FN

we deduce using Theorem 4.6 that G(FN−1(p)/FN−1) is a quotient group of
G(FN/FN−1), as required. ut

It is now possible to prove Theorem 2.4 as a corollary of Theorem 4.8.

Proof of Theorem 2.4. Let y be a root of a polynomial p of degree n over
a field F0, and let the Galois group G(p) be An or Sn. If y is Pn−1-computable
over F0, then there exists a sequence of normal extensions

F0 / F1 / . . . / FN

where for each i, we know that G(Fi/Fi−1) is abelian, or a subgroup of
Sn−1. However, this is incompatible with the conclusion of Theorem 4.8 that
G(FN/FN−1) has a quotient group isomorphic to Sn or An.

4.1 An Example

It is instructive to give an example to show that the assumption that the Galois
group be Sn or An is necessary in Theorem 4.8. We can not replace the condition
by a condition that the polynomial p be irreducible.

Consider the polynomial p(z) = z4−2 over the rationals, Q. This polynomial
is clearly irreducible over Q. We define a sequence of splitting fields Q/Q(

√
2)/

Q(21/4)/Q(i, 21/4). These three extensions are splitting fields of the polynomials
z2 − 2, z2 −

√
2 and z2 + 1 respectively. Although Q(

√
2) does not contain any

of the roots of z4 − 2, the field Q(21/4) clearly contains the two real roots, but
not the complex roots. This shows that the conclusion of Theorem 4.8 is not
true for this polynomial.

Let f(z) = z2 − 2z − 1 and g(z) = z3 − z2 + z + 1. It may be verified that
the polynomial p(z) = f(g(z)) = z6 − 2z5 + 3z4 − 2z3 + z2 − 2 is irreducible.
However, this polynomial does not have a Galois group equal to S6 or A6, and
the conclusions of Theorem 4.8 will be seen not to hold. It is possible to find
the roots of the polynomial p(z) in steps as follows. First, we solve f(z) and
get the roots w1 = 1 +

√
2 and , w2 = 1−

√
2 of f . Next we solve the equations

g(z) = w1 and g(z) = w2 to get the full set of solutions to p(z) = f(g(z)) = 0.
In this way, we have found the roots of the polynomial p(z) by solving only
quadratic and cubic equations. Thus the roots of p(z) are P3-computable.

This computation corresponds to a sequence of extensions Q / F1 / F2 / F3

where

1. F1 = Q(
√

2) is the splitting field of f ,

2. F2 is the splitting field of g(z)− w1 = z3 − z2 + z −
√

2 over F1.
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3. F3 is the splitting field of g(z)− w2 = z3 − z2 + z +
√

2 over F2

Note that F2 contains some but not all of the roots of f(g(z)). Thus, the
conclusions of Theorem 4.8 are not true for this polynomial and sequence of
field extensions. Neither can we conclude using Theorem 2.4 that the roots of
f(g(z)) are not P5-computable. In fact, they are P3-computable.

The conclusions of Theorem 2.4 Theorem 4.8 do not hold here because the
main hypothesis, that p(z) have Galois group S6 or A6 does not hold. To see
this, we apply the Fundamental Theorem, Theorem 4.6. Since F1 and F3 are
both normal extensions of Q, we have

G(F3/Q)
G(F3/F1)

≈ G(F1/Q) ≈ Z2 .

Here Z2 is the group with two elements. Hence G(F3/Q) can not be A6 (which
has no non-trivial normal subgroups), and if G(F3/Q) ≈ S6, then the only
possibility is that G(F3/F1) ≈ A6.

However, F3 is the splitting field of the polynomial (g(z) − w1)(g(z) − w2)
over F1. This is a reducible polynomial over F1 and can not therefore have
Galois group A6.

5 The Relative Orientation Problem

In previous sections we have given a method for proving that a problem can
not be C-solvable for some class C of polynomials. In particular, the reduction
strategy described in section 3 along with Theorem 2.4 gives a general method
for showing that a problem is not Pn−1 computable. We now apply this method
to some specific problems, starting with the relative orientation problem. The
method of computation of the essential matrix followed here is based on [8].

Let xi ↔ x′i be five pairs of corresponding image points. The two-view
five-point calibrated relative orientation problem is to find one (or all) of the
non-zero 3× 3 essential matrices E that satisfy

x′>Ex = 0
2EE>E− trace(EE>)E = 0
det(E) = 0 .

(3)

In general, there may be more than one essential matrix satisfying these
conditions. We will show that none of them is Pn-computable for n < 10.
To show this, we reduce this problem to one of finding the roots of a degree 10
polynomial. We consider a specific example, defined by a set of correspondences
x′ ↔ x given by 

1 0 0
−1 1 0
−1 1 1
1 1 −1
0 1 1

 ↔


1 0 0
1 2 0
1 0 1
1 −1 1
1 1 0

 (4)
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0 0 −6 6 −2 −4z 2 + 7z 3z − 2z2 −2z + 4z2 z2 − z3

0 0 −24 −12 −8 − 4z 12 − 8z −4 − 8z −4z − 6z2 4 − 6z + 4z2 −2z

0 0 12 6 4 − 6z −12 + 14z 8 + 10z 2 + 6z − 2z2 −4 + 8z + 8z2 2z2

0 6 −6 24 −2 + 4z 20 + 18z 8 + 8z 4z + 6z2 12 + 2z + 2z2 2 + 2z3

−16 0 −12 8 −14z 4 − 8z 20 + 12z 4 − 4z − 6z2 2z + 4z2 −2z2

10 0 −8 8 4 + 20z −4 − 2z −12 + 10z −2 + 6z + 8z2 −8z + 12z2 −2z + 2z2 + 2z3

16 2 24 12 2 + 20z 6 + 8z 32z 4 + 8z + 6z2 2 + 2z + 12z2 2z + 2z2

−4 −4 8 −16 −8 − 4z −12 − 10z −4 + 4z −4z + 6z2 6z + 2z2 2z3

−6 4 −4 14 4 + 2z 12 + 12z −4 − 10z 6z + 6z2 8z − 4z2 2z + 2z2

4 0 −22 −12 14z 18 − 16z −8z 4z + 6z2 6 − 6z − 4z2 2




x3

y3

x2y

y2x

x2

y2

xy
x
y
1

 = 0

Figure 2: Matrix of equations for 5-point relative reconstruction problem.

where the rows of the two matrices represent point correspondences, in homo-
geneous coordinates.

Each correspondence x′i ↔ xi leads to a single linear equation in the 9
entries of E. In all, we have 5 homogeneous linear equations in 9 unknowns. A
set of four vectors can be found to span the null-space of the equation matrix,
and they can be reassembled into four 3 × 3 matrices X, Y, Z and W. It can be
explicitly verified that a possible choice of X, Y, Z, W is0 0 1

0 0 0
0 0 1


︸ ︷︷ ︸

W

 0 0 0
−2 1 2
0 1 0


︸ ︷︷ ︸

X

0 0 3
0 0 1
2 −2 0


︸ ︷︷ ︸

Y

 0 1 0
0 1 1
−1 0 0


︸ ︷︷ ︸

Z

(5)

To do this, we simply observe that they all satisfy the essential matrix equation
x′>Ex = 0, and that they are linearly independent.

The essential matrix must therefore be of the form

E = wW + xX + yY + zZ (6)

for some scalars w, x, y and z. The four scalars are defined only up to a common
factor. The possibility w = 0 is tested separately and it is then assumed that
w = 1.

Next, the non-linear constraints given in (3) are applied to the matrix E
given by (6). This results in a set of 10 cubic equations in the unknowns x, y
and z. The constraint 2EE>E − trace(EE>)E = 0 provides 9 equations, and the
constraint det(E) = 0 gives a single cubic equation.

Now, each of these cubic equations can be considered as a combination of
the 10 monomials x3, y3, x2y, y2x, x2, y2, xy , x, y, 1 in x and y of degree
not exceeding 3, where each monomial is multiplied by some polynomial in z.
The whole set of 10 constraints may be written as a matrix equation, shown in
Fig 2. Each row corresponds to a single cubic equation in x, y, z. Since this set
of equations must have a non-zero solution for some value of z, the determinant
of the matrix must be zero. In this example, the determinant of this matrix is
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2048 p(z) where

p(z) =11174859 z10 + 41361525 z9 + 16413339 z8 − 91333374 z7

− 96079221 z6 + 69546666 z5 + 116458948 z4 − 26685632 z3

− 29121184 z2 − 1453312 z − 1971200

(7)

This polynomial can be demonstrated using Magma to have Galois group S10.
It follows from Theorem 2.4 that the value of z obtained as a root of the poly-
nomial p(z) is not Pn-computable for any n < 10. Now, looking carefully at the
particular entries of the matrices W, X, Y, and Z, we see that z/w = E12/E33, and
since we had normalized so that w = 1, we see that z = E12/E33. Therefore, the
ratio E12/E33 is not Pn-computable, and hence neither is the essential matrix
E.

Given the relative rotation and translation R, t of the camera, an essential
matrix E can be computed in closed form. Likewise, R and t can be computed
from E. Thus, it is not important whether we consider the solution to the
problem to be the essential matrix, or the motion parameters. The difficulty of
the problem is the same.

6 The Triangulation Problem

Let P and P′ be two 3×4 camera matrices and let x = (x, y) and x′ = (x′, y′) be
the two observed image points. The two-view L2-optimal triangulation problem
is, given P, P′,x,x′, to find the 3D point X that minimizes the rational cost
function that is the sum c + c′ of the squared reprojection errors, where

c =
(

(PX)1
(PX)3

− x

)2

+
(

(PX)2
(PX)3

− y

)2

(8)

in the first image and analogously for the second image.
By a simple image transformation in each image that does not materially

change the problem, we can assume that the two image points are both at the
origin of image coordinates, namely the point with homogeneous coordinates
(0, 0, 1). Similarly, we may assume that the two epipoles of the cameras lie on
the x-axis of the image, at points with homogeneous coordinates (1, 0, f) and
(1, 0, f ′).

Since our goal is to prove that the triangulation problem can not generally
be solved without solving a 6-th degree polynomial, it is sufficient to prove this
fact for the particular simplified triangulation problem considered here.

In this case, the fundamental matrix has the form

F =

 ff ′d −f ′c −f ′d
−fb a b
−fd c d

 (9)

and the constants f , f ′, a, b, c and d are easily computed by constructing
the fundamental matrix from the camera matrices, then reading them from the
above form for F.
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Figure 3: The geometry of optimal 2-view triangulation. Point x is the measured
image point in one image, situated at the coordinate origin. The line through
the epipole (1/f, 0) and the projection PX of the optimum 3D point X meets the
y axis at the point (0, t), where t satisfies the polynomial equation (10).

It was shown in [5] (see also [6]) that if the epipolar line in the first im-
age corresponding to the optimal 3D point X passes through the point with
homogeneous coordinates (0, t, 1)>, then t satisfies the equation

p(t) = t
(
(at + b)2 + f ′2(ct + d)2

)2−
(ad− bc)(1 + f2t2)2(at + b)(ct + d) .

(10)

Note that the value t may be interpreted geometrically as the intercept of the
epipolar line with the y-axis. This geometry is illustrated in Fig 3.

The polynomial in (10) is a sixth-degree polynomial. Once the roots of this
polynomial are found, it is an easy matter to compute (with standard arithmetic
operations) the 3D point that solves the triangulation. Hence, the two-view
triangulation problem is generically P6-solvable.

The key to proving that the triangulation problem is not P5-solvable is to
find an instance of this problem for which the polynomial p has Galois group
S6.

6.1 Non-P5-solvable Instance

Consider the instance of the triangulation given by the fundamental matrix (9)
in which f = f ′ = 1, a = 1, b = 2, c = 3 and d = 4. Both points x and x′ are at
the origin. In this case, the polynomial p is 8 + 210t + 579t2 + 612t3 + 294t4 +
60t5 + 3t6. It may be verified that p(t) is irreducible, has two complex and four
real roots, and Galois group equal to S6.

6.2 Reduction of the Problem

Finally, it is necessary to show that finding a root of this polynomial may be
reduced to solving the triangulation problem. We show that from the solution
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to the triangulation problem it is possible to compute the value t. Recall that
we are assuming that the problem has been simplified by assuming that the
measured points are at the origin, and the epipoles are on the x-axis. It is a
simple matter to modify an arbitrary problem so that it is of this form.

Now, given the optimal 3D point X constituting the solution to the triangu-
lation problem, we now project X into the first image, to obtain a point x = PX.
We also compute the epipole e in the first image. Next, we compute the epipolar
line as the line joining e and x. The intersection of this line with the y-axis is
the value t.

The only operations involved in this reduction are the arithmetic field oper-
ations. Thus, computing t reduces to solving the triangulation problem.

7 Polynomials with Real Roots and SVD

Many algorithms in multiview geometry are addressed by algorithms involving
the Singular Value Decomposition (SVD). Some such algorithms (for instance
the Tomasi-Kanade algorithm for affine structure from motion) achieve opti-
mal solutions using SVD. Others (such as the 8-point algorithm for two-view
projective relative motion) achieve good, but non-optimal results. We are in-
terested in the question when the SVD can lead to optimal solutions. Often
algorithms involving the SVD are referred to as “linear algorithms” though this
is not strictly correct, since computing an SVD can not be achieved by linear
operations. We are interested in the question of whether adding the SVD to our
set of available operations can make our problems solvable.

Let A be a matrix, and A = UDV> be its SVD. The matrix D is diagonal,
and its entries are known as the singular values of A. Writing A>A = VD2V, we
observe that VD2V> is the eigenvalue decomposition for the matrix A>A, and
so the singular values are the square-roots of the eigenvalues of the symmetric
matrix A>A. Thus, finding the SVD of a matrix A is no harder than finding
the eigenvalues of the symmetric matrix A>A. This is not of course a general
eigenvalue problem, since the eigenvalues of a symmetric matrix are real, and
in this case positive.

SVD is a weaker capability than being able to solve polynomials of arbitrary
degree. In fact, it may be shown that it is weaker than being able to solve
polynomials with all real roots, in that if one can solve polynomials with all
real roots, then one can do Singular Value Decomposition, as expressed in the
following lemma.

Lemma 7.9. The problem of computing the Singular Value Decomposition of a
matrix is C-solvable, where C is the class of polynomials with all real roots.

Proof. Given a matrix A, form the matrix A>A and extract its characteristic
polynomial p(λ). The coefficients of this polynomial are arithmetic expressions
in the entries of A. Since p(λ) has real roots, we can find these roots, which
will be real and positive. Next, taking the square root of each root (again a
C-operation) yields the singular values of A.
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The columns of the matrix V are the eigenvalues of A>A. These columns can
be computed by solving the equations (A>A − λiI)vi = 0, where λi is the i-th
eigenvalue of A>A. Since A>A − λiI is rank-deficient, the generator of its null
space, vector vi is easily computed using simple arithmetic operations. Finally,
we may compute the matrix U from U = (UDV>)VD−1 = (A>A)VD−1 . ut

This theorem shows that if we can solve a problem using SVD, then we can
solve it by solving polynomials with real roots. Equivalently, if it can not be
solved by solving polynomials with real roots, then it can not be solved using
SVD. Therefore, we concentrate on determining what problem can be solved
by finding roots of polynomials all of whose roots are real. The main result in
this direction is an extension of Theorem 2.4 to cover polynomials with all real
roots, stated as follows.

Theorem 7.10. Let F be a subfield of the real numbers, Suppose y is a real
root of a polynomial p over F , and the Galois group of p is either An or Sn.
Suppose in addition that the polynomial p has at least one complex root. Then y
is not C-computable over f , where C consists of the polynomials of degree n− 1,
polynomials of any degree with all real roots, and polynomials zm − a.

To prove Theorem 7.10 we begin by deriving a property of splitting fields of
polynomials with all real roots. In the following lemma, we use the fact that if y
is an element of a splitting field over a field F , then all the roots of the minimal
polynomial for y over F also lie in the splitting field.

Lemma 7.11. Let F be a sub-field of the complex numbers satisfying the condi-
tion that the real part of any element of F is also in F . Let K be the splitting
field over F of a polynomial q having only real roots. Let y be a real element of
K, whose minimal polynomial p over F has all real coefficients. Then all the
roots of p are real.

Proof. Since K is a splitting field of q over F , it follows that y can be written
as y =

∑
fiki, where fi ∈ IR and the elements ki are products of powers of the

roots of q, and hence are real. Therefore, it follows that y =
∑

Re(fi)ki, where
Re(fi) is the real part of fi. Hence, y lies in the splitting field S of q over F ∩R.
This splitting field S must be real, since all roots of q are real. If p is irreducible
over F , then it is also irreducible over F ∩ R. Thus, all the roots of p lie in S,
and hence are real. ut

We are now ready to prove Theorem 7.10

Proof. If y is C-computable, there exists a sequence of field extensions F0 / F1 /
. . . / FN where each Fi is the splitting field over Fi−1 of a polynomial in the
class C, and y ∈ FN . Since some of the fields in this sequence may contain
complex numbers, as a first step, we wish to modify this sequence of fields,
replacing each field Fi in the sequence by the smallest field containing Fi and
its complex conjugate field, F̄i. Let F ∗i be this field. We obtain a sequence of
fields F0 / F ∗1 / . . . / F ∗N−1 / F ∗N . If Fi is a splitting field for polynomial qi over
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Fi−1, then F ∗i is a splitting field for the product qiq̄i, where q̄i is the polynomial
whose roots are the complex conjugates of those of qi. Thus, indeed, each of
the extensions above is a normal extension. Note that if qi is a polynomial over
Fi with all real roots, then qi = q̄i, so both qi and qiq̄i have the same splitting
field.

Recall that y is the root of a polynomial p, whose coefficients are in F0 and
hence are real. According to Theorem 4.8 we may assume that all the roots of
the polynomial p are in F ∗N , whereas none are in the field F ∗N−1. Furthermore,
G(F ∗N/F ∗N−1) has quotient group isomorphic to Sn or An. Now, G(F ∗N/F ∗N−1) is
the splitting field of qN q̄N , where q is either a polynomial of degree less than n,
a polynomial zm−a, or a polynomial with only real roots. In the first two cases,
it is impossible for the splitting field of such a polynomial to have a quotient
group isomorphic to Sn or An. Therefore we must conclude that F ∗N/F ∗N−1 is
the splitting field of a polynomial qN with only real roots.

We now apply lemma 7.11 to the field extension F ∗N/F ∗N−1 to conclude that
the polynomial p has all real roots. ut

The polynomials used to prove our results for the triangulation and relative
motion problems also had complex roots, Theorem 7.10 applies, and we may
conclude that even if SVD of arbitarily-sized matrices is allowed in addition
to the other operations, the respective problems remain unsolvable, without
solution of degree-6 or degree-10 polynomials respectively.

8 Genericity

Our goal has been to show that a given problem requires the solution of a
polynomial of a given degree. To do this, it is sufficient to show this for a
specific instance of the problem, and we choose specific examples that have the
required properties. If one can not solve these specific instances without solving
an n-th degree polynomial, then one can not solve the problem generally. We
choose the examples for their numerical simplicity, in fact with integer data, to
allow relative ease of computation of the polynomials and their Galois groups.

The reader may object that perhaps the “average” problem instance will have
simpler Galois group and may be solvable by lower-degree polynomials – that in
effect, the problem instances chosen are in some sense perverse. It can be shown
that this is not the case. In fact, exhibiting a single example where the Galois
group is Sn is sufficient to show that this is the generic case. The argument
involves showing that the Galois group of the n-th degree polynomial arising
from a set of data is equal to Sn, except on the union of a countable number
of varieties in the data space, considered as a real vector space. Existence of a
single example where the Galois group is Sn ensures that none of these varieties
covers the whole of the input data space. Hence the set of data for which the
group is not Sn has measure zero.

Consider an algorithm that takes a set of measurements and computes a re-
sult. Despite the limited number representation for a realistic computer, we will
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imagine the algorithm to be computing with real numbers, and allow the inputs
to the algorithm also to be real numbers. Since the inputs to the algorithm may
be arbitrary, there is seemingly no restriction to the output values that may
be computed by the algorithm. Given the right input, there is an algorithm
that will compute any real output. The way around this slight difficulty is to
consider a base field F0 = Q(a0, . . . , an) where a1 to an are input values to the
algorithm. Any element of the field F0 may be computed using simple arith-
metic operations on the inputs, and hence may be used as a basis for further
computation. If allowable operations include more complex operations such as
root-finding of polynomials, then numbers in an extension field of F0 may be
computed. For a specific algorithm we ask what extension field of F0 the output
values must lie in.

As a more specific example, we consider a polynomial p(z) = a0 + a1z +
a2z

2 +anzn where each ai ∈ IR. We consider an algorithm that takes the values
of the coefficients ai as inputs and computes the roots of the polynomial. The
outputs of the algorithm lie in the splitting field of the polynomial p(z) over the
base field F0 = Q(a0, . . . , an). The splitting field is K = F (r1, . . . , rn), where
the ri are the roots of the polynomial. The Galois group G(K/F0) may be
defined in the usual way (there is no need for the base field to be the rational
numbers). We now inquire when this Galois group is equal to Sn.

For polynomials of a given degree n, we may think of a vector of coefficients
a = (a0, . . . , an) as a point in the vector space IRn+1. It will be shown that
vectors a ∈ IRn+1 for which the Galois group G(K/F0) = G(K/Q(a)) is not
equal to Sn are quite scarce. In fact they lie in set of measure zero in IRn+1.
More exactly, there is a countable union of varieties,

⋃∞
i=1 Vi in IRn+1 on which

the Galois group of the polynomial fails to be Sn.
We prove our result in a sequence of lemmas. The first one involves a rela-

tionship on the roots of a polynomial over F . Central to this discussion is the
concept of symmetric polynomial:

Definition 8.12. A multivariate polynomial E(α1, . . . , αn) is symmetric if
E(α1, . . . , αn) = E(ασ(1), . . . , ασ(n)) for every permutation σ of 1, . . . n.

Symmetric polynomials are related to the Galois group of a polynomial, as
follows.

Lemma 8.13. If p is a polynomial over a field F of degree n having roots
r1, . . . , rn and Galois group not equal to Sn, then there is a non-symmetric
multivariate polynomial E(z1, . . . , zn) over F such that E(r1, . . . , rn) = 0.

Proof. Note the word non-symmetric in the statement of the lemma. There
is no difficulty in finding symmetric polynomials S(z1, . . . , zn) such that
S(r1, . . . , rn) = 0, since each ratio ai/an of the coefficients of p may be ex-
pressed as a symmetric polynomial in the roots, r1, . . . , rn. So the existence of
symmetric polynomials satisfying E(r1, . . . , rn) = 0 means nothing. It is the
existence of non-symmetric polynomials that is interesting.

Let K be the splitting field of p over F . Every element of K can be expressed
in the form E(r1, . . . , rn) for some multivariate polynomial E over F . This is
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the same as saying that every element of K is a linear combination of powers of
roots of p.

Arguing by contradiction, we suppose that there is no non-symmetric poly-
nomial that vanishes on the roots of p (call this the hypothesis). Let σ be
a permutation of 1, . . . , n. We define a mapping σ̄ from K to K accord-
ing to the following rule. If a ∈ K and a = E(r1, . . . , rn), then we define
σ̄(a) = σ̄(E(r1, . . . , rn)) = E(rσ(1), . . . , rσ(n)).

The first thing we need to do is show that this mapping is well-defined.
Namely, if

E1(r1, . . . , rn) = E2(r1, . . . , rn) ,

then
E1(rσ(1), . . . , rσ(n)) = E2(rσ(1), . . . , rσ(n)) .

Well, if E1(r1, . . . , rn) = E2(r1, . . . , rn) then (E1 − E2)(r1, . . . , rn) = 0.
By the hypothesis, E1 − E2 must be a symmetric polynomial. Therefore
(E1 − E2)(r1, . . . , rn) = (E1 − E2)(rσ(1), . . . , rσ(n)), so E1(rσ(1), . . . , rσ(n)) =
E2(rσ(1), . . . , rσ(n)) as required.

Next, we show that this mapping fixes points in the base field F . Thus,
suppose that a ∈ F . Expressed as a polynomial expression in the roots ri,
we may choose the polynomial E(r1, . . . , rn) ≡ a of degree 0 over F . This
choice is possible by well-definedness of the mapping. In this case, trivially
E(rσ(1), . . . , rσ(n)) = E(r1, . . . , rn) = a. Thus σ̄(a) = a as required.

Finally, we wish to show that this mapping is an automorphism of K. Let
a = Ea(r1, . . . , rn) and b = Eb(r1, . . . , rn). Then a + b = (Ea + Eb)(r1, . . . , rn).
Thus

σ̄(a + b) = σ̄((Ea + Eb)(r1, . . . , rn))
= (Ea + Eb)(rσ(1), . . . , rσ(n))
= Ea(rσ(1), . . . , rσ(n)) + Eb(rσ(1), . . . , rσ(n))
= σ̄(a) + σ̄(b) .

Essentially the same proof shows that σ̄(ab) = σ̄(a) σ̄(b).
Let us summarize what has been shown here. Under the hypothesis that

no non-symmetric polynomial vanishes on the roots of p, we deduce that there
exists an automorphism of K/F that effects an arbitrary permutation on the
roots of p, hence G(K/F ) = Sn. Thus, if the Galois group is not Sn, then the
hypothesis must be wrong; so the lemma is proved.

At this point, we have shown that if p(z) = a0 + a1z + . . . + anzn has Galois
group other than Sn, then its roots satisfy a non-symmetric polynomial over
F = Q(a0, . . . , an). This is not quite what we want. We need to show that its
coefficients (not roots) satisfy a polynomial over Q.

Lemma 8.14. If p is a polynomial over F = Q(a0, . . . , an) of degree n with
Galois group not equal to Sn, then there is a non-trivial multivariate polynomial
EQ(z0, . . . , zn) over Q such that EQ(a0, . . . , an) = 0.
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Proof. If the Galois group is not Sn, then there exists (according to lemma 8.13)
a non-symmetric multivariate polynomial EF (z1, . . . , zn) over F such that
EF (r1, . . . , rn) = 0.

The base field F = Q(a0, . . . , an) is not necessarily a finite (algebraic) ex-
tension of Q. However, every element of F = Q(a0, . . . , an) can be written
as C(a0, . . . , an)/D(a0, . . . , an), where C and D are polynomials over Q. The
coefficients of EF are elements of F , so EF (r1, . . . , rn) can be expressed as a
rational expression in the ai and ri. If this is to be zero, then its numerator
must be zero. This gives a vanishing polynomial in the ai and ri, namely

N(a0, . . . , an, r1, . . . , rn) = 0 ,

where N is a polynomial over the rationals. Now, we add in the fact that each of
ai/an is an elementary symmetric expression in the roots r1, . . . , rn. Altogether,
then we have a set of n + 1 polynomial equations in a0, . . . , an and r1, . . . , rn.
We now may apply elimination theory (in particular, see theorem 2.3 on page
80 of [3]) to eliminate the ri. This finally gives a rational polynomial expression
EQ in the coefficients ai that will be satisfied if and only if there are a set of
roots r1, . . . , rn satisfying EF (r1, . . . , rn) = 0.

Example. Consider a polynomial a0+a1z+z2 where a0 and a1 are real num-
bers. As a specific simple example of the type of condition we are considering,
suppose that

a0 + a1

a1 + 1
r0 +

a0 − a1

a1 − 1
r1 = 0 . (11)

Note that rational expressions appearing here as coefficients of the polynomial
in r1 and r2 are elements of the field Q(a0, a1) This can be multiplied out to
give

(a0 + a1)(a1 − 1)r0 + (a0 − a1)(a1 + 1)r1 = 0 . (12)

We add the two conditions a0 = r0r1 and a1 = −(r0 + r1), and eliminate
the ri to get a polynomial expression in a0 and a1. Specifically, substituting
r1 = −(r0 + a1) in a0 = r0r1 and (12) gives two polynomials in r0. Eliminating
r0 directly or by computing the resultant gives a single condition, which may
be computed to be

4a3
0 − 9a2

0a
2
1 + a4

1 + 4a0a
4
1 + a2

0a
4
1 − a6

1 = 0

This gives a polynomial over Q that must be satisfied by the coefficients a0

and a1 in order for (12) to be satisfied. This is the condition for the roots of
a polynomial to satisfy the condition (11), and is therefore one of a countable
number of conditions for the polynomial a0 + a1z + z2 to have Galois group not
equal to S2 over the field Q(a0, a1).

Another way of stating the conclusion to lemma 8.14 is that the vector of
coefficients a = (a0, . . . , an) represents a point on a variety in IRn+1 defined
by an (n + 1)-variable polynomial over Q. Now, there are clearly a countable
number of distinct multivariate polynomials EQ of this kind over Q. Hence, we
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deduce that the Galois group of a polynomial a0 +a1z + . . .+anzn is Sn except
when the coefficients lie on a countable set of varieties.

We now need the following result.

Lemma 8.15. The set of points in IRn+1 that satisfy a polynomial E(z0, . . . , zn)
is either the whole of IRn+1, or else forms a set of measure zero in IRn+1.

This theorem is intuitively plausible and is a standard result about algebraic
varieties. It may be proved using the Implicit Function Theorem. The proof is
omitted, since it leads us too far from the main subject of this paper.

Referring to lemma 8.15, for our application, we may rule out the first case
by exhibiting an example of a polynomial with Galois group Sn. Since the
countable union of sets of measure zero has measure zero, we have the next step
in our proof.

Lemma 8.16. The set of points a = (a0, a1, . . . , an) for which the polynomial
a0 + a1z + . . . + anzn has Galois group not equal to Sn forms a set of measure
zero in IRn+1.

Finally, we turn to the case of a particular geometric problem, such as the
triangulation problem. A problem instance is defined in terms of a set of data
x1, . . . , xa which are in general real numbers. According to our usual argument,
we solve the geometric problem by forming a polynomial p(z) = a0 + . . . +
anzn where the coefficients are defined in terms of the data xi. We assume in
particular that the coefficients ai are rational expressions in terms of the xj ,
thus

ai = Ci(x1, . . . , xa)/Di(x1, . . . , xa) ,

where both Ci and Di are polynomials over Q. We have shown that the poly-
nomial p(z) has Galois group other than Sn only if there exists a multivariate
polynomial satisfying EQ(a0, . . . , an) = 0. This may be written instead as a
rational expression in terms of the input data vector X = (x0, . . . , xa) namely

EQ

(
C0(X)
D0(X)

, · · · ,
Cn(X)
Dn(X)

)
.

Multiplying out the denominator finally leads to a multivariate polynomial ED

in the xj . The polynomial p(z) derived from the input data will have Galois
group not equal to Sn, and hence the problem will not be Pn−1-solvable, only
if the data (x1, . . . , xa) satisfies a multivariate polynomial ED(x1, . . . , xa) = 0
over Q. Since there are a countable number of such polynomials, the set of
input data for which the problem is Pn−1-solvable forms set of measure zero in
IRm. This is true, unless one of the polynomials ED is identically zero, which is
not the case, since we have exhibited a particular example where the problem
is not Pn−1 solvable.

This discussion has essentially proved the following theorem.
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Theorem 8.17. Consider a problem P . Suppose there exist rational functions
ai(X) = Ci(X)/Di(X) for i = 0, . . . , n, where n ≥ 5, such that for almost all
input vectors X, solving the problem instance (P,X) is Pn−1-reducible to finding
the roots of the polynomial p(z) = a0(X)+a1(X)z + . . .+an(X)zn. In addition,
suppose that for at least one input vector X, the polynomial p(z) has Galois
group Sn with n ≥ 5. Then for almost all input vectors X, the problem instance
(P,X) is not Pn-solvable.

This is the main conclusion of this section. It is likely that the theorem is
also true when less restrictive relationship holds between the input data X and
the polynomial coefficients ai. However, as stated the theorem applies to our
two example problems. We briefly demonstrate this now.

The triangulation problem. As shown in (10), the coefficients of the
polynomial p(t) are directly given as rational (in fact polynomial) expressions
in the parameters a, b, c, d, f and f ′ of the fundamental matrix that describe
the particular problem instance. This was assuming that the matched points
were at the origin and the epipoles on the x-axis. The general case is easily
tranformed to this canonical configuration so that each of these parameters is
expressed simply as a rational expression in the inputs to the problem.

5-point relative orientation. This time the form of the polynomial coeffi-
cients is a little more involved. We follow the derivation of the polynomial p(z)
described in section 5. From 5-point correspondences one starts by defining a
5× 9 equation matrix A, the entries of which are simply products of the coeffi-
cients of the matched points (the input data). Generically, this matrix will have
rank 5 and hence will have a 4-dimensional null-space, spanned by four indepen-
dent vectors. These vectors may be expressed as fixed rational expressions in
the entries of A. Specifically, if we divide A into blocks as A = [B5×5|C5×4], then
for almost all input values, B is non-singular and the 4 columns of the matrix

A⊥ =
[

B−1C
−I4×4

]
are linear independent generators for the right null-space of A. Using Cramer’s
rule, we can write the entries of B−1, and hence also the entries of A⊥ as rational
expressions in the entries of A.

From the columns of A⊥ we generate four matrices W, X, Y and Z from which
the general form of the essential matrix is given by (6). As seen in section 5,
the coefficients of the polynomial p(z) consist of determinants of products of
the entries of W, X, Y and Z and so are expressible as fixed rational expressions
in the input data values, as required.

9 Conclusion

The method introduced in this paper effectively demonstrates that the two
problems considered are optimally solved (in terms of polynomial degree) by
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the existing algorithms. There is no point in searching for linear algorithms,
or algorithms involving lower degree polynomials. The method is quite general
and could be applied to other similar problems. As an example, we have also
shown that the non-central camera pose problem requires the solution of an 8-th
degree polynomial.
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