
Invariant and Calibration-Free Methods

in Scene Reconstruction and Object

Recognition

Richard Hartley and Joe Mundy

G.E. CRD, Schenectady, NY, 12301.

Sponsored by Defense Advanced Research Projects Agency
Software & Intelligent Systems Technology Office

Algebraic Invariants
ARPA Order No. 8228
Program Code No. N/A

Issued by DARPA/CMO under Contract #MDA972-91-C-0053

The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or

implied, of the Defense Advanced Research Projects Agency or the U.S. Government.

2 Richard Hartley and Joe Mundy

Contents

I Preliminaries 3

1:1 Statement of Problem and Outline . 5

1:2 Notation . 7

1:3 The Camera Model . 8

II Reconstruction from Two Views 13

2:1 Levenberg Marquardt Minimization . 16

2:1.1 Newton Iteration . 16

2:1.2 Levenberg-Marquardt Iteration . 17

2:1.3 Implementation . 17

2:1.4 Sparse Methods in LM Scene Reconstruction 17

2:1.5 Projective Reconstruction . 20

2:2 The Fundamental Matrix . 21

2:2.1 Generalization to Projective Cameras 22

2:2.2 Determination of Camera Matrices from the Fundamental Matrix . 23

2:2.3 Point set reconstruction . 26

2:3 The 8-point Algorithm . 27

2:3.1 Outline of the 8-point Algorithm 28

2:3.2 Transformation of the Input . 30

2:3.3 Condition of the System of Equations 32

2:3.4 Normalizing transformations . 33

2:3.5 Scaling in Stage 2 . 34

2:3.6 Experimental Evaluation . 36

2:3.7 Conclusions . 47

2:4 Triangulation . 47

2:4.1 Transformational Invariance . 48

i

ii CONTENTS

2:4.2 The Minimization Criterion . 49

2:4.3 An Optimal Method of Triangulation. 49

2:4.4 Other Triangulation Methods . 53

2:4.5 Experimental Evaluation of Triangulation Methods 57

2:4.6 Evaluation with real images. 63

2:4.7 Timing . 64

2:4.8 Discussion of Results . 65

III 3-Dimensional Projective Invariants 67

3:1 Invariant Configurations in P3 . 69

3:1.1 Invariants of point sets in P3 . 69

3:1.2 Line Invariants . 70

3:2 Geometric Approach to Invariants . 77

3:3 Algebraic Approach to Invariants . 81

3:4 Experimental Results . 82

3:4.1 Comparison of Invariant Values . 82

3:4.2 Invariants of 6 points . 84

3:4.3 Invariants of 4 lines . 84

IV Quasi-Affine Reconstruction 87

4:1 Notation . 90

4:2 Projections in P3 . 91

4:3 Quasi-Affine Transformations . 93

4:4 Three dimensional point sets . 95

4:4.1 Effect of Transformations on Cheirality 96

4:4.2 Quasi-affine invariance of strong realizations 98

4:5 When are a Set of Image Correspondences Realizable ? 99

4:6 Orientation . 104

4:7 The Cheiral Inequalities . 106

4:7.1 Quasi-affine reconstruction . 107

4:8 Which Points are Visible in a Third View 108

4:9 Which Points are in Front of Which . 110

4:10 3D quasi-affine invariants . 112

4:10.1 An invariant sequence . 112

CONTENTS iii

4:10.2 The cheiral sequence in two dimensions 114

4:10.3 Computation of 3D invariants . 116

4:11 Experimental results . 117

V Reconstruction from Three Views 119

5:1 Tensor notation . 121

5:2 Reconstruction from Three Views . 122

5:2.1 The Trifocal Tensor . 123

5:2.2 Notation and Basics . 124

5:2.3 Transferring lines . 125

5:2.4 Transferring Points. 127

5:2.5 Solving using lines and points. 128

5:2.6 Retrieving the Camera Matrices 129

5:2.7 Reconstruction . 131

5:2.8 Algorithm Outline . 131

5:2.9 Experimental Evaluation of the Algorithm 132

5:2.10 Lines specified by several points 135

5:2.11 Conclusions . 136

5:3 Multilinear Relations . 137

5:3.1 Bilinear Relations . 137

5:3.2 Trilinear relations . 140

5:3.3 Quadrilinear Relations . 145

5:3.4 Number of Independent Equations 147

5:3.5 Summary and Other Work . 154

VI Euclidean Reconstruction and Calibration 155

6:1 The DIAC and calibration . 157

6:2 Kruppa’s Equations . 158

6:2.1 Consequences of Kruppa’s Equations 161

6:3 Least-Squares Method for Euclidean Reconstruction 162

6:3.1 Reconstruction by Direct Levenberg-Marquardt Iteration 162

6:4 Converting Projective to Euclidean Reconstruction 163

6:4.1 Euclidean From Affine Reconstruction 165

6:4.2 Quasi-affine Reconstruction . 167

iv CONTENTS

6:4.3 Algorithm Outline . 167

6:4.4 Experimental Evaluation . 168

6:5 Retrieving Focal Lengths . 170

6:5.1 The Camera Model . 171

6:5.2 Computation of the Scale Factors 172

6:5.3 Algorithm Outline . 173

6:5.4 Failure . 174

6:5.5 Experiments . 175

6:5.6 Conclusions . 176

6:6 Camera Rotating about a Fixed Point . 176

6:6.1 Rotating the Camera . 180

6:6.2 Algorithm Idea . 180

6:6.3 Determination of the Transformations 181

6:6.4 Determining the Calibration Matrix 184

6:6.5 Interpretation of Calibration using the Absolute Conic 184

6:6.6 Iterative Estimation of the Calibration matrix 185

6:6.7 Finding Matched Points . 186

6:6.8 Experimental Verification of the Algorithm 187

6:6.9 Calibration from only two views 193

6:6.10 Exceptional Cases . 195

6:6.11 Experiments with Calibration from Two Images 196

6:6.12 Handling translations . 199

6:6.13 Conclusions . 201

CONTENTS v

vi CONTENTS

CONTENTS 1

2 CONTENTS

Part I

Preliminaries

3

1:1. STATEMENT OF PROBLEM AND OUTLINE 5

1:1 Statement of Problem and Outline

This document is a report on research carried out in vision invariants under DARPA
contract, number #MDA 972-91-C-0053. It contains a detailed description of the research
results obtained under this project. Much of the work described here has been derived
from various publications that resulted from the research under the contract.

The field of vision invariants deals with view-point and pose-independent properties of
objects seen in images. Broadly interpreted, it has come to mean the study of geometric
properties of objects that can be deduced from images. Generally, it is assumed that
the camera, or cameras taking the images are uncalibrated. An early result in the study
of vision invariants is that one can not compute any invariant of a set of unstructured
points seen in a single image, other than the number of points in the set. Rather than
dampening research into vision invariants, this result spurred research in two distinct
areas :

1. The study of structured set of points, such as planar sets of points or features
belonging to some hypothesized geometric structure. Examples of such structures
are solids of revolution, extruded solids or repeated structures.

2. The study of objects seen in multiple views. This study was given special impetus
by the early discovery (1991) that the projective structure of a set of points can be
computed from a pair of uncalibrated images. Since projective structure is often
sufficient for computer vision tasks, this result meant that camera calibration is
unnecessary in many applications.

Early research in vision invariants concentrated on the computation of projective invari-
ants, usually of planar structures. Demonstrations were given of the use of such invariants
in object recognition through indexing into a database using the computed geometric in-
variant. However interest soon developed in the area of complete shape reconstruction
from several views. This brought the area close to the more traditional field of shape
from motion. What has differentiated the study from the earlier shape from motion
research was the insistence on uncalibrated, or only partly calibrated cameras, and the
greater reliance on tools of projective geometry. This led to the discovery and intensive
study of new projectively invariant entities related to camera and point positions, most
notably the fundamental matrix and the trifocal tensor.

A fundamental result of Maybank and Faugeras was that given several images of a scene,
one can do better than projective reconstruction if one makes the assumption that the
images are all taken with one camera. In fact, one can in principal reconstruct the scene
with the only ambiguity being expressed by an unknown similarity transform. In other
words, essentially one can deduce the object shape except for its overall scale. Since
one can do no better with a completely calibrated camera, this result further emphasizes
that prior calibration is unnecessary. Much research followed in this new area of self-
calibration, both in determining new methods and in finding workable algorithms.

In the study of single view scenes, the early work on invariant recognition of planar objects
gave way to research into identification and recognition of 3D objects present in a single
image. New techniques evolved in areas of invariant-aided grouping and segmentation
as well as indexing, which was the original goal of the study of invariants. This work
emphasized the truth that the structure of the scene must be taken into account at each

6

step of the object recognition process, having profound influence on the low level tasks
as well as the high-level task of final recognition.

This report deals exclusively with work done by researchers at GE, and their collabora-
tors, and hence makes no claim to be a complete survey of the evolving field. Nevertheless,
it does constitute a body of results at the center of the field of image invariants, and
touching on a large part of the contemporary research.

The report is divided into several parts as follows :

Part I of the report lays out preliminary definitions.

Part II is concerned with scene reconstruction from two uncalibrated images of a scene.
It introduces the important concept of the Fundamental Matrix, and shows how it
may be used for scene reconstruction, up to an indeterminate projective transfor-
mation. There are several aspects to the problem, which are treated in the different
sections of this part of the report. These aspects are the computation of the fun-
damental matrix, factorization of the fundamental matrix to compute the camera
matrices, triangulation from the two images to determine the position of points
in space, and iterative refinement of the result using the Levenberg-Marquardt
estimate method.

Part III deals with geometric invariants of a scene that can be computed from two
views. The invariants of 4 lines in space are given detailed examination. One
way of computing invariants is to perform a scene reconstruction using the method
of Part II, and then computing projective invariants directly. Other methods of
computing such invariants are also discussed, based on alternative geometric or
algebraic techniques, but avoiding explicit scene reconstruction.

Part IV introduces the concept of cheirality, which is concerned with knowledge of
whether points lie in the front of a camera or behind. Knowledge of this sort
was used by Longuet-Higgins to select a correct scene reconstruction among four
candidates. In the projective case, it leads to constraints on the set of possible
projective reconstructions, which allow an improved reconstruction, known as a
quasi-affine reconstruction of the scene to be computed. These constraints are
embodied in a set of inequalities known as the cheiral inequalities. The study of
cheirality also leads to the definition of new integer-valued quasi-affine invariants
of a set of points.

Part V of the report turns to the study of the three-view case, asking what new infor-
mation can be obtained by allowing a third view of a scene. The central object
in this section is the trifocal tensor which plays a role in the study of three views,
similar to that played by the fundamental matrix for two views. The new thing
is that both lines and points can be treated with a single algorithm. As with two
views, a non-iterative algorithm is described for computing the trifocal tensor and
subsequently reconstructing the scene. The technique for deriving a three-view
tensor extends to four views and leads to the definition of the quadrifocal tensor,
which has many interesting properties.

Part VI turns to Euclidean reconstruction and self calibration in the spirit of May-
bank and Faugeras. The key object for Euclidean reconstruction is the absolute
conic, and the determination of its image is equivalent to camera calibration. The
constraints that are imposed on the image of the absolute conic by consideration

1:2. NOTATION 7

of several images are embodied in the Kruppa equations. Three methods for self
calibration are given, each one based on different assumptions of knowledge of the
camera motion or partial calibration. The are

1. unconstrained motion of the camera,

2. knowledge of the cameras’ principal points and

3. constraining the camera to rotatory motion only, fixing the camera center.

Part VII concludes the report with a study of object recognition from a single view
of 3D objects. It is shown how geometric and invariant information is used for
edge extraction and grouping as well as efficient database indexing. A wide range
of different object types may be amenable to recognition using invariants. These
include planar objects, surfaces of revolution, extruded objects, symmetric objects
and polyhedral objects.

There are several areas in which the research in this report has been carried forward
in the last year or so, by other researchers. The trifocal and quadrifocal tensors have
received extensive study by many researchers such as Shashua, Torr and Zisserman,
Triggs, Heyden Anandan, Weinshall and others. A logical continuation of this thread
has been the interest in applying this sort of technique to video processing, in which not
3 of 4, but perhaps hundreds of images of a scene are available. The work of Carlsson and
Weinshall on duality give hope that fast linear or non-iterative algorithms may become
available for the analysis of such image sets. The work reported in this document serves
as no more than a starting point for wide-ranging and exciting future research.

1:2 Notation

Vectors are represented by bold lower case letters, such as u, and all such vectors are
thought of as being column vectors unless explicitly transposed (for instance u� is a row
vector). Vectors are multiplied as if they were matrices. In particular, for vectors u and v,
the product u�v represents the inner product, whereas uv� is a matrix. The notation
x usually denotes a homogeneous 4-vector representing an element in P3, whereas u
represents a vector in P2.

Homogeneous Coordinates It is convenient to express points in space and points
in the image plane in homogeneous coordinates. A point in 3-space R3 is expressed in
homogeneous coordinates by a 4-vector. Specifically, the homogeneous vector (x, y, z, t)�

with t �= 0 represents the point (x/t, y/t, z/t)� of R3 in non-homogeneous coordinates.
Similarly, a homogeneous vector (u, v, w)� represents the point (u/w, v/w)� in R2. One
sees immediately that two homogeneous vectors that differ by a constant non-zero factor
represent the same point. Consequently, two homogeneous vectors differing by a non-zero
constant factor are considered to be equivalent. We may write x ≈ x′ to express this
equivalence of homogeneous vectors. However, this notation quickly becomes tedious,
and so usually the equivalence of two homogeneous vectors is expressed using an equality
sign. Thus we write x = x′ to mean that the two vectors are equal up to a multiplicative
factor.

8

The plane at infinity It was seen in the previous paragraph that a homogeneous
vector x = (x, y, z, t)� represents a point in R3 if and only if t �= 0. The set of all non-zero
homogeneous 4-vectors form the projective 3-space P 3. The set of points x = (x, y, z, 0)�

form a plane consisting of points not in R3. This is referred to as the plane at infinity.
Thus, projective 3-space P 3 is made up of R3 plus the plane at infinity. A point in R3

may be conveniently expressed in homogeneous coordinates as (x, y, z, 1)�.

In the same way, projective 2-space P 2 is made up of R2 plus a line at infinity, consisting
of points (u, v, w)� in homogeneous coordinates with w = 0.

Projective geometry is the study of the projective space Pn. In projective geometry it
is usual not to distinguish the plane (or line) at infinity from any other plane. Thus,
all points, whether infinite of finite are created equal. In the area of computer vision
dealing with points in space and projections of these points by pinhole cameras, we also
deal with homogeneous vectors. However, in computer vision it is often appropriate to
distinguish the plane at infinity and treat it differently from other planes. For instance,
no person ever managed to photograph a point at infinity, nor did anyone ever manage
to place a camera on the plane at infinity. Certain concepts such as front and back of the
camera and affine and Euclidean reconstruction and invariants make no sense without
considering the plane at infinity to be distinguished.

The norm of a vector f is equal to the square root of the sum of squares of its entries,
that is the Euclidean length of the vector. Similarly, for matrices, we use the Frobenius
norm, which is defined to be the square root of the sum of squares of the entries of the
matrix.

1:3 The Camera Model

In this report we will be concerned most particularly with the projective camera model
often referred to as a pinhole camera model in computer vision. We prefer to use the term
pinhole model for a somewhat restricted form of camera model with just 9 parameters,
as will be described. The full projective camera model is a slight generalization of the
pinhole model.

The basic pinhole model We consider the central projection of points in space onto
a plane. Let the centre of projection be the origin of a Euclidean coordinate system, and
consider the plane z = f , henceforth called the focal plane. Under the pinhole camera
model, a point in space with coordinates x = (x, y, z)� is mapped to the point in the
focal plane where a line joining the point x to the centre of projection meets the focal
plane. This is shown in Fig 1.1. By similar triangles, one quickly computes that the
point (x, y, z)� is mapped to the point (fx/z, fy/z, f)� on the focal plane. Ignoring the
final coordinate, we see that

(x, y, z)� �→ (fx/z, fy/z)� (1.1)

describes the central projection mapping. This is a mapping from Euclidean space R3

to R2.

The centre of projection is often called the camera centre. The line from the camera
centre perpendicular to the focal plane is called the principal axis of the camera, and the
point where the principal axis meets the focal plane is called the principal point.

1:3. THE CAMERA MODEL 9

(x, y, z)T

Focal
plane

Camera
centre

 f Principal axis
Z

(u, v)T

Principal
point

Figure 1.1: Pinhole camera geometry

Central projection using homogeneous coordinates If the points are written in
homogeneous coordinates, then central projection is very simply expressed as a linear
mapping in homogeneous coordinates. In particular, the expression (1.1) may be written
in terms of matrix multiplication as

x
y
z
1

 �→

 fx

fy
z

 =

 f 0

f 0
1 0

x
y
z
1

 (1.2)

The matrix in this expression may be written as diag(f, f, 1)[I | 0] where diag(f, f, 1) is
a diagonal matrix and [I | 0]� represents a matrix divided up into a 3 × 3 block (the
identity matrix) plus a column vector, here the zero vector. If the image of a point x
under central projection is u then we see that

u = diag(f, f, 1)[I | 0]x .

Principal point offset The expression (1.1) assumed that the origin of coordinates
in the image plane is at the principal point. In practice, the principal point may not be
accurately known. In general, therefore, we will have a mapping

(x, y, z)� �→ (fx/z + pu, fy/z + pv)�

where (pu, pv)� are the coordinates of the principal point, otherwise known as the prin-
cipal point offset. This equation may be expressed conveniently in homogeneous coordi-
nates as

x
y
z
1

 �→

 fx+ pu

fy + pv
z

 =

 f pu 0

f pv 0
1 0

x
y
z
1

 (1.3)

Camera Rotation and Translation So far, it has been assumed that the camera
is located at the origin of a Euclidean coordinate system with the principal axis of the
camera pointing straight down the z-axis. Such a coordinate system may be called
the camera coordinate frame. In general, however, points in space will be expressed in

10

terms of a different Euclidean coordinate frame, known as the world coordinate frame.
The two coordinate frames are related via a rotation and a translation. If x is a non-
homogeneous vector representing the coordinates of a point in the world coordinate
frame, and x′ represents the same point in the camera coordinate frame, then we may
write x′ = R(x−c) where c represents the coordinates of the camera centre in the world
coordinate frame, and R is a 3 × 3 rotation matrix representing the orientation of the
camera coordinate frame. This equation may be written in homogeneous coordinates as

x′

y′

z′

1

 =

[
R −Rc
0 1

]
x
y
z
1

Putting this together with the equation 1.2 leads to the formula

x
y
z
1

 �→

 f pu

f pv
1

R[I | −c]

x
y
z
1

 (1.4)

where

• f is the focal length of the camera.

• (pu, pv)� are the image coordinates of the principal point.

• R is the rotation of the camera.

• c is the location of the camera centre.

Writing

K =

 f pu

f pv
1

 (1.5)

we see that image of a point x under a pinhole camera mapping is

u = KR[I | −c]x (1.6)

This is the general mapping given by a pinhole camera. One sees that a general pinhole
camera has 9 degrees of freedom.

CCD cameras The pinhole camera model just derived assumes that both object co-
ordinates (that is the 3D world coordinates) and image coordinates are Euclidean coor-
dinates having equal scales in all axial directions. In the case of CCD cameras, there is
the additional possibility of having unsquare pixels. If image coordinates are measured
in pixels, then this has the extra effect of introducing unequal scale factors in each direc-
tion. In particular if the number of pixels per unit distance in image coordinates are mu
and mv in the u and v directions, then the cameras transformation from world coordi-
nates to pixel coordinates is obtained by multiplying (1.5) on the left by an extra factor

1:3. THE CAMERA MODEL 11

diag(m1,m2, 1). Thus, the general form of the calibration matrix of a CCD camera is

K =

 ku pu

kv pv
1

 (1.7)

where ku = fmu and kv = fmv represent the focal length of the camera in terms of
pixel dimensions in the u and v direction respectively. Similarly, (pu, pv) are the pixel
coordinates of the principal point. A CCD camera thus has 10 degrees of freedom.

General Projective Camera For simplicity and added generality, we can consider a
calibration matrix of the form

K =

 ku s pu

kv pv
1

 . (1.8)

The added parameter s is referred to as the skew parameter. The skew parameter will
be zero for most normal cameras. However, in certain unusual instances it can take
non-zero values. In a CCD camera if the pixel elements in the CCD array are skewed
so that the u and v axes are not perpendicular, then skewing of the image can result.
This is admittedly very unlikely to happen. The CCD camera model assumes that the
image has been stretched by different amounts in the two axial directions. If on the other
hand the image is stretched in a non-axial direction, then skewing results. To see this,
consider what happens to a pair of axes if the image is stretched in a diagonal direction :
the axes do not remain perpendicular. Skewing may occur if images taken by a pinhole
camera (such as an ordinary film camera) is subsequently magnified. If the axis of the
magnifying lens is not perpendicular to the film plane or the new image plane, then the
image will be skewed. In all of these cases, the effect of skew will be small, so generally
the parameter s will be very small compared with ku.

A camera with camera matrix P = KR[I | −c] for which the calibration matrix K is
of the form (1.8) will be called a projective camera. A projective camera has 11 degrees
of freedom. This is the same number of degrees of freedom as a 3 × 4 matrix, defined
up to an arbitrary scale. Any general 3× 3 matrix M may be decomposed as a product
M = KR where K is upper triangular and R is a rotation matrix. Thus, the class
of projective cameras with camera centre at a finite point corresponds to the class of
matrices of the form P = [M | −Mc]. This is a general 3 × 4 matrix with the sole
restriction that the left-hand 3 × 3 block is non-singular. We may further extend the
class of camera matrices to include cameras at infinity. A general projective camera is
one which is represented by an arbitrary 3× 4 matrix of rank 3.
In summary, we may distinguish the following hierarchy of camera models.

General Projective Camera. The general projective camera is one for which the
object-space to image-space transformation is represented by the mapping u = Px
in homogeneous coordinates, where P is an arbitrary 3×4 matrix of rank 3. Matrix
P is defined only up to a non-zero multiplicative factor:

 u
v
w

 =

 p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

x
y
z
1

 (1.9)

12

Finite Projective Camera. This terminology may be used to describe a projective
camera for which the camera centre is not at infinity. The camera matrix P may
be written in the form P = [M | −Mc] where c is the camera centre and M is
non-singular. Using the QR decomposition M can be decomposed as M = KR,
where R is a rotation and K is an upper triangular matrix with positive diagonal
entries, called the calibration matrix.

Zero-skew camera This is a finite projective camera with zero skew, such as a CCD
camera. Hence the calibration matrix has the form (1.7).

Pinhole camera A finite projective camera with calibration matrix of the form (1.4)
having zero skew and equal magnification in each direction.

Calibrated Camera. A camera with matrix of the form P = [R | −Rc]. In other
words, the calibration matrix in assumed to be the identity. It is not implied, of
course that the calibration matrix really is the identity matrix, but rather that the
effect of the calibration matrix K, once it is known, may be removed, and that one
may without loss of generality assume that K = I. Accordingly, the term calibrated
camera will be used in this report to mean that K = I.

All these different camera models have been considered in the literature. The terminology
proposed here is certainly not standardized. For instance, the term pinhole camera has
been used to denote more general camera models, even the general projective camera
model. For the most part, in this report we will consider either general or finite projective
cameras. When we talk of camera calibration, or cameras with specific calibration,
however, it is implicit that we are talking of finite projective cameras, since there is no
natural way to define the calibration matrix of a camera at infinity.

Cameras with centres at infinity form a different hierarchy, which will not be discussed
further in this report.

Part II

Reconstruction from Two
Views

13

15

One of the major problems addressed in this report is the reconstruction problem from
several views. Consider points xi in space as seen by a set of cameras with camera
matrices Pj . In general, neither the point locations nor the camera matrices are known.
In general we assume that the cameras are projective cameras modelled by the full 11-
parameter projective camera model. In the most general case, nothing is assumed about
the individual cameras, and in particular, their calibration matrix Kj is assumed to be
unknown.

Let the image of the i-th point xi seen in the j-th camera be denoted by uij . We assume
that these coordinates are known, and in particular the matching of the points across the
several images is assumed to be known. The task of finding these points and carrying
out cross-image matching is a significantly difficult problem in itself, but it will not be
considered in this report.

The reconstruction problem is, given the coordinates uij , to find the points xi, and the
cameras Pj so that

uij = Pjxi (2.1)

for all i and j.

Without further restriction, this problem does not have a unique solution. For instance,
any translation of the points and corresponding translation of the camera positions will
not change the image points. Consequently, the reconstruction of the scene is at least
indeterminate with respect to translation. One may similarly see that the orientation and
overall scale of the scene may not be determined. Thus, even with calibrated cameras,
the geometry of the scene may not be determined more closely than up to a similarity
transformation (translation, rotation and scaling).

For uncalibrated cameras, there is a further ambiguity of the scene. It may be seen
that the scene may not be determined by its projections more precisely than up to a
general projective transformation of space. It is shown in this report, however, that
this is the full extent of reconstruction ambiguity. Provided sufficient point matches are
given, a scene can be reconstructed up to an indeterminate projective transformation by
its projection into two or more views with uncalibrated projective cameras. The resulting
reconstruction of the scene is known as a projective reconstruction.

Under more restricted conditions, it may be possible to determine the scene more ex-
actly than in a general projective reconstruction. A reconstruction that is known to
differ from the true reconstruction by at most a 3D affine transformation is called an
affine reconstruction, and one that differs by a Euclidean transformation from the true
reconstruction is called a Euclidean reconstruction. The term Euclidean transformation
will be used in this report to mean a similarity transform, namely the composition of a
rotation, a translation and a uniform scaling. Affine or Euclidean reconstruction is possi-
ble under various circumstances, such as restricted motions of the camera, an assumption
of the same calibration for each of the cameras, or imposed geometric constraints on the
scene. Euclidean and affine reconstruction will be considered in part VI of this report.

In the presence of noise in the image measurements, equations (2.1) will not be satisfied
exactly. An obvious approach in these circumstances is to attempt to find points xi and
camera matrices Pj that map the points as close as possible to the observed positions.
This problem can be cast as a minimization problem in which one attempts to minimize
some cost function measuring the difference between the observed positions of the points
and the projections of the predicted world points xi. A suitable cost function is the sum

16

of squares of errors. Thus if
Pjxi = ûij

then the cost function to be minimized is∑
i,j

d(ûij ,u
i
j)

2 (2.2)

where d(∗, ∗) represents Euclidean distance in the image. One seeks to minimize this
cost function over all choices of points xi and camera matrices Pj .

Presented in this manner, the reconstruction problem may be considered simply as a non-
linear least-squares minimization problem. The theme of this report is to investigate more
efficient algorithms for reconstruction than the standard non-linear approaches. Often
such methods (as will be discussed) provide a fast solution, sometimes at some cost in
accuracy. To evaluate the proposed algorithms, their results are usually compared with
the best results obtained by non-linear least-squares minimization. Therefore, we begin
by describing a standard algorithm for solving such non-linear least-squares problems –
the Levenberg-Marquardt algorithm.

2:1 Levenberg Marquardt Minimization

The Levenberg-Marquardt (LM) algorithm is a well known algorithm for parameter es-
timation ([55]). It is a variation on Newton iteration which will be described first, in
general terms.

2:1.1 Newton Iteration

Given a hypothesized functional relation y = f(x) where x and y are vectors in some
Euclidean spaces Rm and Rn, and a measured value ŷ for y, we wish to find the vector
x̂ that most nearly satisfies this functional relation. More precisely, we seek the vector
x̂ satisfying ŷ = f(x̂) + ε̂ for which ||̂ε|| is minimized. The method of Newton iteration
starts with an initial estimated value x0, and proceeds to refine the estimate under the
assumption that the function f is locally linear. Let ŷ = f(x0) + ε0. We assume that
the function f is approximated at x0 by f(x0 +∆) = f(x0) + J∆, where J is the linear
mapping represented by the Jacobian matrix J = ∂y/∂x. Setting x1 = x0 +∆ leads
to ŷ − f(x1) = ŷ − f(x0) − J∆ = ε0 − J∆. It is required to minimize ||ε0 − J∆||.
Solving for ∆ is a linear minimization problem that can be solved by the method of
normal equations. The minimum occurs when J∆− ε0 is perpendicular to the row space
of J , which leads to the so-called normal equations J�(J∆− ε0) = 0 or J�J∆ = J�ε0 .
Thus, the solution is obtained by starting with an estimate x0 and computing successive
approximations according to the formula

xi+1 = xi +∆i

where ∆i is the solution to the normal equations

J�J∆i = J�εi .

Matrix J is the Jacobian ∂y/∂x evaluated at xi and εi = ŷ − f(xi) One hopes that
this algorithm will converge to the required least-squares solution x̂. Unfortunately, it is

2:1. LEVENBERG MARQUARDT MINIMIZATION 17

possible that this iteration procedure converges to a local minimum value, or does not
converge at all. The behaviour of the iteration algorithm depends very strongly on the
initial estimate x0.

2:1.2 Levenberg-Marquardt Iteration

The Levenberg-Marquardt (abbreviated LM) iteration method is a slight variation on
the Newton iteration method. The normal equations N∆ = J�J∆ = J�ε are replaced
by the augmented normal equations N ′∆ = J�ε, where N ′ii = (1 + λ)Nii and N

′
ij = Nij

for i �= j. The value λ is initially set to some value, typically λ = 10−3. If the value of ∆
obtained by solving the augmented normal equations leads to a reduction in the error,
then the increment is accepted and λ is divided by 10 before the next iteration. On the
other hand if the value ∆ leads to an increased error, then λ is multiplied by 10 and
the augmented normal equations are solved again, this process continuing until a value
of ∆ is found that gives rise to a decreased error. This process of repeatedly solving
the augmented normal equations for different values of λ until an acceptable ∆ is found
constitutes one iteration of the LM algorithm.

2:1.3 Implementation

Based on the implementation of the LM algorithm in [55] we have coded a general
minimization routine. To use this algorithm in the simplest form it is necessary only to
provide a routine to compute the function being minimized, a goal vector ŷ of observed
or desired values of the function and an initial estimate x0. If desired, it is possible to
provide a function to compute the Jacobian matrix J . If a null function is specified, then
the differentiation is done numerically. Numerical differentiation is carried out as follows.
Each independent variable xi is incremented in turn to xi+δ, the resulting function value
is computed using the routine provided for computing f and the derivative is computed
as a ratio. The value δ is set to the maximum of |10−4 ∗ xi| and 10−6. This choice
seemingly gives a good approximation to the derivative. In practice, we have seen almost
no disadvantage in using numerical differentiation, though for simple functions f we
prefer to provide a routine to compute J , partly for aesthetic reasons, partly because of
a possible slightly improved convergence and partly for speed.

As an alternative to all the dependent variables being equally weighted, it is possible to
provide a weight matrix specifying the weights of the dependent variables y. This weight
matrix may be diagonal specifying independent weights for each of the yi, or else it may
be symmetric, equal to the inverse of the covariance matrix of the variables yi. If C is
the covariance matrix of y, then the normal equations become J�C−1J∆i = J�C−1εi.

2:1.4 Sparse Methods in LM Scene Reconstruction

In pose estimation and scene reconstruction problems involving several cameras the LM
algorithm is appropriately used to find a least-squares solution. In cases where the
camera parameters and the 3D locations of the points are to be found simultaneously
the Jacobian matrix, J has a special block structure. This block structure gives rise to a
sparse block structure of the normal equations. It is possible to take advantage of this to

18

achieve an enormous simplification in the solution of the normal equations. This method
is described in [68] but is presented here for the convenience of the reader.

In the case of scene reconstruction, the variable parameters fall into two classes, namely
the camera parameters and the coordinates of the points xj . Altering the coordinates of
a point xj will cause a change in the coordinates of each point uij with the same index
j as the point. Similarly, altering the parameters of a camera Pi will lead to a change in
the points uij with the same index i as the camera. Consequently, the matrix J of partial
derivatives of the dependent parameters with respect to the independent parameters has
a particular sparse structure as shown in the following diagram.

P0 P1 P2 x0 x1 x2 x3

0
ju

1
ju

2
ju

Camera
parameters

Feature
parameters

The diagram shows the case for three camera and four points, but the general scheme is
easily extended to any number of points and cameras. In the case where certain of the
parameters are set to fixed values (for instance, the camera P0 may be fixed to the value
[I | 0]) then the corresponding columns are missing from the matrix. In addition, in the
cases where some points are not visible in some views, then the corresponding rows are
missing from the matrix. This all makes very little difference to the following discussion.

Because of the structure of the matrix J , the normal equations J�J∆ = J�ε has a
special block structure as follows:

U0

U1

U2

V0

V1

V2

V3

W

WT

∆(P0)

∆(P1)

∆(P2)

∆(x0)

∆(x1)

∆(x2)

∆(x3)

ε(P0)

ε(P1)

ε(P2)

ε(x0)

ε(x1)

ε(x2)

ε(x3) (2.3)

It is possible to give specific formulae for each of the blocks in the normal equations.
Specifically, let D(uij , Pi) represent the matrix of partial derivatives of the coordinates
of the image point uij with respect to the parameters of the matrix Pi. Similarly, let

2:1. LEVENBERG MARQUARDT MINIMIZATION 19

D(uij ,xj) be the matrix of partial derivatives of the coordinates of u
i
j with respect to the

coordinates of the point xj . Further, write ε(uij) to represent the current residual error
in the point uij Then, we may write

Ui =
∑
j

D(uij , Pi)
�D(uij , Pi)

Vj =
∑
i

D(uij ,xj)
�D(uij ,xj)

Wij = D(uij , Pi)
�D(uij ,xj) (2.4)

ε(Pi) =
∑
j

D(uij , Pi)
�ε(uij)

ε(xj) =
∑
i

D(uij ,xj)
�ε(uij)

The normal equations (2.3) may be written in the form[
U W
W� V

](
∆(P)
∆(X)

)
=
(
ε(P)
ε(X)

)

where each of the matrices U , V and the vectors ∆(P), ∆(X), ε(P) and ε(X) is itself
made up of subblocks.

We assume that V is invertible, and multiply each side of the normal equations on the
left by the matrix [

I −WV −1

0 I

]

The resulting set of equations[
U −WV −1W� 0

W� V

](
∆(P)
∆(X)

)
=
(
ε(P)−WV −1ε(X)

ε(X)

)
(2.5)

may be divided into two sets of equations, to be solved separately. From the top half of
(2.5), one obtains

(U −WV −1W�)∆(P) = ε(P)−WV −1ε(X) (2.6)

which may be solved to get ∆(P). The resulting solution may then be substituted back
into the bottom half of (2.5) providing a set of equations V∆(X) = ε(X)−W�∆(P), or

∆(X) = V −1(ε(X)−W�∆(P)) . (2.7)

Because of the block-diagonal form of V , the equations (2.6) may be computed efficiently
using the quantities computed in (2.4). Specifically, the matrix A = U −WV −1W�

divides naturally into sub-blocks, where the (i, j)-th sub-block is the matrix

Aij = δijUi −
∑
k

WikV
−1
k Wjk

� (2.8)

The vector b = ε(P)−WV −1ε(X) also divides into blocks of the form

bi = ε(Pi)−
∑
j

WijV
−1
j ε(xj) (2.9)

20

Matrix A and the vector b may be computed directly, without needing to compute and
store either the matrix J , or the the normal equations (2.3). The amount of computation
required is linear in the number of points xj involved, and also linear in the total number
of observed points uij .

Similarly, the back-substitution given by (2.10) may be done block-by-block as follows :

∆(xj) = V −1
j (ε(xj)−

∑
i

Wij
�∆(Pi)) (2.10)

The back substitution also requires computation time linear in the number of points
involved.

The above algorithm was described for the case of Newton iteration. It is easy to see how
to extend this to LM iteration. One needs simply to augment the matrix J�J , which
comes down to augmenting the matrices Ui and Vj in (2.3). Augmenting the matrices Vj
will help to ensure that they are invertible, even in degenerate cases where Vj is singular.
This effect of augmenting the normal equations is the reason that it is not essential to
avoid over-parametrization of the minimization problem.

This method is easily extended in many ways :

1. To allow different weightings to errors in the different measured image points uij .

2. To allow estimated values (with confidence weightings) to be provided for individual
camera or point parameters.

3. To allow for relations to be specified between the parameters of different cameras,
such as specifying that two cameras have the same focal length, or that a set of
cameras all lie in a straight line.

Using these sparse methods, it is possible to solve systems where there are thousands
of point correspondences. In fact, we have solved in reasonable time systems in which
more than 5000 point correspondences were given. If such a system were solved using
the complete normal equations, then the dimension of the system of normal equations
would be greater than 15000 × 15000, and solving it using usual methods (for instance
Gaussian elimination) would be out of the question.

2:1.5 Projective Reconstruction

Mohr et. al. ([48]) have reported a direct LM approach to projective reconstruction.
However, with our recoding of their algorithm we have been unable to obtain reliable
convergence in all cases. Therefore, we shall describe a different (although similar) ap-
proach, also based on LM iteration.

As usual, we assume that errors in the data are manifested as errors in measurement of
the pixel locations of the uij , and that these errors are independent and gaussian. As
with Euclidean reconstruction, the problem is to find the camera matrices, Pi and points
xj such that ûij = Pixj and such that the squared error sum

∑
i,j

d(ûij ,u
i
j)

2

2:2. THE FUNDAMENTAL MATRIX 21

is minimized. Without loss of generality (and without changing the value of the error
expression) it may be assumed that the first camera has matrix P0 = [I | 0]. This
least-squares minimization problem is different from the one described in Section 6:3.1.
The problem is formulated in the form y = f(x) where the set of independent variables
x comprise the 3D coordinates of all the points in space and the entries of the camera
matrices Pi for i > 0. The dependent variables y are the image coordinates.

The main difference between our algorithm and that of Mohr et. al. is that whereas they
fix the locations of five points in space, we fix the location and the orientation of one
of the cameras. In particular, we set P0 = [I | 0]. In the algorithm of Mohr et. al.
a check is necessary to make sure that the five points chosen are not in fact coplanar.
Such a check is not necessary in our algorithm. Setting P0 = [I | 0] still leaves three
degrees of freedom. The LM method easily handles systems with redundant parameters,
however, so this is not a problem. If desired, however, it is possible to constrain the
solution completely by specifying three arbitrary points to lie on the plane at infinity. In
doing this it is necessary to check that the points are not collinear, or coplanar with the
camera centre of P0, which may be done easily be choosing three points that do not map
to collinear points in the image corresponding to P0.

In order for this iterative refinement method to work effectively, it is necessary to start
with a good estimate to be used as an initial configuration. This is done by using a linear
method of projective reconstruction which will be described in the next several sections
of this report.

2:2 The Fundamental Matrix

In 1982, Longuet-Higgins ([42]) gave a solution to the reconstruction problem for a pair of
images taken with calibrated cameras, introducing what became known as the essential
matrix, denoted Q. He showed that for a pair of calibrated cameras with matrices
P = [I | 0] and P ′ = [R | −Rc] there exists a matrix Q with the following property. If
u↔ u′ are a pair of corresponding points in the two images, then u′�Qu = 0.
To consider this further, we need a new terminology. Let t be a 3-vector and M be a
3 × 3 matrix. We denote by t ×M the matrix formed by taking the cross-product of t
with the columns of M separately. Similarly, M × t is the matrix formed by taking the
cross product of each rows of M with t separately. If t = (tx, ty, tz), then we define a
matrix

[t]× =

 0 −tx ty

tx 0 −tz
−ty tz 0

 . (2.11)

One quickly verifies that
t×M = [t]×M

and
M × t =M [t]× .

Longuet-Higgins showed (effectively) that the essential matrix Q corresponding to a pair
of camera matrices [I | 0] and [R | −Rc] = [R | t] is the matrix

Q = t×R .

22

Longuet-Higgins idea is to use sufficiently many point matches ui ↔ u′i to determine Q
using the relation u′�Qu = 0. With at least 8 point matches, Q may be determined
using linear techniques. Subsequently, the matrix Q may be factored as Q = t × R to
find the two camera matrices.

2:2.1 Generalization to Projective Cameras

Much of the work of Longuet-Higgins may be generalized to projective cameras. To
conform with current terminology, we will define a matrix, called the fundamental matrix,
denoted F , which is associated with a pair of camera matrices. In the case where the
camera matrices correspond to calibrated cameras, F will be identical with the essential
matrix Q of Longuet-Higgins.

To derive the existence and properties of the fundamental matrix, we consider a general
pair of camera matrices represented by P = (M | −Mc) and P ′ = (M ′ | −M ′c′). This
is the general form for camera matrices for which the camera is not located at infinity.
We will consider formulas for general cameras, possibly located at infinite points later on
in this report. Suppose that u and u′ are a pair of matching points as seen in the two
images.

We consider the ray in space consisting of all points that map to point u in the first

image. This ray is evidently a straight line passing through the camera centre,
(
c
1

)
.

A further point on this ray is the point at infinity
(
M−1u
0

)
. We now consider the

image of this ray as seen by the second camera. Transform P ′ takes these two points(
c
1

)
and

(
M−1u
0

)
on the ray to points M ′c −M ′c‘ and M ′M−1 u in the second

image. The line through these points is given by the cross product

M ′(c− c′)×M ′M−1u . (2.12)

This line in the second image corresponding to the point u in the first image is known
as the epipolar line corresponding to u. It is a line passing through the point M ′(c− c′)
which is the image of the first camera centre as seen in the second image. This point is
known as the epipole in the second image. As u varies, the set of corresponding epipolar
lines form a pencil of lines all passing through the epipole.

Using notation as defined in (2.11), the expression (2.12) can be written as

M ′(c − c′)×M ′M−1u = [M ′(c− c′)]×M ′M−1u = Fu (2.13)

where F = [M ′(c−c′)]×M ′M−1. The matrix F is the fundamental matrix corresponding
to the two camera matrices. Let u′ be a point in the second image corresponding to the
point u in the first image. The corresponding point x in space giving rise to these two
image points must lie on the ray corresponding to image point u. Thus the image of x,
namely point u′, must lie on the epipolar line Fu. Consequently, u′�Fu = 0.

Summary of Properties of the Fundamental Matrix. The following properties
of the fundamental matrix are easily derived from the preceding discussion.

2:2. THE FUNDAMENTAL MATRIX 23

Proposition2.1.

1. F is a 3× 3 matrix of rank 2.

2. If u↔ u′ are a pair of matching points, then u′�Fu = 0

3. If F is the fundamental matrix for a pair of cameras (J, J ′) then F� is the funda-
mental matrix for the pair (J ′, J).

4. If p and p′ are the two epipoles, then p′�F = Fp = 0.

5. Fu is the epipolar line in the second image corresponding to point u in the first
image.

6. F factors as a product F = p′� ×M , where M is non-singular.

Formulas for the Fundamental Matrix We can give explicit formulae for the fun-
damental matrix.

Proposition2.2. If P = [M | −Mc] and P ′ = [M ′ | −M ′c′] then

F = [M ′(c′ − c)]×(M ′M−1)
= M ′−�[c′ − c]×M−1

= (M ′M−1)−�[M(c′ − c)]×

The first formula for the fundamental matrix was derived above. The alternative forms
may be derived from the following identity, true for any 3× 3 matrix M and vector t.

M∗[t]× = [Mt]×M .

2:2.2 Determination of Camera Matrices from the Fundamental
Matrix

It was seen in the previous section that the fundamental matrix is uniquely determined by
a pair of camera matrices. In the present section, we will consider the converse problem.
To what extent are the two camera matrices determined by the fundamental matrix. In
this section the fundamental matrix will be characterized by the defining condition that
u′�Fu = 0 for any pair of matching points in two images.

Let P and P ′ be a pair of camera matrices and let u′ ↔ u be a pair of matched points.
This means that there is a point x in space such that u = Px and u′ = P ′x. We seek
a matrix F (the fundamental matrix) such that u′�Fu = 0. Expressing this in terms of
F leads to the equation

x�P ′�FPx = 0

This equation must hold for any point x in space, since any such point gives rise to a pair
of matched points u = Px and u′ = P ′x. However, a matrix A satisfies the equation
x�Ax = 0 for all x if and only if A is skew-symmetric. Consequently, we have proven
the following result

24

Proposition2.3. Given a pair of camera matrices P and P ′, then a matrix F satisfies
u′�Fu = 0 for all possible matched points u↔ u′ in the images taken by the two cameras,
if and only if P ′�FP is skew-symmetric.

Under this condition we say that the pair (P, P ′) is a realisation of the fundamental
matrix F .

We now show that given matrix F , the matrices P and P ′ are not uniquely determined.
Specifically, if H is a non-singular 4 × 4 matrix, and P ′�FP is skew-symmetric, then
so is H�P ′�FPH . This shows that (P, P ′) and (P ′H,PH) are both realizations of the
matrix F . It will be shown later that this is the only ambiguity in the realization of a
fundamental matrix.

Projective transform of a reconstruction. This may be seen in another way as
follows. If u = Px and H is a non-singular 4 × 4 matrix representing any projective
transformation then replacing the camera P by PH−1 and the point x by Hx, we see
that u = (PH−1)Hx. Thus, the image point u is unchanged by this transformation.
This shows that the camera matrices can not be determined unambiguously by a set of
image correspondences, since an arbitrary projective transformation H applied to the
scene and the cameras in this way does not result in any change in the images. Thus,
neither the scene, nor the camera placement may be determined mor accurately than up
to an unknown projective transformation. We speak of a projective transformation H
being applied to a camera matrix P to mean that P is replaced by PH−1.

Normal form. Given a matrix F , we have just seen that there exist a large family of
camera matrix pairs, (P, P ′) that make a realization of F . Next, we will be interested in
certain normal form realizations. The first normal form will be one in which one of the
cameras has matrix [I | 0] and the other camera has camera matrix [M | −Mc], meaning
that the camera centre is not at infinity. In fact, this can be done with any number of
cameras, as the following proposition shows.

Proposition2.4. Given camera matrices Pi for i = 0, . . . , N , there exists a 4×4 matrix
H such that P0H

−1 = [I | 0] and for all i = 1, . . . , N the camera centre for the matrix
PiH

−1 does not lie at infinity.

Proof. Since P0 has rank 3, it may be supplemented by one extra row to form a non-
singular matrix, which we will denote by H . We see immediately that P0H

−1 = [I | 0].
Multiplying each of the other matrices by H−1 gives matrices PiH−1 = P ′i . If the centre
of each camera P ′i lies at a finite point, then we are done. Otherwise, we must apply a
further transformation. Let c′i be the centre of the camera P

′
i . Thus, P

′
ic
′
i = 0. Now,

we select a plane that contains none of the points c′i, and which furthermore does not
pass through the point (0, 0, 0, 1)�. Such a plane may be represented as (v�1)�, where
v is a 3-vector. The condition that the plane does not pass through any of the points

c′i means that (v
�1)c′i �= 0 for any i. Letting H ′ =

[
I 0
v� 1

]
this implies that H ′c′i is

not a point at infinity. However, H ′c′i is the centre of the camera P
′
iH
′−1. One verifies

further that [I | 0]H ′−1 = [I | 0]. Thus, transforming each P ′i by H ′−1 gives the required
set of camera matrices. �

2:2. THE FUNDAMENTAL MATRIX 25

This is a particularly convenient normal form for many applications. It may be easily
verified that a matrix of the type

H =
[

I 0
v� 1

]

is the general form for a 4× 4 matrix satisfying the condition [I | 0]H−1 = [I | 0]. The
choice of different vectors v correspond to different choices of the plane at infinity, since
a point is mapped to infinity by the transformation H if and only if it lies on the plane
represented by (v�1)�.

Now, we may show that the two matrices P and P ′ uniquely determine F as long as
the camera centres for P and P ′ are not the same. Thus, suppose that P ′�FP is skew-
symmetric. There is a matrix H such that PH−1 = [I | 0] and P ′H−1 = [M | −Mc],
where c �= 0 and M is non-singular. Now applying H−� and H−1 to the left and right
sides of P ′�FP , we see that

H−�P ′�FPH−1 =
(

M�

−c�M�
)
F [I | 0]

=
[

M�F 0
−c�M�F 0

]

is skew-symmetric. This implies thatM�F is skew-symmetric and c�(M�F) = 0. Since
a 3×3 skew-symmetric matrix is determined by its kernel (in this case c), it follows that
M�F = [c]×. Finally, therefore, F = M−�[c]× = M−� × c. Thus, the matrix F is
uniquely determined by P and P ′.

Specific formulas for F in terms of P and P ′ were given in Proposition 2.2 for the case
where both cameras were located at finite points. A formula for the fundamental matrix
that holds independent of that assumption is given next.

Proposition2.5. The fundamental matrix corresponding to a pair of camera matrices
P = [I | 0] and P ′ = [M | t] is F = t×M .

Proof. One simply verifies that

P ′�FP =
(
M�

t�

)
[t]×M [I | 0] =

[
M�[t]×M 0

0 0

]

is skew symmetric. �

This result may be used to compute the fundamental matrix for any pair of matrices by
transforming the two camera matrices to the form given in the proposition by applying
an appropriate projective transformation H .

Factorization of the fundamental matrix : Conversely, given a fundamental
matrix, it is possible to determine a pair of camera matrices that give rise to that fun-
damental matrix by applying Proposition 2.5.

Suppose that the singular value decomposition ([1]) of F is given by F = UDV �, where
D is the diagonal matrix D = diag(r, s, 0). The following factorization of F may now be
verified by inspection.

F = SM ; S = UZU� ; M = UEdiag(r, s, α)V �

26

where

E =

 0 −1 0
1 0 0
0 0 1

 ; Z =

 0 1 0
−1 0 0
0 0 0

and α is an arbitrary number. The matrix S is skew-symmetric, S = [t]×.

By factoring F in this way, as F = t ×M , we can then apply Proposition 2.5 to get a
pair of cameras matrices P = [I | 0] and P ′ = [M | t] that correspond to F .

Uniqueness of Camera Matrix up to Projective Transformation. We are
almost ready to prove that the fundamental matrix determines the two camera matrices
up to a projective transformation. First, however, we need one more lemma.

Lemma2.6. Let the rank 2 matrix F factor in two different ways as F = t×M = t′×M ′.
Then t = t′ and M ′ =M + ta� for some vector a.

Proof. First, note that tF = t[t]×M = 0, and similarly, t′F = 0. Since F has rank
2, it follows that t = t′ as required. Next, from [t]×M = [t]×M ′ = F it follows that
[t]×(M ′ − M) = 0, and so M ′ − M = ta� for some a. Hence, M ′ = M + ta� as
required. �

We now answer the question when two pairs of camera matrices may correspond to the
same fundamental matrix.

Theorem2.7. Let (P1, P
′
1) and (P2, P

′
2) be two pairs of camera transforms. Then (P1, P

′
1)

and (P2, P
′
2) correspond to the same fundamental matrix F if and only if there exists a

4× 4 non-singular matrix H−1 such that P1H
−1 = P2 and P ′1H

−1 = P ′2.

Proof. The if part of this theorem has already been proven, so we turn to the only if part.
Since each of the matrices P1 and P2 has rank 3, we can multiply them (on the right) by
suitable matrices H1 and H2 to transform them each to the matrix [I | 0]. If the matrices
P ′1 and P

′
2 are also multiplied by H1 and H2 respectively, then the fundamental matrix

corresponding to the camera matrix pairs are unchanged, as seen previously. Thus, we
have reduced the problem to the case where P1 = P2 = [I | 0].
Suppose therefore, that P1 = P2 = [I | 0] and that P ′1 = [M ′1 | t′1] and P ′2 = [M ′2 | t′2]. By
proposition 2.5 we have F = [t′1]×M

′
1 = [t

′
2]×M

′
2. According to Lemma 2.6 this implies

that t′1 = t′2 = t and that M ′2 = M ′1 + ta� for some vector a. Let H−1 be the matrix[
I 0
a� 1

]
. Then one verifies that [I | 0] = [I | 0]H−1, so P2 = P1H

−1. Furthermore,

P ′1H
−1 = [M ′1 | t]H−1 = [M ′1 + ta

� | t] = [M ′2 | t] = P ′2. Thus H
−1 is the matrix

required for the conclusion of theorem 2.7. �

2:2.3 Point set reconstruction

Given a pair of camera matrices P and P ′ and a pair of matched points u ↔ u′ it
is evident that the space point x that gives rise to the two matching image points is
uniquely defined, and may be obtained by intersecting two rays from the camera centres.
Here is a simple way of computing the point x.

2:3. THE 8-POINT ALGORITHM 27

Suppose that the fundamental matrix factors as as F = t′ ×M ′, and let P = [I | 0]
and P ′ = [M ′ | t′] be a realization of the matrix F . Let u ↔ u′ be a pair of matched
points in the two images. We wish to find a point x in space such that u = Px and
u′ = P ′x. From the relation u′�Fu = u′�[t′]×M ′u = u′�(t′×M ′u) = 0, it follows that
u′, M ′u and t′ are linearly dependent. If in particular M ′u = βu′ − αt′ then we define
the corresponding object space point x to be the point

(
u
α

)
. It is now easily verified

that Px = [I | 0]x = u and P ′x = [M ′ | t′]x = M ′u + αt′ = u′. This verifies that the
given values of P , P ′ and xi constitute a projective reconstruction of the data.

As shown, x is determined by the two camera matrices P and P ′ and the matched points
u ↔ u′. If we choose a different pair of camera matrices PH and P ′H realizing the
same fundamental matrix F , then in order to preserve the same pair of matched image
points, the point x must be replaced by H−1x. Thus, changing to a different realization
of F results in a projective transformation (namely H−1) of the scene. This proves the
following theorem

Theorem2.8. (Faugeras [12], Hartley et al. [22]) Given a set of image correspon-
dences {ui} ↔ {u′i} sufficient to determine the fundamental matrix, the corresponding
object space coordinates {xi} may be computed up to a collineation of projective 3-space
P3.

The foregoing discussion has effectively given an algorithm for doing projective recon-
struction from a pair of uncalibrated cameras, given a set of matched points u′i ↔ ui in
the two images.

1. Compute the fundamental matrix using the formula u′i
�Fui = 0 for all i.

2. Factor the fundamental matrix as F = [t]×M .

3. Set the two camera matrices equal to P = [I | 0] and P ′ = [M | t].

4. Reconstruct the points by triangulation.

The two main steps of this matrix are the determination of the fundamental matrix and
the triangulation step. These two steps will be examined in detail in the following two
sections of this report.

Further Reading

For methods of computing the Fundamental Matrix, see the work of Faugeras, Luong et
al, as well as the original work of Longuet-Higgins [42, 13, 43]. For iterative methods of
projective reconstruction, see [12, 47, 29]. A more geometric approach to reconstruction
is taken by Ponce et.al ([53]) and Shashua ([63, 64]). Reconstruction from lines instead
of points is considered in [31] and a later section of this report.

2:3 The 8-point Algorithm

The 8-point algorithm for computing the essential matrix was introduced by Longuet-
Higgins in a now classic paper ([42]). In that paper the essential matrix is used to

28

compute the structure of a scene from two views with calibrated cameras. The great
advantage of the 8-point algorithm is that it is linear, hence fast and easily implemented.
If 8 point matches are known, then the solution of a set of linear equations is involved.
With more than 8 points, a linear least squares minimization problem must be solved.
The term 8-point algorithm will be used in this report to describe this method whether
only 8 points, or more than 8 points are used.

The essential property of the essential matrix is that it conveniently encapsulates the
epipolar geometry of the imaging configuration. As shown in section 2:2, the same method
may be used to compute a matrix with this property from uncalibrated cameras. In this
case of uncalibrated cameras it has become customary to refer to the matrix so derived
as the fundamental matrix. Just as in the calibrated case, the fundamental matrix may
be used to reconstruct the scene from two uncalibrated views, but in this case only up to
a projective transformation. Apart from scene reconstruction, the fundamental matrix
may also be used for many other tasks, such as image rectification ([28]), computation
of projective invariants ([8]), outlier detection ([9]) and stereo matching ([79]);

Unfortunately, despite its simplicity the 8-point algorithm has often been criticized for
being excessively sensitive to noise in the specification of the matched points. Indeed
this belief has become the prevailing wisdom. Consequently, because of its importance,
many alternative algorithms have been proposed for the computation of the fundamen-
tal matrix. See [44] for a description and comparison of several algorithms for finding
the fundamental matrix. Without exception, these algorithms are considerably more
complicated than the 8-point algorithm. Other iterative algorithms have been described
(briefly) in [29, 4].

It is the purpose of this section to challenge the common view that the 8-point algorithm
is inadequate and markedly inferior to the more complicated algorithms. The poor per-
formance of the 8-point algorithm can probably be traced to implementations that does
not take sufficient account of numerical considerations, most specifically the condition
of the set of linear equations being solved. It is shown in this section that a simple
transformation (translation and scaling) of the points in the image before formulating
the linear equations leads to an enormous improvement in the condition of the problem
and hence of the stability of the result. The added complexity of the algorithm necessary
to do this transformation is insignificant.

It is not claimed here that this modified 8-point algorithm will perform quite as well as
the best iterative algorithms. However it is shown by thousands of experiments on many
images that the difference is not very great between the modified 8-point algorithm and
iterative techniques. Indeed the 8-point algorithm does better than some of the iterative
techniques.

2:3.1 Outline of the 8-point Algorithm

Linear solution for the fundamental matrix. The fundamental matrix is defined
by the equation

u′�Fu = 0 (2.14)

for any pair of matching points u′ ↔ u in two images. Given sufficiently many point
matches u′i ↔ ui, (at least 8) this equation (2.14) can be used to compute the unknown
matrix F . In particular, writing u = (u, v, 1)� and u′ = (u′, v′, 1)� each point match
gives rise to one linear equation in the unknown entries of F . The coefficients of this

2:3. THE 8-POINT ALGORITHM 29

equation are easily written in terms of the known coordinates u and u′. Specifically, the
equation corresponding to a pair of points (u, v, 1) and (u′, v′, 1) will be

uu′f11 + uv′f21 + uf31 + vu′f12 + vv′f22 + vf32 + u′f13 + v′f23 + f33 = 0 . (2.15)

The row of the equation matrix may be represented as a vector

(uu′, uv′, u, vu′, vv′, v, u′, v′, 1) . (2.16)

From all the point matches, we obtain a set of linear equations of the form

Af = 0 (2.17)

where f is a 9-vector containing the entries of the matrix F , and A is the equation
matrix. The fundamental matrix F , and hence the solution vector f is defined only up
to an unknown scale. For this reason, and to avoid the trivial solution f , we make the
additional constraint

||f || = 1 (2.18)

where ||f ||, is the norm of f1.

Under these conditions, it is possible to find a solution to the system (2.17) with as few
as 8 point matches. With more than 8 point matches, we have an overspecified system
of equations. Assuming the existence of a non-zero solution to this system of equations,
we deduce that the matrix A must be rank-deficient. In other words, although A has 9
columns, the rank of A must be at most 8. In fact, except for exceptional configurations
([45]) the matrix A will have rank exactly 8, and there will be a unique solution for f .

This previous discussion assumes that the data is perfect, and without noise. In fact,
because of inaccuracies in the measurement or specification of the matched points, the
matrix A will not be rank-deficient – it will have rank 9. In this case, we will not be
able to find a non-zero solution to the equations Af = 0. Instead, we seek a least-
squares solution to this equation set. In particular, we seek the vector f that minimizes
||Af || subject to the constraint ||f || = f�f = 1. It is well known (and easily derived
using Lagrange multipliers) that the solution to this problem is the unit eigenvector of
A�A corresponding to the smallest eigenvalue ofA. Note that since A�A is positive semi-
definite and symmetric, all its eigenvectors are real and positive, or zero. For convenience,
(though somewhat inexactly), we will call this eigenvector the least eigenvector of A�A.
An appropriate algorithm for finding this eigenvector is the algorithm of Jacobi ([55]) or
the Singular Value Decomposition ([55, 1]).

The singularity constraint. An important property of the fundamental matrix is
that it is singular, in fact of rank 2. Furthermore, the left and right null-spaces of F
are generated by the vectors representing (in homogeneous coordinates) the two epipoles
in the two images. Most applications of the fundamental matrix rely on the fact that
it has rank 2. The matrix F found by solving the set of linear equations (2.17) will
not in general have rank 2, and we should take steps to enforce this constraint. The
most convenient way to enforce this constraint is to correct the matrix F found by the
solution of (2.17). Matrix F is replaced by the matrix F ′ that minimizes the Frobenius

1An alternative is to set F33 = 1 and solving a linear least squares minimization problem. The general
conclusions of this section are equally valid for this version of the algorithm.

30

norm ||F − F ′|| subject to the condition detF ′ = 0. A convenient method of doing this
is to use the Singular Value Decomposition (SVD). In particular, let F = UDV � be the
SVD of F , where D is a diagonal matrix D = diag(r, s, t) satisfying r ≥ s ≥ t. We let
F ′ = Udiag(r, s, 0)V �. This method was suggested by Tsai and Huang ([75]) and has
been proven to minimize the Frobenius norm of F − F ′, as required.
Thus, the 8-point algorithm for computation of the fundamental matrix may be formu-
lated as consisting of two steps, as follows.

Linear solution. Given point matches u′i ↔ ui, solve the equations u′i�Fui = 0 to find
F . The solution is the least eigenvector, f of A�A, where A is the equation matrix.

Constraint Enforcement. Replace F by F ′, the closest singular matrix to F under
Frobenius norm. This is done using the Singular Value Decomposition.

The algorithm thus stated is extremely simple, and rapid to implement, assuming the
availability of a suitable linear algebra library (for instance [55]).

2:3.2 Transformation of the Input

Image coordinates are sometimes given with the origin at the top-left of the image, and
sometimes with the origin at the centre. The question immediately occurs whether this
makes a difference to the results of the 8-point algorithm for computing the fundamental
matrix. More generally, to what extent is the result of the 8-point algorithm dependent on
the choice of coordinates in the image. Suppose, for instance the image coordinates were
changed by some affine or even projective transformation before running the algorithm.
Will this materially change the result? That is the question that we will now consider.

Suppose that coordinates u in one image are replaced by û = Tu, and coordinates u′

in the other image are replaced by û′ = T ′u′. Substituting in the equation u′�Fu = 0,
we derive the equation û′�T ′−�FT−1û = 0, where T ′−� is the inverse transpose of T ′.
This relation implies that T ′−�FT−1 is the fundamental matrix corresponding to the
point correspondences û′ ↔ û. An alternative method of finding the fundamental matrix
is therefore suggested, as follows.

1. Transform the image coordinates according to transformations ûi = Tui and û
′
i =

T ′u′i.

2. Find the fundamental matrix F̂ corresponding to the matches û′i ↔ ûi.

3. Set F = T ′�F̂ T .

The fundamental matrix found in this way corresponds to the original untransformed
point correspondences u′i ↔ ui. What choice should be made for the transformations T
and T ′ will be left unspecified for now. First, we need to determine whether carrying out
this transformation has any effect whatever on the result.

As verified above, u′�Fu = û′�F̂ û, where F̂ is defined by F̂ = T ′−�FT−1. Thus, if
u′�Fu = ε, then also û′�F̂ û = ε. Thus, there is a one-to-one correspondence between
F and F̂ giving rise to the same error. It may appear therefore that the matrices F and
F̂ minimizing the error ε (or more exactly, the sum of squares of errors corresponding to
all points) will be related by the formula F̂ = T ′−�FT−1, and hence one may retrieve

2:3. THE 8-POINT ALGORITHM 31

F as the product T ′�F̂ T . This conclusion is false however. For, although F and F̂ so
defined give rise to the same error ε, the condition ||F || = 1, imposed as a constraint
on the solution, is not equivalent to the condition ||F̂ || = 1. In particular, there is no
one-to-one correspondence between F and F̂ giving rise to the same error ε, subject to
the constraint ||F || = ||F̂ || = 1.

This is a crucial point, and so we will look at it from a different point of view. A set
of point correspondences u′i ↔ ui give rise to a set of equations of the form Af = 0.
If now we make the transformation ûi = Tui and û

′
i = T ′u′i, then the set of equations

will be replaced by a different set of equations of the form Âf̂ = 0. One may verify, in
particular that the matrix Â may be written in the form Â = AS where S is a 9 × 9
matrix that may be written explicitly in terms of the entries of T and T ′ (but it is not
very important exactly how). Therefore one is led to consider the two sets of equations
Af = 0 and AS f̂ = 0. One may guess that the least-squares solutions to these two sets
of equations will be related according to f̂ = S−1f . If this were so, then replacing f̂ by
S f̂ one once more retrieves the original solution f . The mapping f̂ �→ S f̂ corresponds
precisely to the matrix mapping F̂ �→ T ′�F̂ T .

However, things are not that simple. Perhaps the least-squares solutions to the two sets
of equations Af = 0 and AS f̂ = 0 are not so simply related. The solution f to the system
Af = 0 is the least eigenvector of the matrix A�A. Is it so that f̂ = S−1f is the least
eigenvector of (AS)�(AS) ? Letting λ be the least eigenvalue of A�A, we verify :

S�A�AS f̂ = S�A�ASS−1f
= S�A�Af

= S�λf
= λS�S f̂

�= λf̂ .

Thus, in fact, S−1f is not the least eigenvector of (AS)�AS. In fact it is not an eigen-
vector at all.

Let us see how significant this effect is. We take the example that T and T ′ are
simply scalings of the coordinates, in fact, multiplication of the coordinates by a fac-
tor of 10. These transformations are represented by diagonal matrices of the form
T = T ′ = diag(10, 10, 1) acting on homogeneous coordinates. In this case, the ma-
trix S is also a diagonal matrix of the form S = diag(102, 102, 10, 102, 102, 10, 10, 10, 1),
assuming that the vector f represents the elements of F in the row-major order
f11, f12, f13, f21, f22, f23, f31, f32, f33. The matrix S�S equals
diag(104, 104, 102, 104, 104, 102, 102, 102, 1). In this case, we see (AS)�AS f̂ = λS�S f̂ ,
and so f̂ is very far from being an eigenvector of (AS)�AS.

We conclude that the method of transformation leads to a different solution for the
fundamental matrix. This is a rather undesirable feature of the 8-point algorithm as it
stands, that the result is changed by a change of coordinates, or even simply a change of
the origin of coordinates. To correct this, it seems advisable to normalize the coordinates
of the points in some way by expressing them in some fixed canonical frame, as yet
unspecified.

32

2:3.3 Condition of the System of Equations

The linear method consists in finding the least eigenvector of the matrix A�A. This
may be done by expressing A�A as a product UDU� where U is orthogonal and D is
diagonal. We assume that the diagonal entries of D are in non-increasing order. In this
case, the least eigenvector of A�A is the last column of U . Denote by κ the ratio d1/d8

(recalling that A�A is a 9× 9 matrix). The parameter κ is the condition number2 of the
matrix A�A, well known to be an important factor in the analysis of stability of linear
problems ([15]). Its relevance to the problem of finding the least eigenvector is briefly
explained next.

The bottom right hand 2× 2 block of matrix D is of the form
[
d8 0
0 0

]
, assuming that

d9 = 0, which ideally will be the case. Now, suppose that this block is perturbed by the

addition of noise to become
[
d8 ε
ε 0

]
. In order to restore this matrix to diagonal form

we need to multiply left and right by V � and V , where V is a rotation through an angle
θ = arctan(2ε/d8) (as the reader may verify). If ε is of the same order of magnitude as d8

then this is a significant rotation. Looking at the full matrix, A�A = UDU�, we see that

the perturbed matrix will be written in the form UV̄ D′V̄ �U� where V̄ =
[
I7×7 0
0 V

]
.

Multiplying by V̄ replaces the last column of U by a combination of the last two columns.
Since the last column of U is the least eigenvector of the matrix, this perturbation will
drastically alter the least eigenvector of the matrix A�A. Thus, changes to A�A of the
order of magnitude of the eigenvalue d8 cause significant changes to the least eigenvector.
Since multiplication by an orthogonal matrix does not change the Frobenius norm of a

matrix, we see that ||A�A|| =
(∑9

i=1 d
2
i

)1/2

. If the ratio κ = d1/d8 is very large, then
d8 represents a very small part of the Frobenius norm of the matrix. A perturbation
of the order of d8 will therefore cause a very small relative change to the matrix A�A,
while at the same time causing a very significant change to the smallest eigenvalue. Since
A�A is written directly in terms of the coordinates of the points u↔ u′, we see that if
κ is large, then very small changes to the data can cause large changes to the solution.
This is obviously very undesirable. The sensitivity of invariant subspaces is discussed in
greater detail in [15], p413, where more specific conditions for the sensitivity of invariant
subspaces are given.

We now consider how the condition number of the matrix A�A may be made small.
We consider two sorts of transformation, translation and scaling. These methods will be
given only an intuitive justification, since a complete analysis of the condition number
of the matrix is too complex to undertake here.

The major reason for the poor condition of the matrix A�A is the lack of homogeneity in
the image coordinates. In an image of dimension 200×200, a typical image point will be
of the form (100, 100, 1). If both u and u′ are of this form, then the corresponding row of
the equation matrix will be of the form r� = (104, 104, 102, 104, 104, 102, 102, 102, 1). The
contribution to the matrix A�A is of the form rr�, which will contain entries ranging
between 108 and 1. For instance, the diagonal entries of A�A will be
(108, 108, 104, 108, 108, 104, 104, 104, 1). Summing over all point correspondences will re-
sult in a matrix A�A for which the diagonal entries are approximately in this proportion.

2Strictly speaking, d1/d9 is the condition number, but d1/d8 is the parameter of importance here

2:3. THE 8-POINT ALGORITHM 33

We may now use the Interlacing Property ([15], page 411) for the eigenvalues of a sym-
metric matrix to get a bound on the condition number of the matrix. Suppose that
the diagonal entries of X = A�A are equal to (108, 108, 104, 108, 108, 104, 104, 104, 1).
We denote by Xr the trailing r × r principal submatrix (that is the last r columns and
rows) of the matrix A�A, and by λi(Xr) its i-th largest eigenvalue. Thus, X9 = A�A
and κ = λ1(X9)/λ8(X9). First we consider the eigenvalues of X2. Since the sum of
the two eigenvalues is trace(X2) = 104 + 1, we see that λ1(X2) + λ2(X2) = 104 + 1.
Since the matrix is positive semi-definite, both eigenvalues are non-negative, so we
may deduce that λ1(X2) ≤ 104 + 1. From the interlacing property, we deduce that
λ8(X9) ≤ λ7(X8) ≤ . . . λ1(X2) ≤ 104 + 1. On the other hand, also from the interlacing
property, we know that the largest eigenvalue of A�A is not less than the largest diagonal
entry. Thus, λ1(X9) ≥ 108. Therefore, the ratio κ = λ1(X9)/λ8(X9) ≥ 108/(104 + 1).
Usually, in fact λ8(X9) will be much smaller than 104+1 and the condition number will
be far greater.

This analysis shows that scaling the coordinate so that the homogeneous coordinates are
on the average equal to unity will improve the condition of the matrix A�A.

Translation Consider a case where the origin of the image coordinates is at the top left
hand corner of the image, so that all the image coordinates are positive. In this case, an
improvement in the condition of the matrix may be achieved by translating the points so
that the centroid of the points is at the origin. This claim will be verified by experimen-
tation, but can also be explained informally by arguing as follows. Suppose that the first
image coordinates (the u-coordinates) of a set of points are {1001.5, 1002.3, 998.7, . . .}.
By translating by 1000, these numbers may be changed to {1.5, 2.3,−1.3}. Thus, in the
untranslated values, the significant values of the coordinates are obscured by the coordi-
nate offset of 1000. The significant part of the coordinate values is found only in the third
or fourth significant figure of the coordinates. This has a bad effect on the condition of
the corresponding matrix A�A. A more detailed analysis of the effect of translation is
not provided here.

2:3.4 Normalizing transformations

The previous sections concerned with the condition number of the matrix A�A indicate
that it is desirable to apply a transformation to the coordinates before carrying out
the 8-point algorithm for finding the fundamental matrix. This normalization has been
implemented as a prior step in the 8-point algorithm with excellent results.

Isotropic Scaling

As a first step, the coordinates in each image are translated (by a different translation
for each image) so as to bring the centroid of the set of all points to the origin. The
coordinates are also scaled. In the discussion of scaling, it was suggested that the best
results will be obtained if the coordinates are scaled, so that on the average a point u is
of the form u = (u, v, w)�, with each of u, v and w having the same average magnitude.
Rather than choose different scale factors for each point, an isotropic scaling factor is
chosen so that the u and v coordinates of a point are scaled equally. To this end, we
choose to scale the coordinates so that the average distance of a point u from the origin

34

is equal to
√
2. This means that the “average” point is equal to (1, 1, 1)�. In summary

the transformation is as follows

1. The points are translated so that their centroid is at the origin.

2. The points are then scaled so that the average distance from the origin is equal to√
2.

3. This transformation is applied to each of the two images independently.

Non-isotropic Scaling

In non-isotropic scaling, the centroid of the points is translated to the origin as before.
After this translation the points form a cloud about the origin. Scaling is then carried
out so that the two principal moments of the set of points are both equal to unity. Thus,
the set of points will form an approximately symmetric circular cloud of points of radius
one about the origin.

Both translation and scaling can be done in one step as follows. Let ui = (ui, vi, 1)� for
i = 1, . . . , N and form the matrix

∑
i uiui

�. Since this matrix is symmetric and positive
definite, we may take its Choleski factorization ([1, 55]) to get

∑N
i=1 uiui

� = NKK�,
where K is upper triangular. It follows that

∑
iK
−1uiui�K−� = NI, where I is the

identity matrix. Setting ûi = K−1ui, we have
∑
i ûiûi

� = NI. Consequently, the set of
points ûi have their centroid at the origin and the two principal moments are both equal
to unity, as desired. Note that K−1 is upper triangular, and so it represents an affine
transformation.

To summarize : the points are transformed so that

1. Their centroid is at the origin.

2. The principal moments are both equal to unity.

2:3.5 Scaling in Stage 2

So far we have discussed the effect of a normalizing transformation on the first stage of
the 8-point algorithm, namely the solution of the set of linear equations to find F . The
second step of the algorithm is to enforce the singularity constraint that detF = 0.

The method described above of enforcing the singularity constraint gives the singular
matrix F̂ nearest to F in Frobenius norm. The trouble with this method is that it treats
all entries of the matrix equally, regardless of their magnitude. Thus, entries of F small
in absolute value may be expected to undergo a perturbation much greater relative to
their magnitude than the large entries.

Suppose that a set of matched points is normalized so that on the average all three
homogeneous coordinates have the same magnitude. Thus, a typical point will look like
(1, 1, 1)�. The fundamental matrix computed from these normalized coordinates may be
expected to have all its entries approximately of the same magnitude. This is an intuitive
argument only, but it is borne out by experience, as will be seen below. It may be further
justified by the following remark however.

2:3. THE 8-POINT ALGORITHM 35

A permutation of the three homogeneous coordinates in either or both the images will
result in another set of realizable matched points. The corresponding fundamental matrix
will be obtained from the original one by permuting the corresponding rows and/or
columns of the matrix. In doing this, any entry of F may be moved to any other position.
This means that no entry of the fundamental matrix is qualitatively different from any
other, and hence on the average (over all possible sets of matched points) all entries of
F will have the same average magnitude.

Now, consider what happens if we scale the coordinates of points ui and u′i by a factor
which we will assume is equal to 100. Thus, a typical coordinate will be of the order of
(100, 100, 1)�. The corresponding fundamental matrix F will be obtained from original
one by multiplying the first two rows, and the first two columns by 10−2. Entries in the
the top left 2×2 block will be multiplied by 10−4. We conclude that a typical fundamental
matrix derived from coordinates of magnitude (100, 100, 1)� will have entries of the
following order of magnitude.

F =

 10−4 10−4 10−2

10−4 10−4 10−2

10−2 10−2 1

 (2.19)

To verify this conclusion, here is the fundamental matrix for the pair of house images in
Fig 2.13.

F =

 −9.796e− 08 1.473e− 06 −6.660e− 04
−6.346e− 07 1.049e− 08 7.536e− 03
8.107e− 04 −7.739e− 03 −2.364e− 02

 (2.20)

In comparing (2.20) with (2.19), one must bear in mind that F is defined only up to
nonzero scaling. The imbalance of the matrix (2.20) is even worse than predicted by
(2.19) because the image has dimension 512 × 512. Now, in taking the closest singular
matrix, all entries will tend to be perturbed by approximately the same amount. However,
the relative perturbation will be greatest for the smallest entries. The question arises
whether the small entries in the matrix F are important. Consider a typical point
u ≈ (100, 100, 1)�. In computing the corresponding epipolar line Fu, we see that the
largest entries in the vector u are multiplied by the smallest, and hence least relatively
stable entries of the matrix F . Thus, for computation of the epipolar line, the smallest
entries in F are the most important. We have the following undesirable condition :

The most important entries in the fundamental matrix are precisely those that
are subject to the largest relative perturbation when enforcing the singularity
constraint without prior normalization.

This condition is corrected if normalization of the image coordinates is carried out first,
for then all entries of the fundamental matrix will be treated approximately equally, and
none is more important than another in computing epipolar lines.

3The notation -9.766e-08 means −9.766× 10−8.

36

2:3.6 Experimental Evaluation

The 8-point algorithm with prior transformation of the coordinates, as described here
will be called the normalized 8-point algorithm. This algorithm was tested on a large
number of real images to evaluate its performance. In carrying out these tests, the 8-point
algorithm with pre-normalization as described above was compared with several other
algorithms for finding the fundamental matrix. For the most part the implementations
of these other algorithms were provided by other researchers, whom I will acknowledge
later. In this way the results were not biased in any way by our possibly inefficient
implementation of competing algorithms. In addition, the images and matched points
that I have tested the algorithms on have been supplied to me. Methods of obtaining the
matched points therefore varied from image to image, as did methods for eliminating bad
matches (outliers). In all cases, however, the matched points were found by automatic
means, and usually some sort of outlier detection and removal was carried out, based on
least-median squares techniques (see [9]).

The general procedure for evaluation was as follows.

1. Matching points were computed by automatic techniques, and outliers were de-
tected and removed.

2. The fundamental matrix was computed using a subset of all points.

3. In the case of algorithms, such as the 8-point algorithm, that do not automatically
enforce the singularity constraint (that is the constraint that detF = 0) this con-
straint constraint was enforced a posteriori by finding the nearest singular matrix
to the computed fundamental matrix. This was done using the Singular Value
Decomposition (as in [75, 23]).

4. For each point ui, the corresponding epipolar line Fui was computed and distance
from the line Fui from the matching point u′i was calculated. This was done in both
directions, (that is starting from points ui in the first image and also from u′i in the
second image). The average distance of the epipolar line from the corresponding
point was computed, and used as a measure of quality of the computed Fundamental
matrix. This evaluation was carried out using all matched points, and not just the
ones that were used to compute F .

Other algorithms.

Here is a brief description of the algorithms tested.

The 8-point algorithm In this algorithm, the points were used as is, without pre-
transformation to compute the fundamental matrix. The singularity constraint was en-
forced.

The 8-point algorithm with isotropic scaling The 8-point algorithm was used with
the translation and isotropic scaling method described in section 2:3.4. The singularity
constraint was enforced.

2:3. THE 8-POINT ALGORITHM 37

The 8-point algorithm with non-isotropic scaling This is the same as the previous
method, except that the non-isotropic scaling method described in section 2:3.4 was used.

Minimizing the epipolar distances In implementation by Long Quan of an algo-
rithm described by Luong ([44, 9]) was used. This is an iterative algorithm that uses
a parametrization of the fundamental matrix with 7 parameters. Thus the singularity
constraint is enforced as part of the algorithm. The cost function being minimized is the
squared sum of distances of the points from epipolar lines. The point-line distances in
both images are taken into account.

Minimizing point displacement This algorithm (our own implementation) is an
iterative algorithm. It finds the fundamental matrix F , and points ûi and û′i such that
û′i
�F ûi = 0 exactly, detF = 0 and the squared pixel error

∑
i d(ûi,ui)

2 + d(û′i,u′i)
2

is minimized. The details of how this is done are described in [29, 30]. Under the
assumption of gaussian noise in the placement of the matched points (an approximation to
the truth), this algorithm gives the fundamental matrix corresponding to the most likely
true placement of the matched points (the estimated points ûi ↔ û′i). For this reason,
I have generally considered this algorithm to be the best available. The experiments
generally bear out this belief, but it is not the purpose of this report to justify this point.

Approximate Calibration The results of an algorithm of Beardsley and Zisserman
([4]) were provided for comparison. This algorithm does an approximate normalization
of the coordinates by selecting the origin of coordinates at the centre of the image, and
by scaling by division by the approximate focal length of the camera (measured in pixels
– that is, the scaling factor in the calibration matrix). Since this method employs a
normalization similar to the isotropic scaling algorithm, one expects it to give similar
results. It does, however rely on some approximate knowledge of camera calibration.

Iterative Linear Another algorithm provided by Beardsley and Zisserman is repre-
sentative of a general approach to improving the performance of linear algorithms. This
same approach can be applied to may different linear algorithms, such as camera pose
and calibration estimation ([71]), projective reconstruction from lines ([31]) and recon-
struction of point positions in space ([33]). In this approach, the 8-point algorithm is
run a first time. From this initial solution a set of weights for the linear equations are
computed. The set of linear equations are multiplied by these weights and the 8-point al-
gorithm is run again. This may be repeated several times. The weights are chosen in such
a way that the linear equations express a meaningful measurable quantity. To be specific,
in the case of the 8-point algorithm each point correspondence u′i

�Fui = 0 gives one
linear equation in the entries of F . However, the quantity u′i

�Fui does not correspond
to any meaningful geometric quantity, certainly not to distance between the point u′i
and the epipolar line Fui. Writing Fui = (λ, µ, ν)�, the distance d(u′i, Fui) is equal to
u′i
�Fui/

√
λ2 + ν2. Thus, weighting the equation u′i

�Fui = 0 by the weight
√
λ2 + ν2,

where λ and µ are computed from the current estimate of F , one measures the distance
from line Fui to the point u′i

�. In order to treat the two images symmetrically, one can

choose to weight the equation so that it measures the value
√
d(u′i, Fui)2 + d(ui, F

�u′i)2.

38

This involves multiplying by a weight

wi =
(
λ2 + µ2 + λ′2 + µ′2

(λ2 + µ2)(λ′2 + µ′2)

)1/2

The advantage of this type of algorithm is that it is simple to implement compared with
iterative parameter estimation methods, such as Levenberg-Marquardt ([55]).

The Images.

The various algorithms were tried with 5 different pairs of images. The images are
presented in Figures 2.1 – 2.5 to show the diversity of image types, and the placement of
the epipoles. A few of the epipolar lines are shown in the images. The intersection of the
pencil of lines is the epipole. There was a wide variation in the accuracy of the matched
points for the different images, as will be indicated later.

Figure 2.1: Houses Images. The epipoles are a long way from the image centres.

Graphical Presentation of the Results.

The following graphs show the results of several runs of the algorithms, with different
numbers of points being used. The number of points used to compute the fundamental
matrix ranged from 8 up to three-quarters of the total number of matched points. For
each value of N , the algorithms were run 100 times using randomly selected sets of N
matching points. The average error (point – epipolar line distance) was computed using
all available matched points. The graphs show the average error over the 100 runs for
each value of N . The error shown is the average point-epipolar line distance measured
in pixels.

In the graph annotations the following notation is used.

method 0 represents the unnormalized 8-point algorithm

2:3. THE 8-POINT ALGORITHM 39

Figure 2.2: Statue image An outdoor scene with the epipoles well away from the centre.

method 1 represents the 8-point algorithm with scaling in stage 1. (For an explanation,
see below).

method 2 represents the 8-point algorithm with scaling in stage 2.

method 3 represents the normalized 8-point algorithm (normalization in both stages.

method 4 represents the “optimal” algorithm (minimization of point displacement).

Graph 1 : Effect of Normalization on the Condition Number.

no normalization
with normalization

1000

105

107

109

1011

1013

C
on

di
tio

n
nu

m
be

r

5 10 15 20 25 30

N

House

This graph shows a plot of the base-10 logarithm of the condition number of the linear
equation set in the case of the house images, for varying numbers of points (the x-
axis). The upper curve is without normalization, the lower one with normalization. The
improvement is approximately 108.

Graph 2 : Effect of normalization on the two stages of the algorithm.

40

Figure 2.3: Grenoble Museum The epipoles are close to the image.

No normalization
Normalization stage 1
Normalization stage 2
Normalization both stages

0

2

4

6

8

10

12

A
ve

ra
ge

 E
rr

or

5 10 15 20 25 30 35 40

N

House

This plot shows the effect of normalization in the two stages of the 8-point algorithm.
To explain this, four algorithmic steps may be identified :

Normalization Transformation of the image coordinates using transforms T and T ′.

Solution Finding matrix F by solving a set of linear equations.

Constraint enforcement Replacing F by the closest singular matrix.

Denormalization Replacing F by T ′�FT .

It is possible to take these steps in a different order to show the effect of normalization
on the Solution (stage 1) and Constraint enforcement (stage 2) steps of the algorithm.
Thus, the four curves shown correspond to the following algorithm steps.

2:3. THE 8-POINT ALGORITHM 41

Figure 2.4: Corridor Scene In the corridor scene the epipoles are right in the image.

1. No normalization : Solution – Constraint enforcement.

2. Stage 1 normalization : Normalization – Solution – Denormalization – Constraint
enforcement.

3. Stage 2 normalization : Solution – Normalization – Constraint enforcement – De-
normalization.

4. Both stages of normalization : Normalization – Solution – Constraint enforcement
– Denormalization.

As may be seen, normalization has the greatest effect on stage 1 (the Solution stage),
but normalization for stage 2 has a significant effect as well. The best results are had by
doing normalization in both stages.

Note, how for N = 8 the normalization has no effect on stage 1, since in this case we are
finding the solution to a set of equations, and not a least-squares solution to a redundant
set. This explains why the two pairs of curves show the same results for N = 8.

For these experiments, the house images were used.

Graph 3 : Comparison of normalized and unnormalized 8-point algorithms.

42

Figure 2.5: Calibration Jig In this calibration jig, the matched points were known
extremely accurately.

0

2

4

6

8

10

12

A
ve

ra
ge

 E
rr

or

5 10 15 20 25 30

N

35 40

House

0

5

10

15

20

25

30

A
ve

ra
ge

 E
rr

or

35

0 20 40 60 80 100

N

Statue

0

5

10

15

0 20 40

A
ve

ra
ge

 E
rr

or

60 80 100

N

Museum

0

0.5

1

1.5

2

2.5

0

A
ve

ra
ge

 E
rr

or

20 40 60 80 100

N

Calibration

2:3. THE 8-POINT ALGORITHM 43

0

0.5

1

1.5

2

2.5

3

A
ve

ra
ge

 E
rr

or

3.5

0 20 40 60 80 100

N

Corridor

These set of graphs show the improvement achieved by normalization. The images used
are from left-to-right and top-to-bottom : house, statue, museum, calibration, basement.
Note the differences in Y -scale for the different plots. For some of the images the matched
points were known with extreme accuracy (calibration image, basement scene), whereas
for others, the matches were less accurate (museum image). In all cases the normalized
algorithm performs better than the unnormalized algorithm. In the cases of the calibra-
tion and corridor images the effect is not so great. In the case of the images with less
accurate matches, the advantage of normalization is dramatic.

Graph 4 : Comparison of the 8-point algorithm with the optimal algorithm.

0

0.5

1

1.5

2

2.5

3

A
ve

ra
ge

 E
rr

or

3.5

4

5 10 15 20 25 30

N

35 40

House

0

5

10

15

20

0 20

A
ve

ra
ge

 E
rr

or

40 60 80 100

N

Statue

44

0.5

1

1.5

2

2.5

3

3.5

A
ve

ra
ge

 E
rr

or
4

0 20 40 60 80 100

N

Museum

0

0.1

0.2

0.3

0.4

0.5

0

A
ve

ra
ge

 E
rr

or

20 40 60 80 100

N

Calibration

0

0.5

1

1.5

2

0 20

A
ve

ra
ge

 E
rr

or

40 60 80 100

N

Corridor

This is the same as the previous set of graphs, except that it compares the normalized 8-
point algorithm with the optimal (minimized point displacement) algorithm. In all cases
the normalized 8-point algorithm performs almost as well as the optimal algorithm.

Graph 5 : Isotropic vs. non-isotropic scaling.

0

0.5

1

1.5

2

2.5

3

A
ve

ra
ge

 E
rr

or

3.5

4

5 10 15 20 25 30

N

35 40

Isotropic normalization

Non-isotropic normalization

House

The 8-pt algorithm with isotropic and non-isotropic scaling was compared. The two

2:3. THE 8-POINT ALGORITHM 45

graphs are almost indistinguishable.

Graph 6 : Comparison with minimized epipolar distance

m3 avge
m4 avge
quan avge

0

0.2

0.4

0.6

0.8

1

5

A
ve

ra
ge

 E
rr

or

10 15 20 25 30

N

This graph compares the normalized 8-point algorithm, the optimal algorithm and Long
Quan’s implementation of an iterative algorithm to find minimize the point-epipolar
line distance. In implementing this algorithm Quan was following Luong’s description
([44, 9]). In this case data was gathered for only one run for each value ofN . Nevertheless,
the results seem to be consistent. The normalized 8-point and optimal algorithms perform
best, and the point-epipolar distance algorithm slightly less well. The graphs start with
9 points. Only the optimal algorithm performed well with 8 points (1.2 pixels error), and
the other algorithms were off the graph.

Graph 7 : Comparison with other algorithms

0

0.5

1

1.5

2

2.5

3

3.5

8-point
AZ linear

Optimum
AZ iterative

R
el

at
iv

e
Pe

rf
or

m
an

ce

Calib Corridor Houses

8-point
AZ linear

Optimal
AZ iterative

0

0.5

1

1.5

2

2.5

3

3.5

R
el

at
iv

e
Pe

rf
or

m
an

ce

4

Calib Corridor Houses

This graph compares the normalized 8-point algorithm and the Optimal algorithm with
the results of two algorithms supplied by Andrew Zisserman and Paul Beardsley. These
are respectively the algorithms referred to as “Approximate Calibration” and “Iterative
Linear” in section 2:3.6. The left hand graph shows average error, and the right hand
graph shows RMS error. With results supplied by other researchers, such thorough

46

testing was not possible. However, for each of the three data sets indicated one test was
carried out with number of points N > 20, but less than half the points. The number of
points N was different for each of the data sets. Except for one case, the results of the
various algorithms were comparable.

Note that the algorithm was run on one set of points and the resulting matrix F evaluated
with another set of points. For this reason by chance, the so-called “optimal” algorithm
did not do so well on one of the data sets as the iterative linear test. However, there was
no case in which the optimal algorithm was beaten when evaluated against the points
used to run this algorithm. This justifies its use in these experiments as a benchmark
algorithm, representing almost the best results possible.

Graph 8 : Reconstruction Error.

Unnormalized 8-point algorithm

Normalized 8-point algorithm

0

1

2

3

4

5

0 0.05

E
rr

or

0.1 0.15
Noise

Normalized 8-point algorithm

Optimal algorithm

0

0.25

0.5

0.75

0 0.05 0.1 0.15

E
rr

or

Noise

To test the performance of the various algorithms for reconstruction accuracy experi-
ments were done to measure the degradation of accuracy as noise levels increase. The
Calibration images (2.5) were used for this purpose. Since reconstruction error is most
appropriately measured in an Euclidean frame, a Euclidean model was built for the cal-
ibration cube, initially by inspection and then by refinement using the image data. This
model served as ground truth. Next, the image coordinates were corrected (by an average
of 0.02 pixels) to agree exactly with the Euclidean model. Varying amounts of zero-mean
gaussian noise were added to the image coordinates, a projective reconstruction was
carried out, and a projective transformation was computed to bring the projective recon-
struction most nearly into agreement with the model. The average 3D displacement of
the reconstructed points from the model was measured. The plotted values are the result
average over all points (128 in all) for 10 trials. The reconstruction error is measured in
units equal to the length of the side of one of the black squares in the image.

At the left are the results of three algorithms : at the top is unnormalized 8-point
algorithm, whereas at the bottom almost overlapped are the results of the normalized 8-
point algorithm and the optimal algorithm. In the right hand graph, only the normalized
8-point and optimal algorithms are shown. The result shows that the results of the
normalized 8-point algorithm is almost indistinguishable from the optimal algorithm,
but that the unnormalized algorithm performs very much worse.

2:4. TRIANGULATION 47

2:3.7 Conclusions

With normalization of the coordinates in order to improve the condition of the problem,
the 8-point algorithm performs almost as well as the best iterative algorithms. On the
other hand, it runs about 20 times faster and is far easier to code. There seems to be little
advantage in choosing the non-isotropic scaling scheme for the normalization transform,
since the simpler isotropic scaling performs just as well. Without normalization of the
inputs, however, the 8-point algorithm performs quite badly, often with errors as large
as 10 pixels, which makes it virtually useless. It would seem to follow that the reason
that other researchers have had such poor results with the 8-point algorithm is that they
have not carried out any preliminary normalization step as discussed here.

2:4 Triangulation

In this section, we consider the problem of finding the position of a point in space given
its position in two images taken with cameras with known calibration and pose. This
is the second main step of the projective reconstruction algorithm outlined in section
2:2, after the camera matrices have been found by factoring the fundamental matrix.
Finding the point locations requires the intersection of two known rays in space, and
is commonly known as triangulation. In the absence of noise, this problem is trivial.
When noise is present, the two rays will not generally meet, in which case it is necessary
to find the best point of intersection. This problem is especially critical in affine and
projective reconstruction in which there is no meaningful metric information about the
object space. It is desirable to find a triangulation method that is invariant to projective
transformations of space. This section solves that problem by assuming a gaussian noise
model for perturbation of the image coordinates. The triangulation problem then may
be formulated as a least-squares minimization problem. In this section a non-iterative
solution is given that finds a global minimum. It is shown that in certain configurations,
local minima occur, which are avoided by the new method. Extensive comparisons of the
new method with several other methods show that it consistently gives superior results.

We suppose that a point x in R3 is visible in two images. The two camera matrices P and
P ′ corresponding to the two images are supposed known. Let u and u′ be projections
of the point x in the two images. From this data, the two rays in space corresponding
to the two image points may easily be computed. The triangulation problem is to find
the intersection of the two lines in space. At first sight this is a trivial problem, since
intersecting two lines in space does not present significant difficulties. Unfortunately, in
the presence of noise these rays can not be guaranteed to cross, and we need to find the
best solution under some assumed noise model.

A commonly suggested method ([4]) is to choose the mid-point of the common perpendic-
ular to the two rays (the mid-point method). Perhaps a better choice would be to divide
the common perpendicular in proportion to the distance from the two camera centres,
since this would more closely equalize the angular error. Nevertheless, this method will
not give optimal results, because of various approximations (for instance the angles will
not be precisely equal in the two cases). In the case of projective reconstruction, or affine
reconstruction however, the camera matrices, will be known in a projective frame of ref-
erence, in which concepts such as common perpendicular, or mid-point (in the projective
case) have no sense. In this case, the simple mid-point method here will not work.

48

The importance of a good method for triangulation is clearly shown by Beardsley et. al.
who demonstrate that the mid-point method gives bad results. In [4, 5] they suggest
an alternative method based on “quasi-Euclidean” reconstruction. In this method, an
approximation to the correct Euclidean frame is selected and the mid-point method is
carried out in this frame. The disadvantage of this method is that an approximate
calibration of the camera is needed. It is also clearly sub-optimal.

In this section a new algorithm is described that gives an optimal global solution to
the triangulation problem, equally valid in both the affine and projective reconstruction
cases. The solution relies on the concepts of epipolar correspondence and the funda-
mental matrix ([12]). The algorithm is non-iterative and simple in concept, relying on
techniques of elementary calculus to minimize the chosen cost function. It is also moder-
ate in computation requirements. In a series of experiments, the algorithm is extensively
tested against many other methods of triangulation, and found to give consistent superior
performance. No knowledge of camera calibration is needed.

The triangulation problem is a small cog in the machinery of computer vision, but in
many applications of scene reconstruction it is a critical one, on which ultimate accuracy
depends ([4]).

2:4.1 Transformational Invariance

In the last few years, there has been considerable interest in the subject of affine or
projective reconstruction ([12, 22, 40, 48, 64, 54, 61]). In such reconstruction methods, a
3D scene is to be reconstructed up to an unknown transformation from the given class.
Normally, in such a situation, instead of knowing the correct pair of camera matrices P
and P ′, one has a pair PH−1 and P ′H−1 where H is an unknown transformation.

For instance, in the method of projective reconstruction given in section 2:2 one starts
with a set of image point correspondences ui ↔ u′i. From these correspondences, one
can compute the fundamental matrix F , and hence a pair of camera matrices P̂ and P̂ ′.
The pair of camera matrices differ from the true ones by an unknown transformation
H , and P̂ is normalized so that P̂ = [I | 0]. Finally, the 3D space points can be
computed by triangulation. If desired, the true Euclidean reconstruction of the scene
may then be accomplished by the use of ground control points to determine the unknown
transformation, H , and hence the true camera matrices, P and P ′. Similarly, in a later
section (section 5:2) of this report a projective reconstruction algorithm is given that does
a projective reconstruction of points or lines seen in three views, normalized so that the
first camera matrix has the form [I | 0]. In this case, an initial projective reconstruction
may be transformed to a Euclidean reconstruction under the assumption that the images
are taken all with the same camera, as described in section 6:3.1 of this report.

A desirable feature of the method of triangulation used is that it should be invariant under
transformations of the appropriate class. Thus, denote by τ a triangulation method used
to compute a 3D space point x from a point correspondence u↔ u′ and a pair of camera
matrices P and P ′. We write

x = τ(u,u′, P, P ′)

The triangulation is said to be invariant under a transformation H if

τ(u,u′, P, P ′) = H−1τ(u,u′, PH−1, P ′H−1)

2:4. TRIANGULATION 49

This means that triangulation using the transformed cameras results in the transformed
point. If the camera matrices are known only up to an affine (or projective) transforma-
tion, then it is clearly desirable to use an affine (resp. projective) invariant triangulation
method to compute the 3D space points.

2:4.2 The Minimization Criterion

We assume that the camera matrices, and hence the fundamental matrix, are know
exactly, or at least with great accuracy compared with a pair of matching points in the
two images. The two rays corresponding to a matching pair of points u ↔ u′ will meet
in space if and only if the points satisfy the familiar relationship

u′�Fu = 0 . (2.21)

It is clear, particularly for projective reconstruction, that it is inappropriate to minimize
errors in the 3D projective space, P3. For instance, the method that finds the midpoint
of the common perpendicular to the two rays in space is not suitable for projective
reconstruction, since concepts such as distance and perpendicularity are not valid in the
context of projective geometry. In fact, in projective reconstruction, this method will give
different results depending on which particular projective reconstruction is considered –
the method is not projective-invariant.

Normally, errors occur not in placement of a feature in space, but in its location in the
two images, due to digitization errors, or the exact identification of a feature in the image.
It is common to assume that features in the images are subject to Gaussian noise which
displaces the feature from its correct location in the image. We assume that noise model
in this report.

A typical observation consists of a noisy point correspondence u ↔ u′ which does not
in general satisfy the epipolar constraint (2.21). In reality, the correct values of the
corresponding image points should be points û↔ û′ lying close to the measured points
u ↔ u′ and satisfying the equation û′�F û exactly. We seek the points û and û′ that
minimize the function

d(u, û)2 + d(u′, û′)2 , (2.22)

where d(∗, ∗) represents Euclidean distance, subject to the epipolar constraint

û′�F û = 0 .

Assuming a Gaussian error distribution, the points û′ and û are the most likely values
for true image point correspondences. Once û′ and û are found, the point x may be
found by any triangulation method, since the corresponding rays will meet precisely in
space.

2:4.3 An Optimal Method of Triangulation.

In this section, we describe a method of triangulation that finds the global minimum of
the cost function (2.22) using a non-iterative algorithm. If the gaussian noise model can
be assumed to be correct, this triangulation method is then provably optimal. This new
method will be referred to as the Polynomial method, since it requires the solution of
a sixth order polynomial.

50

Reformulation of the Minimization Problem

Given a measured correspondence u↔ u′, we seek a pair of points û′ and û that minimize
the sum of squared distances (2.22) subject to the epipolar constraint û′�F û = 0.

Any pair of points satisfying the epipolar constraint must lie on a pair of corresponding
epipolar lines in the two images. Thus, in particular, the optimum point û lies on an
epipolar line λ and û′ lies on the corresponding epipolar line λ′. On the other hand, any
other pair of points lying on the lines λ′ and λ′ will also satisfy the epipolar constraint.
This is true in particular for the point ū on λ lying closest to the measured point u, and
the correspondingly defined point ū′ on λ′. Of all pairs of points on the lines λ and λ′,
the points ū and ū′ minimize the squared distance sum (2.22). It follows that û′ = ū′

and û = ū, where ū and ū′ are defined with respect to a pair of matching epipolar lines
λ and λ′. Consequently, we may write d(u, û) = d(u, λ), where d(u, λ) represents the
perpendicular distance from the point u to the line λ. A similar expression holds for
d(u′, û′).

In view of the previous paragraph, we may formulate the minimization problem differently
as follows. We seek to minimize

d(u, λ)2 + d(u′, λ′)2 (2.23)

where λ and λ′ range over all choices of corresponding epipolar lines. The point û is then
the closest point on the line λ to the point u and the point û′ is similarly defined.

Our strategy for minimizing (2.23) is as follows

1. Parametrize the pencil of epipolar lines in the first image by a parameter t. Thus
an epipolar line in the first image may be written as λ(t).

2. Using the fundamental matrix F , compute the corresponding epipolar line λ′(t) in
the second image.

3. Express the distance function d(u, λ(t))2 + d(u′, λ′(t))2 explicitly as a function of
t.

4. Find the value of t that minimizes this function.

In this way, the problem is reduced to that of finding the minimum of a function of a single
variable, t. It will be seen that for a suitable parametrization of the pencil of epipolar
lines the distance function is a rational polynomial function of t. Using techniques of
elementary calculus, the minimization problem reduces to finding the real roots of a
polynomial of degree 6.

Details of Minimization.

If both of the image points correspond with the epipoles, then the point in space lies
on the line joining the camera centres. In this case it is impossible to determine the
position of the point in space. If only one of the corresponding point lies at an epipole,
then we conclude that the point in space must coincide with the other camera centre.
Consequently, we assume that neither of the two image points u and u′ corresponds with
an epipole.

2:4. TRIANGULATION 51

In this case, we may simplify the analysis by applying a rigid transformation to each
image in order to place both points u and u′ at the origin, (0, 0, 1)� in homogeneous
coordinates. Furthermore, the epipoles may be placed on the x-axis at points (1, 0, f)�

and (1, 0, f ′)� respectively. A value f equal to 0 means that the epipole is at infinity.
Applying these two rigid transforms has no effect on the sum-of-squares distance function
(2.22), and hence does not change the minimization problem.

Thus, in future we assume that in homogeneous coordinates, u = u′ = (0, 0, 1)� and that
the two epipoles are at points (1, 0, f)� and (1, 0, f ′)�. In this case, since F (1, 0, f)� =
(1, 0, f ′)F = 0, the fundamental matrix has a special form

F =

 ff ′d −f ′c −f ′d
−fb a b
−fd c d

 .

Consider an epipolar line in the first image passing through the point (0, t, 1)� (still in
homogeneous coordinates) and the epipole (1, 0, f)�. We denote this epipolar line by
λ(t). The vector representing this line is given by the cross product (0, t, 1)× (1, 0, f) =
(tf, 1,−t), so the sqared distance from the line to the origin is

d(u, λ(t))2 =
t2

1 + (tf)2
.

Using the fundamental matrix to find the corresponding epipolar line in the other image,
we see that

λ′(t) = F (0, t, 1)� = (−f ′(ct+ d), at+ b, ct+ d)� .

This is the representation of the line λ′(t) as a homogeneous vector. The squared distance
of this line from the origin is equal to

d(u′, λ′(t))2 =
(ct+ d)2

(at+ b)2 + f ′2(ct+ d)2
.

The total squared distance is therefore given by

s(t) =
t2

1 + f2t2
+

(ct+ d)2

(at+ b)2 + f ′2(ct+ d)2
. (2.24)

Our task is to find the minimum of this function.

We may find the minimum using techniques of elementary calculus, as follows. We
compute the derivative

s′(t) =
2t

(1 + f2t2)2
− 2(ad− bc)(at+ b)(ct+ d)
((at+ b)2 + f ′2(ct+ d)2)2

. (2.25)

Maxima and minima of s(t) will occur when s′(t) = 0. Collecting the two terms in s′(t)
over a common denominator, and equating the numerator to 0 gives a condition

f(t) = t((at+ b)2 + f ′2(ct+ d)2)2

−(ad− bc)(1 + f2t2)2(at+ b)(ct+ d)
= 0 . (2.26)

52

-1.5 -1 -0.5 0.5 1 1.5

0.8

1.2

1.4

1.6

Figure 2.6: Example of a cost function with three minima.

The minima and maxima of s(t) will occur at the roots of this polynomial. This is a
polynomial of degree 6, which may have up to 6 real roots, corresponding to 3 minima
and 3 maxima of the function s(t). The absolute minimum of the function s(t) may be
found by finding the roots of f(t) and evaluating the function s(t) given by (2.24) at
each of the real roots. More simply, one checks the value of s(t) at the real part of each
root (complex or real) of f(t), which saves the trouble of determining if a root is real
or complex. One should also check the asymptotic value of s(t) as t → ∞ to see if the
minimum distance occurs when t =∞, corresponding to an epipolar line −fu = 1 in the
first image.

Local Minima

The fact that f(t) in (2.26) has degree 6 means that s(t) may have as many as three
minima. In fact, this is indeed possible, as the following case shows. Setting f = f ′ = 1
and

F =

 3 −4 −3
−2 3 2
−3 4 3

gives a function

s(t) =
t2

1 + t2
+

(4t+ 3)2

(3t+ 2)2 + (4t+ 3)2

with graph as shown in Fig 2.64 The three minima are clearly shown.

As a second example, we consider the case where f = f ′ = 1, and

F =

 0 −1 0
1 2 −1
0 1 0

 .

4In this graph and also Fig 2.7 we make the substitution t = tan(θ) and plot for θ in the range
−π/2 ≤ θ ≤ π/2, so as to show the whole infinite range or t.

2:4. TRIANGULATION 53

-1.5 -1 -0.5 0.5 1 1.5

0.2

0.4

0.6

0.8

1

1.2

Figure 2.7: This is the cost function for a perfect point match, which nevertheless has
two minima

In this case, the function s(t) is given by

s(t) =
t2

t2 + 1
+

t2

t2 + (2t− 1)2

In this case, both terms of the cost function vanish for a value of t = 0, which means
that the corresponding points u and u′ exactly satisfy the epipolar constraint. This can
be verified by observing that u′�Fu = 0. Thus the two points are exactly matched. A
graph of the cost function s(t) is shown in Fig 2.7. One sees apart from the absolute
minimum at t = 0 there is also a local minimum at t = 1. Thus, even in the case of
perfect matches local minima may occur. This example shows that an algorithm that
attempts to minimize the cost function (2.22), or equivalently (2.23) by an iterative
search beginning from an arbitrary initial point is in danger of finding a local minimum,
even in the case of perfect point matches.

2:4.4 Other Triangulation Methods

In this section, we discuss several other triangulation methods that will be compared
with the polynomial method.

Linear Triangulation

The linear triangulation method
is the most common one, described for instance in [22]. Suppose u = Px. We write in
homogeneous coordinates u = w(u, v, 1)�, where (u, v) are the observed point coordinates
and w is an unknown scale factor. Now, denoting by pi� the i-th row of the matrix P ,
this equation may be written as follows :

wu = p1
�x , wv = p2

�x , w = p3
�x .

54

Eliminating w using the third equation, we arrive at

up3
�x = p1

�x
vp3

�x = p2
�x

(2.27)

From two views, we obtain a total of 4 linear equations in the coordinates of the x, which
may be written in the form Ax = 0 for a suitable 4×4 matrix, A. These equations define
x only up to an indeterminant scale factor, and we seek a non-zero solution for x. Of
course, with noisy data, the equations will not satisfied precisely, and we seek a best
solution.

The Linear-Eigen method. There are many ways to solve for x to satisfy Ax = 0.
In one popular method, one finds x to minimize ||Ax|| subject to the condition ||x|| = 1.
The solution is the unit eigenvector corresponding to the smallest eigenvector of the
matrix A�A. This problem may be solved using the Singular Value Decomposition, or
Jacobi’s method for finding eigenvalues of symmetric matrices ([55, 1]).

The Linear-LS method. By setting x = (x, y, z, 1)� one reduces the set of homoge-
neous equations, Ax = 0 to a set of 4 non- homogeneous equations in 3 unknowns. One
can find a least-squares solution to this problem by the method of pseudo-inverses, or by
using the Singular Value Decomposition [55, 1].

Discussion. These two methods are quite similar, but in fact have quite different
properties in the presence of noise. The Linear-LS method assumes that the solution
point x is not at infinity, for otherwise we could not assume that x = (x, y, z, 1)�.
This is a disadvantage of this method when we are seeking to carry out a projective
reconstruction, when reconstructed points may lie on the plane at infinity. On the other
hand, neither of these two linear methods is quite suitable for projective reconstruction,
since they are non projective-invariant. To see this, suppose that camera matrices P and
P ′ are replaced by PH−1 and P ′H−1. On sees that in this case the matrix of equations,
A becomes AH−1. A point x such that Ax = ε for the original problem corresponds to a
point Hx satisfying (AH−1)(Hx) = ε for the transformed problem. Thus, there is a one-
to-one correspondence between points x and Hx giving the same error. However, neither
the condition ||x|| = 1 nor the condition x = (x, y, z, 1)� is invariant under application
of the projective transformation H . Thus, in general the point x solving the original
problem will not correspond to a solution Hx for the transformed problem.

For affine transformations, on the other hand, the situation is different. In fact, al-
though the condition ||x|| = 1 is not preserved under affine transformation, the condi-
tion x = (x, y, z, 1)� is preserved, since for an affine transformation, H(x, y, z, 1)� =
(x′, y′, z′, 1)�. This means that there is a one-to-one correspondence between a vector
x = (x, y, z, 1)� such that A(x, y, z, 1)� = ε and the vector Hx = (x′, y′, z′, 1)� such
that (AH−1)(x′, y′, z′, 1)� = ε. The error is the same for corresponding points. Thus,
the points that minimize the error ||ε|| correspond as well. Hence, the method Linear-
LS is affine-invariant, whereas the method Linear-Eigen is not. These conclusions are
confirmed by the experimental results.

2:4. TRIANGULATION 55

Iterative Linear Methods.

A cause of inaccuracy in the two methods Linear-LS and Linear-Eigen is that the value
being minimized ||Ax|| has no geometric meaning, and certainly does not correspond to
the cost function (2.22). In addition, multiplying each of the equations (rows of A) by
some weight will change the solution. The idea of the iterative linear method is to change
the weights of the linear equations adaptively so that the weighted equations correspond
to the errors in the image coordinate measurements.

In particular, consider the first of the equations (2.27). In general, the point x we find
will not satisfy this equation exactly – rather, there will be an error ε = up3

�x− p1
�x.

What we really want to minimize however, is the difference between the measured image
coordinate value u and the projection of x, which is given by p1

�x/p3
�x. Specifically,

we wish to minimize ε′ = ε/p3
�x = u − p1

�x/p3
�x. This means that if the equation

had been weighted by the factor 1/w where w = p3
�x, then the resulting error would

have been precisely what we wanted to minimize. The same weight 1/w is the correct one
to apply to the second equation of (2.27). For a second image, the correct weight would
be 1/w′ where w′ = p′3�x. Of course, we can not weight the equations in this manner
because the weights depend on the value of x which we do not know until after we have
solved the equations. Therefore, we proceed iteratively to adapt the weights. We begin
by setting w0 = w′0 = 1, and we solve the system of equations to find a solution x0.
This is precisely the solution found by the linear method Linear-Eigen or Linear-LS,
whichever is being used. Having found x0 we may compute the weights.

We repeat this process several times, at the i-th step multiplying the equations (2.27) for
the first view by 1/wi where wi = p3xi−1 and the equations for the second view by 1/w′i
where w′i = p

′
3xi−1 using the solution xi−1 found in the previous iteration. Within a few

iterations this process will converge (one hopes) in which case we will have xi = xi−1

and so wi = p3
�xi. The error (for the first equation of (2.27) for example) will be

εi = u− p1
�xi/p3

�xi which is precisely the error in image measurements as in (2.22).

This method may be applied to either the Linear-Eigen or Linear-LS method. The
corresponding methods will be called Iterative-Eigen and Iterative-LS respectively.
The advantage of this method over other iterative least-squares minimization methods
such as a Levenberg-Marquardt (LM) iteration ([55]) is that it is very simple to program.
In fact, they require only a trivial adaptation to the linear methods. There is no need for
any separate initialization method, as is often required by LM. Furthermore the decision
on when to stop iterating (convergence) is simple. One stops when the change in the
weights is small. Exactly when to stop is not critical, since the change in the reconstructed
points x is not very sensitive to small changes in the weights. The disadvantage of this
method is that it sometimes fails to converge. In unstable situations, such as when the
points are near the epipoles, this occurs sufficiently often to be a problem (perhaps for
5% of the time). If this method is to be used in such unstable circumstances, then a fall-
back method is necessary. In the experiments, we have used the optimal Polynomial
method as a backup in case convergence has not occurred within 10 iterations. In this
way the statistics are not negatively biased by occasional very bad results, due to non-
convergence.

Despite the similarities of the properties of the Iterative-LS method with an direct non-
linear least squares minimization of the goal function 2.22, it is not identical. Because the
Iterative-LS method separates the two steps of computing x and the weights w and w′,
the result is slightly different. In fact the three methods Iterative-LS, Iterative-Eigen

56

and LM are distinct. In particular, the methods Iterative-LS and Iterative-Eigen
are not projective-invariant, though experiments show that they are quite insensitive to
projective transformation. Of course, Iterative-LS is affine-invariant, just as Linear-
LS is.

Experiments show that the iterative methods Iterative-LS and Iterative-Eigen per-
form substantially better than the corresponding non- iterative linear methods.

Mid-point method

A commonly suggested method for triangulation is to find the mid-point of the com-
mon perpendicular to the two rays corresponding to the matched points. This method
is relatively easily to compute using a linear algorithm. However, ease of computation
is almost its only virtue. This method is neither affine nor projective invariant, since
concepts such as perpendicular or mid-point are not affine concepts. It is seen to behave
very poorly indeed under projective and affine transformation, and is by far the worst
of the methods considered here in this regard. For the record, we outline an algorithm
to compute this mid-point. Let P = [M | −Mc] be a decomposition of the first camera

matrix. The centre of the camera is
(
c
1

)
in homogeneous coordinates. Furthermore,

the point at infinity that maps to a point u in the image is given by
(
M−1u
0

)
. There-

fore, any point on the ray mapping to u may be written in the form
(
c+ αM−1u

1

)

or in non-homogeneous coordinates, c+αM−1u, for some α. Given two images, the two
rays must meet in space, which leads to an equation αM−1u− α′M ′−1u′ = c′ − c. This
gives three equations in two unknowns (the values of α and α′) which we may solve using
linear least-squares methods. This minimizes the squared distance between the two rays.
The mid point between the two rays is then given by (c+ αM−1u+ c′ + α′M ′−1u)/2.

Minimizing the sum of the magnitudes of distances

Instead of minimizing the square sum of image errors, it is possible to adapt the poly-
nomial method to minimize the sum of absolute values of the distances, instead of the
squares of distances. This method will be called Poly-Abs.

The quantity to be minimized is d(u, λ)+ d(u
′
, λ
′
) which, as a function of t, is expressed

by

s2(t) =
|t|√

1 + f2t2
+

|ct+ d|√
(at+ b)2 + f ′2(ct+ d)2

.

The first derivative is of the form

s′2(t) = = ω1
1

(1 + f2t2)3/2

−ω2
(ad− bc)(at+ b)

((at+ b)2 + f ′2(ct+ d)2)3/2

where ω1 and ω2 are equal to −1 or 1, depending on the signs of t and ct+d respectively.

2:4. TRIANGULATION 57

Setting the derivative equal to zero, separating the two terms on opposite sides of the
equal sign and squaring to remove the square roots gives

1
(1 + f2t2)3

=
(ad− bc)2(at+ b)2

((at+ b)2 + f ′2(ct+ d)2)3

which finally leads to a polynomial of degree 8 in t. We evaluate s2(t) at the roots of
this polynomial to find the global minimum of s2(t).

2:4.5 Experimental Evaluation of Triangulation Methods

A large number of experiments were carried out to evaluate the different methods de-
scribed above. We concentrated on two configurations.

Configuration 1 The first configuration was meant to simulate a situation similar to a
robot moving down a corridor, looking straight ahead. This configuration is shown in the
left part of Fig 2.8. In this case, the two epipoles are close to the centre of the images.
For points lying on the line joining the camera centres depth can not be determined,
and for points close to this line, reconstruction becomes difficult. Simulated experiments
were carried out for points at several distances in front of the front camera.

Numerical values we used are as follows:

• The distance between the two cameras is 1 unit.

• The radius of the sphere of observed points is 0.05 units.

• The distance between the center of the point sphere and the projection center of
the second camera is chosen as 0.15 or 0.55 units. The center of the sphere lies on
the baseline of the two cameras.

• The cameras have the same calibration matrix

K =

 700 0 0

0 700 0
0 0 1

Configuration 2 In the other configuration, the pair of cameras were almost parallel,
as in an aerial imaging situation. The points were assumed to be approximately equidis-
tant from both cameras, with several different distances being tried. This configuration
is shown in the right-hand part of figure 2.8). This was a fairly benign configuration for
which most of the methods worked relatively well

In each set of experiments, 50 points were chosen at random in the common field of view.
For each of several noise levels varying from 1 to 10 pixels (in a 700× 700 image), each
point was reconstructed 100 times, with different instances of noise chosen from a gaussian
random variable with the given standard deviation (noise level). For each reconstructed
point both the 3D reconstruction error, and the 2D residual error (after reprojection of
the point) were measured. The errors shown are the average errors. Median errors were
also computed. In this latter case the graphs (not shown in this report) had the same

58

x

x
x

xx
xx

x

x
x x

x

x

x
x x

x x

x

x x

x

Camera 1 Camera 2

x

x
x

x
x x

x
x

x
x

x
x

x x
x

x

x
x x

x
x

x

Camera 1

Camera 2

Epipoles

Figure 2.8: The two simulation configurations.

general form and led to the same conclusions. However, they were a little smoother than
the graphs shown here, being less sensitive to the occasional gross error.

To measure the invariance to transformation, an affine or projective transformation was
applied to each camera matrix. The projective and affine transformations were chosen
so that one of the camera matrices was of the form [I | 0]. This is the normalized form
of a camera matrix used in the projective reconstruction method of [22]. It represents a
significant distortion, since the actual camera matrix was (by construction) of the form
[M | 0], where M was a diagonal matrix diag(700, 700, 1).

The most unstable situation is Configuration 1, in which the epipoles are in the centre
of the two images, and points lie close to the epipoles. Since this situation gave the most
severe test to the algorithms, we will give the results for that configuration. Results of
two cases are presented. In one case the points are at a distance of 0.15 units in front of
the first camera (near points case) and in the other case, they are at 0.55 units distance
(far points case). The results will be presented in the form of graphs with a commentary
for each graph. The measured error is denoted either as 2D error (meaning error of mea-
sured compared with the reprojected points), or 3D error, meaning the error compared
with the correct values of the points in space. In addition, we talk of euclidean, affine
and projective reconstruction errors. For affine or projective reconstruction, the camera
matrices were transformed by a transformation of the given sort, the triangulation was
carried out, and finally the reconstructed points were retransformed into the original
frame to compare with the correct values. For euclidean reconstruction, no transforma-
tion was carried out. Every data point in the graph is the result of 5000 trials, and
expresses the RMS or mean value over all the trials. The horizontal axis of each graph
is the noise level (between 0 and 10 pixels RMS in each axial direction), and the vertical
axis measures the error, in pixels for 2D error, or in space units for 3D error.

2:4. TRIANGULATION 59

0

2

4

6

8

10

5 10 15 20 25

Number of points
E

rr
or

no skew/square pixels/
known principal point

Graph 1 : 3D error for Euclidean reconstruction (near points). This graph shows
all methods. All perform almost equally. Marginally the best results are given by Mid-
point, Linear-LS and Iterative-LS, which are almost indistinguishable. The Polynomial
method performs marginally worse than the others. It is designed to minimize 2D error,
which explains why optimal in this regard, it is not quite optimal for 3D errors. Euclidean
reconstruction is the only instance in which Mid-point performed even marginally well,
and the only case in which Polynomial and Poly-Abs were beaten.

0

2

4

6

8

10

5 10 15 20 25

Number of points

E
rr

or

known internal calibration

Graph 2 : 3D error for Euclidean reconstruction (far points). The configuration
is the same as for Graph 1 except that the points are further from both cameras. The
curves from the bottom are Linear-LS, Poly-Abs and then Polynomial and Linear-Eigen
which cross each other. The curves for Mid-point and Iterative-LS are identical with
Linear-LS, and only one curve is shown. The same is true of Linear-Eigen and Iterative-
Eigen.

60

Graph 3 : 2D error for Euclidean reconstruction (near points) The configuration
is the same as for Graph 1 , except that the average (not RMS) 2D error is measured.
Of course Poly-Abs performs best (since it is optimized for this task) but Polynomial,
Iterative-LS and Iterative-Eigen are almost indistinguishable. The three very bad per-
formers are Linear-Eigen, Linear-LS and Mid-Point. The maximum Y-scale is 120 pix-
els. This graph shows that 2D error and 3D error are not well correlated, since despite
large 2D errors, these methods perform well in terms of 3D error.

Graph 4 : Comparison of Euclidean (lower curve) and Projective 2D errors.
The method shown is Iterative-Eigen. The graph shows that this method is almost pro-
jective invariant (that is the two curves are almost the same). This would be an excellent
method, except for its failure to converge in very unstable situations (about 1% of trials
with noise above 2 pixels). The non-converging cases are ignored in this graph. In cases
where the points are not near the epipoles non-convergence is not a problem. The method
Iterative-LS (not shown) performs similarly, but just slightly worse, whereas Polynomial
is exactly projective-invariant (the two curves are superimposed).

2:4. TRIANGULATION 61

Graph 5 : 2D error for Projective reconstruction (near points). This is the case
for which all methods performed well in the Euclidean case. This graph shows the results
for methods (from the bottom) Polynomial, Iterative-Eigen, and Iterative-LS. The method
Poly-Abs (not shown) performed almost identically with Polynomial. This graph shows
that Polynomial, or Poly-Abs is the best method for projective reconstruction, whereas
Iterative-Eigen and Iterative-LS (except for occasional non-convergence) perform almost
as well. Full Y-scale is 20 pixels.

Graph 6 : 2D error for Projective reconstruction (near points), continued. This
shows the average (not RMS) error, to mitigate the effect of outliers. The graphs shown
are (from the bottom), Poly-Abs, Linear-Eigen, Linear-LS and Mid-point. Full Y-scale
is 400 pixels. This shows how serious a problem non-invariance under transforms can
be.

62

Graph 7 : 3D error for Projective reconstruction (near points). This is the same
as Graph 5 except that we show the 3D error. Poly-Abs performs marginally better than
Polynomial. Then follow Iterative-Eigen (except that it fails for noise level of 10 pixels)
and Iterative-LS. Full Y-scale is 0.5 units.

Graph 8 : 3D error for Projective reconstruction (near points), continued. The
same as Graph 7 for the less well performing methods. From the bottom, are shown Poly-
Abs (for reference), Linear-Eigen, Linear-LS and Mid-point (going off scale for noise of
1 pixel). Full Y-scale is 1.0 units.

2:4. TRIANGULATION 63

Graph 9 : Affine Invariance. The three curves shown are from the bottom Iterative-
Eigen (Euclidean) Iterative-LS (Euclidean and Affine superimposed) and Iterative-Eigen
(Affine). Thus, as predicted by theory, the Iterative-LS method is precisely affine-invariant,
but Iterative-Eigen is not (but almost). Once more we remark that except for occasional
non-convergence, these would be good methods.

2:4.6 Evaluation with real images.

The algorithms were also carried out with the pair of real images shown in Figures 2.9.
These images were the images used for one set of experiments in [4].

Figure 2.9: Pair of images used for reconstruction experiments, showing matching epipo-
lar lines.

The goal of these experiments was to determine how the triangulation method effects
the accuracy of reconstruction. Since it makes sense to measure the accuracy of recon-
struction in a Euclidean frame where distance has a meaning, a close approximation to
a correct Euclidean model for the object was estimated by eye and refined using the
measured image locations of the corners of the dark squares. The Euclidean model so
obtained was used as ground truth.

64

We desired to measure how the accuracy of the reconstruction varies with noise. For
this reason, the measured pixel locations were corrected to correspond exactly to the
Euclidean model. This involved correcting each point coordinate by an average of 0.02
pixels. The correction was so small, because of the very great accuracy of the provided
matched points. At this stage we had a model and a set of matched points corresponding
exactly to the model. Next, a projective reconstruction of the points was computed by
the method of [22, 29], and a projective transform H was computed that brought the
projective reconstruction into agreement with the Euclidean model. Next, controlled
zero-mean Gaussian noise was introduced into the point coordinates, triangulation was
carried out in the projective frame, the transformation H was applied, and the error was
measured in the Euclidean frame. Graph 10 shows the results of this experiment for two
triangulation methods. It clearly shows that the optimal method gives superior recon-
struction results. Note that for these experiments, the projective frame was computed
only once, with noiseless data, but triangulation was carried out for data with added
noise. This was done to separate the effect of noise on the computation of the projective
frame from the effect of noise in the triangulation process. The graph shows the average
reconstruction error over all points in 10 separate runs at each chosen noise level.

0

0.1

0.2

0.3

0.4

0.5

0.6

R
ec

on
st

ru
ct

io
n

E
rr

or

0.05 0.1 0.15

Noise

0

Graph 10 : Reconstruction Error This graph shows the reconstruction error for the
Mid-point (above) and Polynomial methods. On the horizontal axis is the noise, on the
vertical axis the reconstruction error. The units for reconstruction error are relative to
a unit distance equal to the side of one of the dark squares in the image. The meth-
ods Linear-LS, Linear-Eigen, Iterative-LS and Iterative-Eigen gave results close to the
Polynomial method. Even for the best method the error is large for higher noise levels,
because there is little movement between the images. However, for the actual coordinate
error in the original matched points (about 0.02 pixels), the error is small.

In this pair of images, the two epipoles are distant from the image. For cases where the
epipoles are close to the images, the results on synthetic images show that the advantage
of the Polynomial methods will be more pronounced.

2:4.7 Timing

The following table shows approximate relative relative speeds for the different algo-
rithms.

2:4. TRIANGULATION 65

Poly 28
Linear-Eigen 6
Iterative-Eigen 10
Mid-point 4
Poly-Abs 60
Linear-LS 4
Iterative-LS 6

Since these are relative measurements only no units appear, but all these algorithms
will process several thousands of points per second. In most applications, speed of com-
putation will not be an issue, since it will be small compared with other parts of the
computation, such as point matching, or camera model computation.

2:4.8 Discussion of Results

All the methods performed relatively for Euclidean reconstruction, as measured in terms
of 3D error. In the case of 2D error, only the methods Polynomial, Poly-Abs, Iterative-
LS and Iterative-Eigen perform acceptably, and the last two have the disadvantage of
occasional non-convergence. The Poly-Abs method seems to give slightly better 3D
error performance than Polynomial but both of these seem to be excellent methods,
not susceptible to serious failure and giving the best overall 3D and 2D error performance.
The only distinct disadvantage is that they are not especially easily generalizable to more
than two images. They are a bit slower that the other methods, but by a factor of 2 or
3 only, which is probably not significant.

The Iterative-LS method is a good method, apart from the problem of occasional
non-convergence. Its advantage is that it is about 3 times as fast as the polynomial
method and is nearly projective-invariant. In general Iterative-LS seems to perform
better than Iterative-Eigen, but not very significantly. The big problem, however, is
non-convergence. This occurs frequently enough in unstable situations to be a definite
problem. If this method is used, there must be a back-up method, such as the polynomial
method to use in case of non-convergence.

We summarize the conclusions for the various methods.

Poly This is the method of choice when there are only two images and time is not an
issue. It is clearly superior to all other methods, except perhaps Poly-Abs. In
fact, it is optimum under the assumption of a gaussian noise model. It is affine and
projective-invariant.

Poly-Abs This is guaranteed to find the global minimum of sum of magnitude of image
error. This may be a better model for image noise, placing less emphasis on larger
errors. It seems to give slightly better 3D error results. Otherwise it does not
behave much differently from Poly and it is affine and projective-invariant.

Mid-point This is not a method that one could recommend in any circumstances. Even
for Euclidean reconstruction it is no better than other linear methods, such as
Linear-LS, which beats it in most other respects. It is neither affine nor projective
invariant.

Linear-Eigen The main advantage is speed and simplicity. It is neither affine nor
projective invariant.

66

Linear-LS This has the advantage of being affine invariant, but should not be used for
projective reconstruction.

Iterative-Eigen This method gives very good results, markedly better than Linear-
Eigen, but not quite as good as Poly. It may easily be generalized to several
images, and is almost projective invariant. The big disadvantage is occasional non-
convergence, which occurs often enough to be a problem. It must be used with a
back-up method in case of non-convergence.

Iterative-LS This method is similar in performance and properties to Linear-Eigen,
but should not be used for projective reconstruction, since it does not handle points
at infinity well. On the other hand it is affine-invariant.

In summary, the Polynomial or Poly-Abs method is the method of choice for almost
all applications. The Poly-Abs method seems to give slightly better 3D reconstruction
results. Both these methods are stable, provably optimal, and relatively easy to code.
For Euclidean reconstruction, the linear methods are a possible alternative choice, as long
as 2D error is not important. However, for affine or projective reconstruction situations,
they may be orders of magnitude inferior.

Acknowledgement

Thanks to Paul Beardsley and Andrew Zisserman for making the calibration images and
data available to me.

Part III

3-Dimensional Projective
Invariants

67

3:1. INVARIANT CONFIGURATIONS IN P3 69

3:1 Invariant Configurations in P3

As has been shown in section 2:2.3, although it is impossible to determine the exact
geometry of a scene from multiple views, it is in general possible to reconstruct the scene
up to an unknown projective transformation of space. Then projective invariants of the
3D structure computed from a projective reconstruction of the scene will have the same
value as if it were constructed from the actual scene. Such projective invariants do not
include such scene properties as angles and length ratios, which are not invariant under
projective transformations of the scene. However, projective invariants do exist for sets
of points and lines in space, and these invariants may be computed from two or more
views. The general strategy of computing these invariants is as follows.

1. Compute the projective reconstruction of the scene, using for instance the method
of Section 2:2.3

2. Compute a projective invariant of the reconstructed scene in P3.

A lower bound on the number of invariants that exist can be obtained by a simple
counting argument. A point in space is described by three parameters (the coordinates
of the points), whereas a line is described by four parameters. On the other hand,
a projective transformation of space is described by 15 parameters (the 15 independent
entries in a 4×4 matrix, defined up to scale). A lower bound on the number of invariants
of a set of points and lines is given by

invariants ≥ 3# points + 4# lines − 15 (3.1)

Thus we see that invariants exist for configurations of 6 points, 4 points + a line, 3 points
+ 2 lines, 2 points + 3 lines or 4 lines.

We will begin by considering configurations of points and lines in 3-space that have a
projective invariant.

3:1.1 Invariants of point sets in P3

In this section some of the projective invariants of point sets in P3will be investigated.
In particular, a projective invariant of a set of six points {xi} in P3will be described.

Given a set of six points {xi} in P3, a coordinate system may be selected in which the
first five points have coordinates (1, 0, 0, 0)�, (0, 1, 0, 0)�, (0, 0, 1, 0)�, (0, 0, 0, 1)� and
(1, 1, 1, 1)�. The coordinates of the sixth point give rise to three independent projective
invariants of the six points.

Another formulation of these invariants is given by selecting x0 and x1 as base points.
Given any other point in P3, not collinear with x0 and x1, there exists a unique plane
passing through that point and the two base points x0 and x1. In this way, the four
points x2,x3,x4 and x5 give rise to four planes all containing the line joining x0 to x1.
From the four planes it is possible to define a cross ratio. In particular, if λ is any line
in space, skew to the line passing through x0 and x1, then λ intersects the four planes at
points p2, p3, p4 and p5. The cross ratio of these four points on the line λ is a projective
invariant of the six original points in P3.5

5Both these definitions of invariants fail if three of the points happen to be collinear, however, this
case will be ignored for the sake of simplicity.

70

This is the analogy one dimension higher of the well known invariant of 5 points in a
plane. Given 5 points xi in P2, an invariant may be defined by selecting one of the points
x0 and joining it to each of the other points in the plane. The cross ratio of the set of
four lines so formed is a projective invariant of the original five points.

There is another way in which invariants may be defined. Five points in general position
in the plane may be used to define a unique conic. The conic may be parametrized by
a parameter θ and this parametrization may be done in such a way that three of the
points have fixed known parameter values, 0, 1 and ∞. The parameters for the other
two points may be denoted by α and β, and these two values are independent invariants
of the set of five points.

An analogous method of describing the invariants of six points in P3also holds. In
particular, given 6 points in P3in general position, there exists a unique twisted cubic c
that passes through the six points ([60]), and c may be parametrized by a parameter θ
in such a way that three of the points receive parameters 0, 1 and∞. The parameters of
the other three points will then be α, β and γ, and these values are projective invariants
of the set of six points.

3:1.2 Line Invariants

In this section, invariants of lines in space will be described. It will be shown that four
lines in the 3-dimensional projective plane, P3give rise to two independent invariants
under collineations of P3. Two different ways of defining invariants will be described,
one algebraic and one geometric.

Computing Lines in Space

To be able to compute invariants of lines in space, it is necessary to be able to com-
pute the locations of the lines in P3from their images in two views. In general, this is
impossible as remarked in [77] unless other information is available. Therefore, it will
be assumed here that the fundamental matrix F corresponding to the two images is
known. This may be derived from a sufficient number of point correspondences, or else
from line correspondences, as shown in section 5:2. From the matrix F , two camera
transformations P and P ′ realizing F can be computed as in section 2:2.3.

Lines in the image plane are represented as 3-vectors. For instance, a vector l = (l,m, n)�

represents the line in the plane given by the equation lu+mv+nw = 0. Similarly, planes
in 3-dimensional space are represented in homogeneous coordinates as a 4-dimensional
vector π = (p, q, r, s)�.

The relationship between lines in the image space and the corresponding plane in object
space is given by the following lemma.

Lemma3.1. Let λ be a line in P3and let the image of λ as taken by a camera with
transformation matrix P be l. The locus of points in P3that are mapped onto the image
line l is a plane, π, passing through the camera centre and containing the line λ. It is
given by the formula π = P�l.

Proof. A point x lies on π if and only if it is mapped to a point on the line l by the action

3:1. INVARIANT CONFIGURATIONS IN P3 71

of the transformation matrix. This means that Px lies on the line l, and so

l�Px = 0 . (3.2)

On the other hand, a point x lies on the plane π if and only if π�x = 0. Comparing this
with (3.2) lead to the conclusion that π� = l�P or π = P�l as required. �

Now, given two images l and l′ of a line λ in space as taken by two cameras with camera
matrices P and P ′, the line λ is the intersection of the planes P�l and P ′�l′. This
line was computed assuming a particular realization of the fundamental matrix F by
P and P ′. As with points, the choice of a different realization of F will correspond
to a collineation of P3. The positions of a set of lines seen in the two images will be
determined by F up to a collineation.

Algebraic Formulation of Line Invariants

Consider four lines λi in space. A line may be given by specifying either two points on
the line or dually, two planes that meet in the line. It does not matter in which way the
lines are described. For instance, in the formulae (3.4) and (3.5) below certain invariants
of lines are defined in terms of pairs of points on each line. The same formulae could
be used to define invariants in which lines are represented by specifying a pair of planes
that meet along the line. Since the method of determining lines in space from two view
given in section 3:1.2 gives a representation of the line as an intersection of two planes,
the latter interpretation of the formulae is most useful.

Nevertheless, in the following description, of algebraic and geometric invariants of lines,
lines will be represented by specifying two points, since this method seems to allow easier
intuitive understanding. It should be borne in mind, however, that the dual approach
could be taken with no change whatever to the algebra, or geometry.

In specifying lines, each of two points on the line will be given as a 4-tuple of homogeneous
coordinates, and so each line λi is specified as a pair of 4-tuples

λi =
(
(ai1, ai2, ai3, ai4)(bi1, bi2, bi3, bi4)

)
Now, given two lines λi and λj , one can form a 4× 4 determinant, denoted by

|λiλj | = det

ai1 ai2 ai3 ai4
bi1 bi2 bi3 bi4
aj1 aj2 aj3 aj4
bj1 bj2 bj3 bj4

 . (3.3)

Finally, it is possible to define two independent invariants of the four lines by

I1(λ1, λ2, λ3, λ4) =
|λ1λ2| |λ3λ4|
|λ1λ3| |λ2λ4|

(3.4)

and

I2(λ1, λ2, λ3, λ4) =
|λ1λ2| |λ3λ4|
|λ1λ4| |λ2λ3|

. (3.5)

It is necessary to prove that the two quantities so defined are indeed invariants under
collineations of P3. First, it must be demonstrated that the expressions do not depend

72

on the specific formulation of the lines. That is, there are an infinite number of ways
in which a line may be specified by designating two points lying on it, and it is neces-
sary to demonstrate that choosing a different pair of points to specify a line does not
change the value of the invariants. To this end, suppose that (ai1, ai2, ai3, ai4)� and
(bi1, bi2, bi3, bi4)� are two distinct points lying on a line λi, and that (a′i1, a

′
i2, a

′
i3, a

′
i4)
�

and (b′i1, b
′
i2, b

′
i3, b

′
i4)
� are another pair of points lying on the same line. Then, there

exists a 2× 2 matrix Di such that
[
a′i1 a′i2 a′i3 a′i4
b′i1 b′i2 b′i3 b′i4

]
= Di

[
ai1 ai2 ai3 ai4
bi1 bi2 bi3 bi4

]
.

Consequently,

ai1 ai2 ai3 ai4
bi1 bi2 bi3 bi4
aj1 aj2 aj3 aj4
bj1 bj2 bj3 bj4

 =

[
Di 0
0 Dj

]
a′i1 a′i2 a′i3 a′i4
b′i1 b′i2 b′i3 b′i4
a′j1 a′j2 a′j3 a′j4
b′j1 b′j2 b′j3 b′j4

 .

Taking determinants, it is seen that the net result of choosing a different representation
of the lines λi and λj is to multiply the value of |λiλj | by a factor det(Di) det(Dj). Since
each of the lines λi appears in both the numerator and denominator of the expressions
(3.4) and (3.5), the factors will cancel and the values of the invariants will be unchanged.

Next, it is necessary to consider the effect of a change of projective coordinates. If H is
a 4× 4 invertible matrix representing a coordinate transformation of P3, then it may be
applied to each of the points used to designate the four lines. The result of applying this
transformation is to multiply the determinant |λiλj | by a factor det(H). The factors on
the top and bottom cancel, leaving the values of the invariants (3.4) and (3.5) unchanged.
This completes the proof that I1 and I2 defined by (3.4) and (3.5) are indeed projective
invariants of the set of four lines.

An alternative invariant may be defined by

I3(λ1, λ2, λ3, λ4) =
|λ1λ4| |λ2λ3|
|λ1λ3| |λ2λ4|

. (3.6)

It is easily seen, that I3 = I1/I2. However, if |λ1λ2| vanishes, then both I1 and I2 are
zero, but I3 is in general non-zero. This means that I3 can not always be deduced from
I1 and I2. A preferable way of defining the invariants of four lines is as a homogeneous
vector

I(λ1, λ2, λ3, λ4) = (|λ1λ2| |λ3λ4| , |λ1λ3| |λ2λ4| , |λ1λ4| |λ2λ3|) . (3.7)

Two such computed invariant values are deemed equal if they differ by a scalar factor.
Note that this definition of the invariant avoids problems associated with vanishing or
near-vanishing of the denominator in (3.4) or (3.5).

The definitions of I1 and I2 are similar to the definition of the cross-ratio of points
on a line. It is well known that for four points on a line, there is only one independent
invariant. It may be asked whether I1 may be obtained from I2 by some simple arithmetic
combination. This is not the case, as will become clearer when the connection of these
algebraic invariants with geometric invariants is shown.

3:1. INVARIANT CONFIGURATIONS IN P3 73

Degenerate Cases

The determinant |λiλj | as given in (3.3) will vanish if and only if the four points involved
are coplanar, that is, exactly when the two lines are coincident (meet in space). If all
three components of the vector I(λ1, λ2, λ3, λ4) given by (3.7) vanish, then the invariant
is undefined. Enumeration of cases indicates that there are two essentially different
configurations of lines in which this occurs.

1. Three of the lines lie in a plane.

2. One of the lines meets all the other three.

The configuration where one line meets two of the other lines is not degenerate, but
does not lead to very much useful information, since two of the components of the vector
vanish. Up to scale, the last component may be assumed to equal 1, which means that
two such configurations can not be distinguished. In fact any two such configurations
are equivalent under collineation.

Geometric Formulation of Invariants of Lines

Consider four lines λi in general position (which means that they are not coincident)
in P3. It will be shown that there exist exactly two further lines τ1 and τ2, called
transversals, which meet each of the four lines. Once this is established, it is easy to
define invariants.

The points of intersection of each of the four lines λi with one of the transversals τj
constitute a set of four points on a line in P3. The cross ratio of these points is an
invariant of the four lines λi. In this way, two invariants may be defined, one for each of
the two transversals.

Invariants may be defined in a dual manner as follows. Given a transversal, τj , meeting
each of the lines λi, there exists, for each λi a plane denoted < τj , λi >, containing τj and
λi. This gives rise to a set of four planes meeting in a common line τj . The cross-ratio
of this set of planes is an invariant of the lines λi.

It is easy to see that this dual construction does not give rise to any new invariant.
Specifically, consider the cross-ratio of the four planes meeting at τ1. The cross-ratio of
four planes meeting along a line is equal to the cross-ratio of the points of intersection
of the planes with any other non-coincident line in space. The line τ2 is such a line.
Hence, the cross ratio of the planes < τ1, λi > is equal to the cross-ratio of the points
< τ1, λi > ∩ τ2, where the symbol ∩ denotes the point of intersection. However, plane
< τ1, λi > meets τ2 in the point λi∩ τ2. In other words, the cross-ratio of the four planes
meeting along τ1 is equal to the cross-ratio of the four points along τ2, and vice-versa.

Existence of Transversals

Although the existence of transversals is well known, we include here a proof for com-
pleteness. To prove the existence of transversals, we start by considering three lines in
space.

74

Lemma3.2. There exists a unique quadric surface containing three given lines λ1, λ2

and λ3 in general position in P3.

Proof. For a reference to properties of quadric surfaces, the reader is referred to [60]. It
is shown there that a quadric surface is a doubly ruled surface containing two families
of lines A and B. Two lines from the same set A or B do not meet, whereas any two
lines chosen one from each set will always meet. Assuming that the lines λi lie on a
quadric surface, since they do not meet, they must all come from the same family, which
we assume to be A. Now consider any point x on the quadric surface. There is a unique
line passing through x and belonging to the class B. This line must meet each of the
lines λi, which belong to class A.

We are led therefore to consider the locus of all points x in P3for which there exists a
line passing through x meeting all the lines λi. To this end, let x = (x, y, z, t)� be a
point on this locus. For each of the lines λi we may define a plane πi passing through x
and λi. The condition that there exists a line passing through x meeting each λi means
that the three planes πi meet along that line.

Next, we formulate this last condition algebraically and give a method of computing the
formula for the quadric surface. As before, letting (ai1, ai2, ai3, ai4)� and (bi1, bi2, bi3, bi4)�

be two points on the line λi, the plane πi passing through x = (x, y, z, t)� and the line
λi may be computed as follows. Consider the matrix

 ai1 ai2 ai3 ai4
bi1 bi2 bi3 bi4
x y z t

 (3.8)

The plane πi is given by the homogeneous vector (pi1, pi2, pi3, pi4)� where (−1)jpij is
the determinant of the 3 × 3 matrix obtained by deleting the j-th column of (3.8).
Consequently, each pij is a homogeneous linear expression in x, y, z and t. Furthermore,
since point (x, y, z, t)� lies on this plane it follows that

xpi1 + ypi2 + zpi3 + tpi4 = 0 . (3.9)

Now the fact that the three planes πj meet along a common line translates into the
algebraic fact that the rank of the matrix

P =

 p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

is 2. This is equivalent to the condition

det
(
P (j)

)
= 0 for all j , (3.10)

where P (j) is the matrix obtained by removing the j-th column of P . Since each entry
pij of P is a linear homogeneous expression in the variables x, y, z and t, the determinant
det
(
P (j)

)
is a cubic homogeneous polynomial. A point on the required locus must satisfy

the condition det
(
P (j)

)
= 0 for j = 1, . . . , 4. However, because of condition (3.9) these

four equations are not independent. In particular, if pj represents the j-th column of P ,
then (3.9) implies a relation

xp1 + yp2 + zp3 + tp4 = 0

3:1. INVARIANT CONFIGURATIONS IN P3 75

Then
xdet

(
P (4)

)
= xdet (p1 p2 p3)
= det (xp1 p2 p3)
= det (−yp2 − zp3 − tp4 p2 p3)
= det (−tp4 p2 p3)
= −t det (p2 p3 p4)
= −t det

(
P (1)

)
.

(3.11)

This equation implies that x divides det(P (1)) and t divides det(P (4)). Furthermore,
applying the same argument to other coordinates gives rise to an equation

det(P (1))/x = − det(P (2))/y = det(P (3))/z = − det(P (4))/t = R(x, y, z, t)

where R(x, y, z, t) is some homogeneous degree-2 polynomial. Then the defining equa-
tions (3.10) of the locus become

xR(x, y, z, t) = yR(x, y, z, t) = zR(x, y, z, t) = tR(x, y, z, t) = 0 . (3.12)

This implies that either R(x, y, z, t) = 0 or x = y = z = t = 0. The latter condition can be
discounted, since (0, 0, 0, 0) is not a valid set of homogeneous coordinates. Consequently,
the desired locus is described by the degree-2 polynomial equation R(x, y, z, t) = 0, and
is therefore a quadric surface. Since it is easily verified that the four original lines λi lie
on this surface, the proof of the lemma is complete. �

It is now a simple matter to prove the existence of transversals.

Theorem3.3. There exist exactly two transversals to four lines in general position in
P3.

Proof. We choose three of the lines λ1, λ2 and λ3 and construct the quadric surface S
that they all line on. Let x1 and x2 be the two points of intersection of the fourth line λ4

with the quadric surface. The construction of S in Lemma 3.2 shows that any transversal
to lines λ1, λ2 and λ3 must lie on S. Further, the lines λ1, λ2 and λ3 all belong to one
of the families, A, of ruled lines on the quadric surface, S. Let τ1 and τ2 be the lines in
the other family B passing through x1 and x2. Then τ1 and τ2 are the two transversals
to all four lines. �

Of course, it is possible that λ4 does not meet the surface S in any real point, or is
tangent to S. The statement of the theorem must be interpreted as allowing complex
or double solutions. In the case of four real lines in space, there are either two real
transversals or two conjugate complex traversals. In the case of complex traversals,
there is no conceptual difficulty in defining the invariants as in the real case. The cross-
ratio of points of intersections of the lines with the two conjugate transversals will result
in two invariants which are complex conjugates of each other.

Various degenerate sets of lines also allow two transversals. For instance suppose that
λ1 and λ2 are coincident, and so are λ3 and λ4. One transversal to the four lines passes
through the two points of intersection of the pairs of lines. The other transversal is the
line of intersection of the two planes defined by λ1, λ2 and by λ3, λ4. The cross-ratio
invariant corresponding to the first transversal is zero, but the invariant corresponding to
the second transversal is in general non-zero and is a useful invariant for this geometric
configuration. This is similar to what happens for the algebraically defined invariants
(see Section 3:1.2).

76

Independence and Completeness

We shall now show that the two geometrically defined invariants are independent and
together completely characterize the set of four lines up to a collineation of P3.

To show independence, we start by selecting τ1 and τ2, two arbitrary non-intersecting
lines in space to serve as transversals. Next, we mark off points a1, a2, a3 and a4 along
τ1 in such a way that their cross ratio is equal to any arbitrarily chosen invariant value.
Similarly, mark off along τ2 points b1, b2, b3 and b4 having another arbitrarily chosen
cross-ratio invariant value. Now, joining ai to bi for each i gives a set of four lines having
the two arbitrarily chosen invariants.

Next, it will be shown that the two invariants completely characterize the set of four
lines up to a collineation. Consequently, let four lines in space have two given cross-ratio
invariant values with respect to transversals τ1 and τ2 respectively. Let the points of
intersection of the four lines with τ1 be a1, a2, a3 and a4 and the intersection points with
τ2 be b1, b2, b3 and b4. Let a second set of lines with the same invariants be given,
with transversals τ ′j and intersection points a

′
i and b

′
i. Our goal is to demonstrate that

there is a collineation taking τj to τ ′j for j = 1, 2, taking points ai to a
′
i and bi to b

′
i for

i = 1, . . . 4. It will follow that the collineation takes one set of lines λi onto the other set.

Choosing two points on each of τ1 and τ2, four points in all, and two points on each of τ ′1
and τ ′2 a further four points, there exists a collineation taking the first set of four points
to the second set, and hence taking τ1 to τ ′1 and τ2 to τ

′
2. Suppose that this collineation

takes ai to a′′i and bi to b
′′
i , it remains to be shown that there exists a collineation

preserving τ ′1 and τ ′2 and taking a′′i to a
′
i and b

′′
i to b

′
i. Without loss of generality it may

be assumed that τ ′1 is the line x = y = 0 and that τ ′2 is the line z = t = 0. With this

choice, we see that a collineation of P3represented by a matrix of the form
[
H1 0
0 H2

]
,

where each Hj is a 2 × 2 block, maps each τ ′j to itself. Furthermore each Hj represents
a homography of the line τ ′j . Since the points a

′
i and a

′′
i on τ

′
1 have the same cross-ratio,

there is a homography of τ ′1 taking a
′
i to a

′′
i for i = 1, . . . , 4, and the same can be said for

the points b′i and b
′′
i on τ2. Hence by independent choice of the two 2× 2 matrices H1

and H2, both mappings can be carried out simultaneously and the proof is complete.

Existence of an Isotropy

Four lines in P3can be represented by a total of 16 independent parameters. On the other
hand, there are 15 degrees of freedom for collineations of P3. This suggests that there
should be only one invariant for four lines in space, but we have seen that there are two.
The discrepancy arises because of the existence of an isotropy ([52]). To understand this,
we need to determine the subgroup of all collineations of P3that fix four given lines. Any
such collineation will also fix the two transversals as well as the four points of intersection
of the lines with each transversal. Since four points on each transversal are fixed, every
point on the transversal must be fixed. This shows that a collineation of P3fixes four
given lines if and only if it fixes the two transversals pointwise. Assuming as before that
the two transversals are the lines x = y = 0 and z = t = 0, it is easily seen that a
collineation fixes the transversals pointwise if and only if it is represented by a matrix
of the form diag(k1, k1, k2, k2) where k1 and k2 are two independent constants. Allowing
for an arbitrary scale factor in the matrix, this implies that there is a one-parameter
subgroup of collineations fixing the four lines. This reduces the number of degrees of

3:2. GEOMETRIC APPROACH TO INVARIANTS 77

freedom of the group action of collineations of P3on sets of four lines in space to 14, and
explains why there are two independent invariants.

Relationship of Geometric to Algebraic Invariants

The fact that for real lines the algebraic invariants defined in Section 3:1.2 must be
real whereas the geometric invariants may be complex indicates that they are not the
same. However, since the geometric invariants completely determine the four lines up to
collineation, it must be possible to determine the algebraic invariants given the values of
the geometric ones. Consider four lines with geometric invariants α and β. We desire
to determine the values of the algebraic invariants given by (3.7). To this end, we may
assume that the transversals are the lines x = y = 0 and z = t = 0 and that the points
of intersections of the four lines with the transversals have coordinates

a2 = (0, 0, 0, 1)�

a1 = (0, 0, α, 1)�

a3 = (0, 0, 1, 1)�

a4 = (0, 0, 1, 0)�

and
b2 = (0, 1, 0, 0)�

b1 = (β, 1, 0, 0)�

b3 = (1, 1, 0, 0)�

b4 = (1, 0, 0, 0)� .

These points have cross-ratio invariants α and β on the transversal lines x = y = 0 and
z = t = 0 respectively.

From this it is easy to compute the value of the invariant (3.7) to be

I = (αβ, 1, 1 + αβ − α− β) . (3.13)

Hence, it is easy to compute the algebraic invariants from the geometric ones. Similarly,
given I, it is easy to solve (3.13) for α and β, which indicates that the algebraic invariant
(3.7) is complete.

3:2 Geometric Approach to Invariants

We have seen that projective invariants of scenes may be computed from two of more
views by first computing a projective reconstruction of the scene and then computing
the invariants directly in 3-dimensions.

An interesting alternative approach to invariant computation has been developed by Gros
and Quan ([16, 17, 18]) based on Geometric construction. The following description of
geometric construction methods is somewhat different from their approach, but is similar
in spirit.

The Coplanarity Test Gros and Quan make use of a test for coplanarity of four
points, that I have first seen referred to in [12], ascribed to Roger Mohr. We describe
here a different test for coplanarity, that seems to be very slightly simpler. Consider

78

four points ui ↔ u′i for i = 1, . . . , 4 appearing in two images. Let xi be the points in
P3corresponding to these image points. We assume that the epipoles p and p′ in the
two images are also known. The epipole p is the point where the camera centre of the
second camera appears in the first image, and p′ is symmetrically defined. We assume
that none of the points ui or u′i corresponds with one of the epipoles.

Proposition3.4. The four points xi lie in a plane if and only if there is a 2D projective
transformation taking u1,u2,u3,u4,p to u′1,u

′
2,u
′
3,u
′
4,p
′.

The fact that the sets of points are in projective equivalence means of course that the
cross-ratio invariants of the two point sets are equal.

Proof. Suppose that the four points xi lie in a plane π and let e be the point where the
line joining the two camera centres meets π. Then both sets of points u1, . . . ,u4,p and
u′1, . . . ,u

′
4,p
′ are (2D) projectively equivalent to the set x1, . . . ,x4, e, and hence to each

other. To prove the converse, suppose that π is the plane containing x1, x2 and x3 and
as before, let e be the intersection of π with the line joining the camera centres.

There exists a unique 2D projective transformations T taking u1,u2,u3,p to x1,x2,x3, e,
since a 2D transform is uniquely defined by 4 points. A transform T ′ may be similarly
defined, and T ′−1T is the unique transform taking u1,u2,u3,p to u′1,u′2,u′3,p′. If the
point x4 does not lie on the plane π, however, then its projections onto π from the two
camera centres are different. This means that Tx4 �= T ′x4, and so T ′−1Tu4 �= u′4, so the
points are not in projective correspondence. �

Gros and Quan use a coplanarity criterion to allow them to compute the point of in-
tersection of a line with a plane defined by three points. Using the above coplanarity
criterion, this may be done as follows. Let x1,x2,x3 be the three points and let L be a
line. Let the images of the points and line be ui and λ in one image, and the same with
primes in the other image. Let p and p′ be the epipoles. Consider the transformation T
defined by Tui = u′i and Tp = p

′. The line λ′ is also transformed by T to a line which
we may (somewhat loosely) denote Tλ. The intersection of λ′ and Tλ is the image of the
point where the L meets the plane π. This follows immediately from Proposition 3.4,
since this is the unique point on λ′ that is in projective correspondence, via T , with a
point on the line λ. This is illustrated in fig 3.1.

Three points and Two Lines. The idea put forward by Gros and Quan is to use
this method to compute invariants. As an example, consider three points and two lines
in 3D, and suppose that the epipoles are known. The three points define a plane. The
intersection of the two lines with this plane, plus the three original points give five points
in a plane, from which one may derive two invariants. By using the construction of the
previous paragraph and applying it to both of the lines, one immediately finds the image
of the three points and the two intersection points, as seen in the second (primed) image.
This method is explained further in Fig 3.2.

Four Points and One Line. As another example, consider four points and one line.
One may extract four subsets of three points from among the set of points. Each such
subset defines a plane that meets the line in a single point. This provides four points on
one line, and hence a single invariant. Using the above construction, one easily computes
the four points, as seen in the primed image. This is illustrated in Fig 3.3.

3:2. GEOMETRIC APPROACH TO INVARIANTS 79

u2
u1

u3
p'

u1 u2

u3

p

u2
u1

u3
p

H

'
'

'

A'

A''

Figure 3.1: Intersection of a line with a plane defined by three points. Consider
points u1, u2, u3 and the epipole p in one image and corresponding points u′1, u

′
2, u
′
3 and

p′ in the second image. Compute the 2D projective mapping H that takes the points to
their corresponding points in the second image. Transfer the line by H and compute its
intersection with the line in the second image. This intersection point is the point where
the line meets the plane of the three points, as seen in the second image.

u2
u1

u3
p'

u1 u2

u3

p

u2
u1

u3
p

H

'
'

'

A

B
A'

B'

A'
B'

B''

A''

Figure 3.2: Invariants from 3 points and 2 lines. At the top are two views of 3
points and 2 lines. It is assumed that the epipoles p and p′ are also known. To compute
the invariants of the set of points and lines, one finds a 2D projective transformation
H that takes the points ui to u′i and p to p′. Since a 2D projectivity is determined by
4 points, the transform H is uniquely defined. Let A ↔ A′ and B ↔ B′ be the two
matching lines. By transforming (warping) the first image by H, point ui is mapped to
u′i, and the lines A and B are mapped to lines A′′ and B′′. The points u′1, u

′
2, u

′
3 along

with u′4 = A′ ∩A′′ and u′5 = B′ ∩B′′ form a set of 5 coplanar points (in the image plane
of the primed camera). The two 2D projective invariants of these 5 points are invariants
of the set of 3 points and 2 lines.

80

u2
u1

u3
p'

u1 u2

u3

p

u2
u1

u3
p

Hj

'
'

'

A

A'
B'

A'

u4

u4

u4

Figure 3.3: Invariants from 4 points and 1 line. At the top are two views of 4 points
and 1 lines. It is assumed that the epipoles p and p′ are also known. For j = 1, . . . , 4
one finds 2D projective transforms Hj defined as follows : Hj is the transform that takes
p to p′ and ui to u′i for each i = 1, . . . , 4, except for i = j. By mapping the line A into
the other image by transformations Hj one obtains four lines A′′j in the second image.
The cross-ratio of the four points of intersection of A′′j with A′ is an invariant of the
four points and one line in space. This is because these four intersection points are in
projective correspondence with the points of intersection of the line with the four planes
defined by sets of three points.

3:3. ALGEBRAIC APPROACH TO INVARIANTS 81

Six Points The construction used for four points and one line can be used for six
points by selecting two of the points to define a line. One is thus reduced to the case of
four points and one line. The difference, however is that one now has two extra points
on the line, namely the two points used to define the line. Thus we have a total of six
points on the line A′, namely the four intersection points plus the two points defining
A′. From these six points on a line, we may extract three independent cross ratios.

Further Reading

Other methods of geometric computation of invariants are given by Ponce ([53]) Quan
([56]) and in [30]. This includes invariants derived from smaller numbers of points (6
points in 3 views or 7 points in 2 views).

3:3 Algebraic Approach to Invariants

A very interesting algebraic method of computation of invariants was given by Carlsson
([8]). By completely algebraic techniques, involving the so-called double algebra, he
derived explicit formulas for projective invariants of point and line sets as seen in a pair
of images. The formulae express the invariants directly in terms of the image coordinates
of the points as seen in the two views.

As an example, we consider the line invariants discussed in section 3:1.2. Thus, let
Ci ↔ C′i for i = 1, . . . , 4 be a set of four corresponding lines in two views, and let λi be
the corresponding line in 3-space. Denote by uij the intersection of the lines Ci and Cj .
Thus uij = Ci × Cj . Similarly, let u′ij = C′i × C′j . Then, with |λiλj | defined as in (3.3),
Carlsson shows that

|λiλj | = ku′ij
�Fuij (3.14)

where k is a constant. From this it follows that the invariant (3.7) may be written entirely
in terms of the image coordinates, and the fundamental matrix.

I = (u′12
�Fu12.u′34

�Fu34, u′13
�Fu13.u′24

�Fu24, u′14
�Fu14.u′23

�Fu23) .

This formula will be proven later in this report (section 3:3), when we return to a con-
sideration of the fundamental matrix and the trilinear relations.

By consideration of the results of Carlsson, it may be seen that many of the invariants of
mixed point and line sets in P3are actually just disguised invariants of sets of lines. In
fact, replacing two points by the line that passes through them and then defining a line
invariant gives the same result. This is certainly true of all the invariants considered in
[8].

Invariants of Points Given a set of six points, x1, . . . , x6, denote by λij the line that
passes through points xi and xj . Then the expression

I1(λ12, λ45, λ13, λ46) =
|λ12λ45| |λ13λ46|
|λ12λ46| |λ13λ45|

(3.15)

is invariant. The lines λij map to lines Cij and C′ij in the two images, and these lines
may be computed easily in terms of the measured image coordinates ui and u′i. Then,

82

applying (3.14), one easily obtains a formula for the six-point invariant in terms of the
image coordinates ui and u′i and the fundamental matrix F .

I = (x1, . . . ,x6) =
u′12:45

�Fu12:45.u′13:46
�Fu13:46

u′12:46
�Fu12:46.u′13:45

�Fu13:45

(3.16)

where uij:kl is the intersection of the line ui×uj with the line uk ×ul. Namely, uij:kl =
(ui × uj) × (uk × ul). This formula is formula (30) in [8]. The lines λ12 and λ13 meet
in one point, x1, and similarly lines λ45 and λ46 meet in x4. Consequently, there is
only one invariant associated with the set of four lines. By choosing other combinations
of the points to construct lines, one obtains more invariants. In total, there are three
independent invariants of a set of six points.

Invariants of Mixed Points and Lines Given a set of mixed points and lines in P3,
one can define invariants in a similar manner by joining subsets of the points together
to make lines. Then, one applies the 4-line invariant to obtain invariants of the set of
points and lines.

3:4 Experimental Results

Three images of a pair of wooden blocks representing houses were acquired and vertices
and edges were extracted. The images are shown in Fig 3.4. Corresponding edges and
vertices were selected by hand from among those detected automatically. The chosen
edges and vertices are also shown in Fig 3.4. There were 13 edges and 15 lines extracted
from each of the images. The dotted edges were not visible in all images and were not
chosen. Vertices are represented by numbers and edges by letters in the figure. Because
of the way edges and vertices were found by the segmentation algorithm, the edges do
not always pass precisely through the indicated vertices, but sometimes through a closely
neighboring vertex. On other occasions, the full edge was not detected as a single, but
was broken into several pieces. This is usual with most edge detection algorithms, and
is a source of error in the computation of invariants.

The fundamental matrices F12 for the first and second images and F23 for the second
and third images were computed from the point matches.

3:4.1 Comparison of Invariant Values

The invariants described in this section are represented as homogeneous vectors. Two
such vectors are considered equivalent if they differ by a non-zero scale factor. Because
of arithmetic error and image noise, two computed invariant values will rarely be exactly
proportional. In order to compare two such computed invariant values (perhaps when
attempting to match an object with a reference object), each homogeneous vector is
multiplied by a scale factor chosen to normalize its length to 1. This normalization
determines the vector up to a multiplication by a factor ±1. Two such normalized
homogeneous vector invariants v1 and v2 are deemed close if v1 is close to v2 or to −v2

using a Euclidean norm. Correspondingly, a metric may be defined by

d(v1,v2) =
(
1−

∣∣∣∣ v1.v2

||v1|| ||v2||

∣∣∣∣
)1/2

. (3.17)

3:4. EXPERIMENTAL RESULTS 83

Figure 3.4: Three views of houses, and numbered selected vertices

84

For any v1 and v2, distance d(v1,v2) lies between 0 and 1.

3:4.2 Invariants of 6 points

The invariants of six points {x1,x2, . . .x6} were computed by finding a projective coor-
dinate frame in which the points x1, . . . ,x5 have coordinates (1, 0, 0, 0)�, (0, 1, 0, 0)�,
(0, 0, 1, 0)�, (0, 0, 0, 1)� and (1, 1, 1, 1)� respectively. The homogeneous coordinates or
the sixth point, x6 in that frame are the desired invariants of the original set of points.
Two points are compared using the metric (3.17). Six sets of six points were chosen for
computation of invariants. The sets of points were chosen arbitrarily by hand. The six
sets of six lines chosen as in the following table which shows the indices of the lines as
given in Fig. 3.4.

S1 = {1, 2, 3, 6, 9, 10} ,
S2 = {2, 4, 6, 8, 10, 12} ,
S3 = {1, 3, 5, 7, 9, 11} ,
S4 = {1, 2, 3, 6, 7, 8} ,
S5 = {1, 4, 7, 10, 13, 12} ,
S6 = {2, 5, 8, 11, 12, 13}

Table (3.18) shows the invariant of the sets of six points as computed from the first and
second and from the second and third images.

0.0266367 0.970462 0.975994 0.619897 0.847914 0.823575
0.995416 0.0155304 0.0648768 0.841029 0.252926 0.548214
0.967114 0.066834 0.0136234 0.863063 0.276384 0.516868
0.617346 0.830651 0.873538 0.0166752 0.704992 0.752215
0.861618 0.238502 0.289846 0.708237 0.00561718 0.590905
0.828638 0.54423 0.519272 0.719518 0.574651 0.0263892

(3.18)

The (i, j)-th entry of the table shows the distance according to the metric (3.17) between
the invariant of set Si as computed from images 1 and 2 with that of set Sj as computed
from images 2 and 3. The diagonal entries of the matrix (in bold) should be close to 0.0,
which indicates a match. The matrix should be approximately symmetric, which is in
fact the case.

The off-diagonal entries are not close to zero, except for the (2, 3) entry – but even that
entry is greater than the diagonal entries. This indicates that the six-point invariant is
very good at discriminating between sets of points with different geometrical structure.
Evidently, sets of points S2 and S3 are quite similar in arrangement, at least up to
collineation.

3:4.3 Invariants of 4 lines

The same experiment was carried out with six sets of four lines. First the fundamen-
tal matrices were computed using point matches and then the line invariant (3.7) was
computed for each pair of line sets and compared using the metric (3.17).

3:4. EXPERIMENTAL RESULTS 85

The sets of lines chosen are given in the following table (refer to Fig. 3.4).

S1 = {B,C, J,K}
S2 = {B,G, J,N}
S3 = {A,B,H, I}
S4 = {B,D,E,G}
S5 = {A,C,O, J}
S6 = {B, I, L,N}

Table (3.19 shows the results. The only bad entry in this matrix is in the position (4,
4). This is because of the fact that the four lines chosen contained three coplanar lines
(lines B, D and E). This causes the values of the invariant to be indeterminate (that is
(0, 0, 0)), and shows that such instances must be detected and avoided.

0.0128906 0.674135 0.302728 0.688589 0.642501 0.449448
0.646976 0.0337898 0.741489 0.83827 0.706921 0.221636
0.0619738 0.691264 0.229193 0.707536 0.708276 0.461339
0.286604 0.607681 0.182331 0.890303 0.855833 0.383939
0.656635 0.72182 0.899625 0.718942 0.00349575 0.694361
0.473184 0.239022 0.555218 0.947915 0.719282 0.0332098

(3.19)

Once again, the four-line invariant is shown to be a powerful discriminator between sets
of four lines.

86

Part IV

Quasi-Affine Reconstruction

87

89

We have seen that a set of points in 3 dimensions is determined up to projectivity
from two views with uncalibrated cameras. It is shown in this section that this result
may be improved by distinguishing between points in front of and behind the camera.
Any point that lies in an image must lie in front of the camera producing that image.
Using this idea, it is shown that the scene is determined from two views up to a more
restricted class of mappings known as quasi-affine transformations, which are precisely
those projectivities that preserve the convex hull of an object of interest. An invariant
of quasi-affine transformation known as the cheiral sequence of a set of points is defined
and it is shown how the cheiral sequence may be computed using two uncalibrated views.
As demonstrated theoretically and by experiment the cheiral sequence may distinguish
between sets of points that are projectively equivalent. These results lead to necessary
and sufficient conditions for a set of corresponding pixels in two images to be realizable
as the images of a set of points in 3 dimensions.

Using similar methods, a necessary and sufficient condition is given for the orientation of
a set of points to be determined by two views. If the perspective centres are not separated
from the point set by a plane, then the orientation of the set of points is determined from
two views.

Consider a set of points {xi} lying in a plane in space and let {ui} and {u′i} be two
images of these points taken with arbitrary uncalibrated perspective (pinhole) cameras.
It is well known that the points ui and u′i are related by a planar projectivity, that is,
there exists h a projectivity of the plane such that hui = u′i for all i. This fact has
been used for the recognition of planar objects. For instance in [59] planar projective
invariants were used to define indexing functions allowing look-up of the objects in an
object data-base. Since the indexing functions are invariant under plane projectivities,
they provide the same value independent of the view of the object.

In a similar way, it has been shown in [12] and [22] that a set of points in 3-dimensions
is determined up to a 3-dimensional projectivity by two images taken with uncalibrated
cameras. Both these papers give a constructive method for determining the point con-
figuration (up to projectivity). This permits the computation of projective invariants of
sets of points seen in two views. An experimental verification of these results has been
reported in [21] and is summarized in this section.

The papers just cited make no distinction between points that lie in front of the camera
and those that lie behind. The property of a point that specifies that it lies in front
of or behind a given camera will be termed the cheirality of the point with respect to
the camera. This word is derived from the Greek word : χειρ meaning hand or side.
It is well know that cheirality is valuable in determining scene geometry for calibrated
cameras. Longuet-Higgins [42] uses it to distinguish between four different possible scene
reconstructions from two views. More recently, Robert and Faugeras ([58]) have used
it for the construction of convex hulls of three-dimensional point sets. No systematic
treatment of cheirality for uncalibrated cameras has previously appeared, however. In-
vestigation of this phenomenon turns out to be quite fruitful, as is seen in the present
section. Cheirality is valuable in distinguishing different point sets in space, especially
in allowing projectively equivalent point sets to be distinguished.

Projective transforms have the property of swapping points from the front to the back
of the camera. We will say that a transform is cheirality-reversing for a given point if
it swaps the point from the front to the back of the camera, or vice-versa. Otherwise
it is called cheirality-preserving. The use of the word cheirality differs slightly from the

90

conventional usage in topology where it refers to local spatial orientation. In topology,
a cheirality reversing transform is one that reverses orientation, such as a mapping that
takes a point set to its mirror image. For instance, knots that are the same as their
mirror image are called amphicheiral ([27]). It will be seen in this report that for affine
spatial transforms our definition of cheirality-preserving corresponds with the topological
definition in that an orientation preserving transformation preserves the front and back
of the cameras. For arbitrary projective transforms the two concepts are distinct.

Summary of major results of the section. In Definition 4.4 a class of projectivities
called quasi-affine transformations is defined, consisting of those that preserve the convex
hull of a set of points of interest. Theorem 4.13 strengthens the result of [12, 22] by
showing that a 3-dimensional point set is determined up to quasi-affine transformation
by its image in two uncalibrated views. This sharpening of the theorem of [12, 22] results
from a consideration of the cheirality of the cameras. This result leads naturally to the
concept of a quasi-affine reconstruction of a scene, which is one that differs by at most a
quasi-affine transformation from the true geometry. A practical algorithm for computing
a quasi-affine reconstruction of a scene seen in two (or more) views is given in section
4:7.

Consideration of cheirality leads to a necessary and sufficient condition for a set of image
correspondences to be derived as projections of points in a real scene. This is discussed
in section 4:5.

In section 4:6 the concept of quasi-affine transformation is applied to orientation of
point sets, explaining why some point sets allow two differently oriented quasi-affine
reconstructions from two views, whereas some do not. The relationship of this result to
human visual perception of 3D scenes is briefly mentioned, noting that the brain is able
to reconstruct differently oriented quasi-affine models of a scene.

Sections 4:8 and 4:9 consider the application of cheirality to view synthesis in which a
new view of a scene is constructed from a set of given images.

In section 4:10.1 a quasi-affine invariant is defined – the cheiral sequence. In section 4:11
an example of computation of the cheiral sequence for 3D point sets shows that it is
useful in distinguishing between non-equivalent point sets. This invariant may be seen
as formalizing and extending to three dimensions the thesis and paper of Morin [50, 51]
on distinguishing planar shapes.

4:1 Notation

In this section we will consider object space to be the 3-dimensional Euclidean space
R3 and represent points in R3 as 3-vectors. Similarly, image space is the 2-dimensional
Euclidean space R2 and points are represented as 2-vectors. Euclidean space, R3 is
embedded in a natural way in projective 3-space P3by the addition of a plane at infinity.
Similarly, R2 may be embedded in the projective 2-space P2by the addition of a line
at infinity. The simplicity of considering projections between P3and P2has makes it
convenient in many instances to identify P3and P2as the object and images space. This
sometimes leads one to forget that real points and cameras lie in Euclidean and not in
projective space. Where convenient we will consider points in R2 and R3 as lying in

4:2. PROJECTIONS IN P3 91

P2and P3respectively, via the natural embedding. However, in this case the line (or
plane) at infinity will be considered to be a special distinguished line (or plane).

Vectors will be represented as usual as bold-face lower case letters, such as x. The nota-
tion x̃ represents a non-homogeneous 3-vector representing an element of R3. Similarly, ũ
is a non-homogeneous 2-vector. The notation x̂ represents a vector with final coordinate
equal to 1, sometimes meant implicitly to represent the same point as a homogeneous
vector x. Similarly û represents a vector of the form (u, v, 1)�.

The notation a .= b means that a and b have the same sign. For instance a .= 1 has the
same meaning as a > 0.

4:2 Projections in P3

We recall some facts from from section 6:5.1. A projection from P3into P2is represented
as usual by a 3 × 4 matrix P , whereby a point x maps to the point u = Px. If P is a
camera transform matrix for a camera with perspective centre not at infinity, then P can
be written as P = [M | −M c̃] where M is a non-singular 3 × 3 matrix and c̃ represents
the perspective centre in R3.

There exist points in P3that are mapped to points at infinity in the image. To find what
they are, we suppose that u = (u, v, 0)� = Px. Letting p1

�, p2
� and p3

� be the rows
of P , we see that p3

�x = 0. In other words, a point x in P3that maps to a point at
infinity in the image must satisfy the equation x�p3 = 0. Looked at another way, if p3 is
taken as representing a plane in P3, then it represents the plane consisting of all points
mapping to infinity in the image. Since Pc = 0, we see in particular that p3

�c = 0 and
so c lies on the plane p3. To summarize this paragraph, the set of points in P3mapping
to a point at infinity in the image is a plane passing through the perspective centre
and represented by p3, where p3

� is the last row of P . In conformity with standard
terminology, this plane will be called the principal plane of the camera.

Restricting now to R3, consider a point x in space, not lying on the principal plane. It
is projected by the camera with matrix P onto a point u where wû = P x̂ for some scale
factor w. The value of w will vary continuously with x and the set of points where it
vanishes is precisely the principal plane. It follows that on one side of the principal plane
w > 0 and on the other side, w < 0.

In a Euclidean context, the value of w can be given a precise metric interpretation as
explained next. The line perpendicular to the principal plane through the perspective
centre is called the principal ray. In general, the normal vector to a plane (q, r, s, t)� is
given in non-homogeneous coordinates as the vector (q, r, s)�. Thus, if P = [M | −M c̃],
then the principal ray is represented by the last row of M , denoted m3

�.

For a point x in space, we see that

wû = P x̂

= [M | −M c̃]
(
x̃
1

)

= M x̃−M c̃
= M(x̃− c̃) ,

and so w = m3
�(x̃ − c̃) As just remarked, m3 represents the direction of the principal

92

ray, and x̃ − c̃ is the vector from the camera centre to the point x. If P is scaled by
multiplication by an appropriate factor so that ||m3|| = 1 then, w is equal to the depth of
the point x from the camera perspective centre in the direction of the principal ray. This
metric interpretation of w, though useful in some applications, such as depth recovery
([69]) will not be used further in this report.

Any real camera can only view points on one side of the principal plane, those points
that are “in front of” the camera. Points on the other side will not be visible. In order
to distinguish the front of the camera from the back, a convention is necessary.

Definition4.1. A camera matrix P = [M | v] is said to be normalized if det(M) > 0.
If P is a normalized camera matrix, a point x is said to lie in front of the camera if
P x̂ = wû with w > 0. Points x for which w < 0 are said to be behind the camera.

Any camera matrix may be normalized by multiplying it by−1 if necessary. The selection
of which side of the camera is the front is simply a convention, consistent with the
assumption that for a camera with matrix [I | 0], points with positive z-coordinate lie in
front of the camera. This is the usual convention in computer vision literature, used for
instance in [42].

To avoid having always to deal with normalized camera matrices, we define the following
parameter χ.

Definition4.2. Suppose a point x = (x, y, z, t)� maps to an image point u = (u, v, w)�

by a camera with matrix P = [M | v]. Thus, let (u, v, w)� = P (x, y, z, t)�. We define

χ(x;P) = (detM)1/3t/w

�

Note that the value of χ is unchanged if the point x is multiplied by a non-zero scale,
since the value of w is multiplied by the same scale. Similarly, if P is multiplied by a
constant scale k, then both detM1/3 and w are multiplied by k, and the value of χ is
unchanged. Thus, χ(x;P) is independent of the particular homogeneous representation
of x and P . If P is normalized and t = 1 so that x = x̂, then χ(x;P) .= w. Thus,
corresponding to Definition 4.1 we have

Proposition4.3. The point x lies in front of the camera P if and only if χ(x;P) > 0.

In fact, χ is positive for points in front of the camera, negative for points behind the
camera, zero on the plane at infinity and infinite on the principal plane of the camera.
If the camera centre or the point x is at infinity, then χ is still defined but is equal to
zero. In this case, it is not well defined whether the point lies behind or in front of the
camera.

In general, we will only be concerned with the sign of χ and not its magnitude. We may
then write χ(x;P) .= t detM/w (remember that the symbol .= indicates equality of sign).
The quantity sign(χ(x;P)) will be referred to as the cheirality of the point x with respect
to the camera P . The cheirality of a point is said to be reversed by a transformation if
it is swapped from 1 to −1 or vice versa.

4:3. QUASI-AFFINE TRANSFORMATIONS 93

Note on the figures. In the figures included in this section, a non-standard repre-
sentation of cameras is used. A camera is denoted by a line representing its principal
plane, along with an arrow pointing in the direction of the front of the camera. The
tail of the arrow lies at the centre of projection, on the principal plane. Generally, the
figures contain one or two cameras. The diagrams may be thought of as representing
the projection of R3 along the direction of the common line of intersection of the two
cameras’ principal planes. Thus, each principal plane projects to a line, and their line of
intersection projects to a point.

4:3 Quasi-Affine Transformations

A subset B of Rn is called convex if the line joining any two points in B also lies entirely
within B. The convex hull of B, denoted B̄ is the smallest convex set containing B. We
denote by L∞ the (n− 1)-dimensional subspace (line, plane, etc) at infinity in Pn. For
simplicity, we will refer to it as the plane at infinity, except where we are specifically
considering P2. The inverse image of L∞ under a projective transformation h is denoted
π∞ = h−1(L∞).

Definition 4.4. Let B be a subset of Rn and let h be a projectivity of Pn. The projec-
tivity h is said to be “quasi-affine” with respect to the set B if h−1(L∞) does not meet
B̄, where L∞ is the plane at infinity.

A projectivity that is quasi-affine with respect to B is precisely one that preserves the
convex hull of B (as will be seen later).

It may be verified that if h is quasi-affine with respect to B, then h−1 is quasi-affine with
respect to h(B). Furthermore, if h is quasi-affine with respect to B and g is quasi-affine
with respect to h(B), then g ◦ h is quasi-affine with respect to B. Thus, quasi-affine
projectivities may be composed in this fashion. Strictly speaking, however, quasi-affine
projectivities with respect to a given fixed set of points do not form a group.

We will be considering sets of points {xi} and {x′i} that correspond via a projectivity.
When we speak of the projectivity being quasi-affine, we will mean with respect to the
set {xi}.
An alternative characterization of quasi-affine transformations is given in the following
theorem.

Theorem4.5. A projectivity h : Pn → Pn represented by a matrix H is quasi-affine
with respect to a set B = {xi} ⊂ Rn− h−1(L∞) if an only if there exist constants wi, all
of the same sign, such that Hx̂i = wix̂

′
i

Proof. To prove the forward implication, we assume that h is a quasi-affine transforma-
tion. By definition, constants wi exist such that Hx̂i = wix̂

′
i. What needs proof is that

they all have the same sign. The value of w in the mapping wx̂′ = Hx̂ is a continuous
function of the point x. If wi > 0 for some point xi, and wj < 0 for another point
xj , then there must exist some point x∞ on the line segment joining xi to xj for which
w = 0. This means that x∞ lies in B̄, but h(x∞) lies on the line at infinity, contrary to
hypothesis.

94

Next, to prove the converse, we assume that there exist such constants wi all of the same
sign. We need to show that h−1(L∞) does not meet B̄. Let S be the subset of Rn

consisting of all points x satisfying the condition Hx̂ = wx̂′ such that w has the same
sign as all wi. The set S contains B and it is clear that S ∩ h−1(L∞) = ∅. All that
remains to show is that S is convex, for then S must contain the convex hull of B. If xi
and xj are points in S with corresponding constants wi and wj , then any intermediate
point x between xi and xj must have w value intermediate between wi and wj . To see
this, consider a point x̂ = αx̂i + (1− α)x̂j where 0 ≤ α ≤ 1. This point lies between xi
and xj . Denote by h4

� the last row of H . Then,

w = h4
�x̂

= h4
�(αx̂i + (1 − α)x̂j)

= αh4
�x̂i + (1− α)h4

�x̂j
= αwi + (1− α)wj

which lies between wi and wj as claimed. Consequently, the value of w must have the
same sign as wi and wj , and so x lies in S also. This completes the proof. �

This theorem gives an effective method of identifying quasi-affine mappings. The question
remains whether quasi-affine mappings form a useful class. This question will be answered
by the following theorem.

Theorem4.6. If B is a point set in a plane (the “object plane”) in R3 and B lies entirely
in front of a projective camera, then the mapping from the object plane to the image plane
defined by the camera is quasi-affine with respect to B.

Proof. That there is a projectivity h mapping the object plane to the image plane is well
known. What is to be proven is that the projectivity is quasi-affine with respect to B.
Let L be the line in which the principal plane of the camera meets the object plane. Since
B lies entirely in front of the camera, L does not meet the convex hull of B. However,
by definition of the principal plane L = h−1(L∞), where L∞ is the line at infinity in the
image plane. Therefore, h is a quasi-affine with respect to B. �

As an example to illustrate the difference between projective and quasi affine mapping,
consider Fig. 4.1. This figure shows an image of a comb and the image resampled ac-
cording to a projective mapping. Most people will agree that the resampled image is
unlike any view of a comb seen by camera or human eye. Nevertheless, the two images
are projectively equivalent and will have the same projective invariants. The projective
mapping is not, however, quasi-affine with respect to the comb.

Note that if points ui are visible in an image, then the corresponding object points must
lie in front of the camera. Applying Theorem 4.6 to a sequence of imaging operations
(for instance, a picture of a picture of a picture, etc), it follows that the original and final
images in the sequence are connected by a planar projectivity which is quasi-affine with
respect to any point set in the object plane visible in the final image.

Similarly, if two images are taken of a set of points {xi} in a plane, {ui} and {u′i}
being corresponding points in the two images, then there is a quasi-affine mapping (with
respect to the ui) mapping each ui to u′i, and so Theorem 4.5 applies, yielding the
following proposition.

4:4. THREE DIMENSIONAL POINT SETS 95

Figure 4.1: Picture of a comb and a non-quasi-affine resampling of the comb

Proposition4.7. If {ui} and {u′i} are corresponding points in two views of a set of object
points {xi} lying in a plane, then there is a matrix H representing a planar projectivity
such that Hûi = wiû

′
i and all wi have the same sign.

This fact was previously discovered and exploited by Andrew Zisserman and Charles
Rothwell (private communication) and served as a starting point for the current investi-
gation. They derived this result using the methods of [69].

4:4 Three dimensional point sets

We now consider three-dimensional point sets seen in a pair of images. The 3D locations
of the points will be assumed unknown, but image point matches ui ↔ u′i will be known.
It will be assumed that sufficiently many point matches knowf for the matrix F to be
determined unambiguously, that is at least 8 points ([42]). Under these conditions as
shown in [22] and [12] it is possible to determine the location of points xi and cameras
P and P ′ such that ui = Pxi and u′i = P ′xi, and furthermore, the choice is unique up
to projectivity of P3. Recalling the definition of χ (definition 4.2) and Proposition 4.3, if
χ(xi;P) and χ(xi;P ′) are both positive, then the point xi lies in front of both cameras,
and maps to points ui and u′i in the two images. Normally, this will not be the case. It is
possible, however, that another choice of P , P ′ and xi exists with the desired property.

We introduce some new terminology. A triplet (F, {ui}, {u′i}) is called an epipolar con-
figuration if F is a rank 2 matrix satisfying the epipolar constraint equation u′i

�Fui = 0
for all i. A weak realization of (F, {ui}, {u′i}) is a triplet (P, P ′, {xi}), where P and P ′ are
a choice of camera matrices corresponding to the fundamental matrix F and the points
{xi} are object points satisfying the equations ui = Pxi and u′i = P ′xi for each i. A
strong realization is such a triplet satisfying the additional condition that χ(xi;P) > 0
and χ(xi;P) > 0 for all i. This condition implies that the points and the camera centres
are at finite points. The triplet (F, {ui}, {u′i}) is called a feasible configuration if a strong
realization exists. The purpose of considering epipolar configurations, rather than simply
a set of point correspondences ui ↔ u′i is to avoid the problem of having insufficiently
many points, or critical configurations of points that make unique determination of the

96

fundamental matrix impossible. The fundamental matrix will be assumed known. An-
other common terminology that expresses the same thing is that the cameras are “weakly
calibrated”.

At this point, it is desirable to derive a slightly different form of the definition of the
function χ defined in Definition 4.2. In this definition, and henceforth, we allow the
possibility that the camera is located at infinity. Let P be a camera matrix. The centre
of P is the unique point c such that Pc = 0. One can write an explicit formula for c as
follows.

Definition4.8. Given a camera matrix P , we define cP� to be the vector (c1, c2, c3, c4),
where

ci = (−1)i det P̂ (i)

and P̂ (i) is the matrix obtained by removing the i-th column of P . �

For convenience of typesetting, we introduce the notation (P/v�) to represent a 4 × 4
matrix made up of a 3× 4 camera matrix P augmented with an final row v�. Definition
4.8 leads to a simple formula for det(P/v�). Cofactor expansion of the determinant
along the last row gives det(P/v�) = v�cP for any row vector v�. As a special case, if
pi� is the i-th row of P , then

pi�cP = det(P/pi�) = 0

where the last equality is true because the matrix has a repeated row. Since this is true
for all i, it follows that PcP = 0, and so cP is the camera centre, as claimed.

Note that submatrix P̂ (4) is the same as matrix M in the decomposition P = [M | v],
and so detM = c4. This allows us to reformulate the definition of χ as given in Definition
4.2, as follows.

χ(x;P) .= (e4
�x)(e4

�c)/w (4.1)

where c = cP as defined in Definition 4.8, and e4
� is the vector (0, 0, 0, 1). It is significant

to note here that e4 is the vector representing the plane at infinity – a point x lies on
the plane at infinity if and only if e4

�x = 0.

4:4.1 Effect of Transformations on Cheirality

We now consider a projective transformation represented by matrix H . Writing P ′ =
PH−1 and x′ = Hx one sees that Px = P ′x′. So if u = Px then u = P ′x′. Thus,
the image correspondences are preserved by this transformation. When speaking of a
projective transformation being applied to a set of points and to a camera, it is meant
that a point x is transformed to Hx and the camera matrix is transformed to PH−1.

In this section we will consider such projective transformations and their effect on the
cheirality of points with respect to a camera. First, we wish to determine what happens
to cP when P is transformed to PH−1. To answer that question, consider an arbitrary
4-vector v. We see that

v�H−1cPH−1 = det(PH−1/v�H−1) = det(P/v�) detH−1 = v�cP detH−1 .

Since this is true for all vectors v, it follows that H−1cPH−1 = cP detH−1, or

cPH−1 = HcP detH−1 (4.2)

4:4. THREE DIMENSIONAL POINT SETS 97

At one level, this formula is saying that the transformation H takes the camera centre
c = cP to the new location cPH−1 ≈ Hc. However, we are interested in the exact
coordinates of cPH−1 especially the sign of the last coordinate c4 which appears in the
formula (4.1). Thus, the factor H−1 is significant.

Now, applying (4.2) to (4.1) gives

χ(Hx;PH−1) .= (e4
�Hx)(e4

�cPH−1)/w
.= (e4

�Hx)(e4
�Hc) detH−1/w

where c = cP . Finally, denoting the fourth row of the transformation matrix H by h4
�,

and sign(detH) by δ, we obtain

χ(Hx;PH−1) .= δ(h4
�x)(h4

�c)/w . (4.3)

This equation will be used extensively. Note that it may be considered to be a general-
ization of (4.1) as will now be explained. A point x is mapped to the plane at infinity by
H if and only if h4

�x = 0. Interpreting h4 as the coordinates of a plane, this condition
means that h4 represents the plane mapped to infinity by H . The factor δ

.= detH−1

represents the change of spatial orientation effected by the transformation H , in that H
is orientation-preserving if detH > 0 and orientation-reversing if detH < 0. This point
will be explained more fully in section 4:6. Thus, the terms in (4.3) may be interpreted
as follows : x are the point coordinates; c are the coordinates of the camera centre,
as in Definition 4.8; h4 are the coordinates of the plane at infinity and δ is the spatial
orientation. Compare this with (4.1) in which e4 represents the plane at infinity.

We now consider the effect of different transformations on the cheirality of points with
respect to a camera. An affine transformation is one represented by a matrix H for which
h4
� = e4

� = (0, 0, 0, 1). The effect of an affine transformation may now be described.

Proposition4.9. An affine transformation with positive determinant preserves the
cheirality of any point with respect to a camera. An affine transformation with nega-
tive determinant reverses cheirality.

Proof. From (4.1) and (4.3) we see that χ(x;P) .= χ(Hx;PH−1) detH from which the
result follows. �

We now determine how an arbitrary projective transformation affects cheirality.

Proposition4.10. Let H represent a projective transformation with positive determi-
nant, and let π∞ be the plane in space mapped to infinity by H. The cheirality of a point
x is preserved by H if and only if x lies on the same side of the plane π∞ as the camera
centre.

Proof. Since detH > 0, we see from (4.1) and (4.3) that χ(x;P) .= χ(Hx;PH−1) if
and only if (h4

�x)(h4
�c) .= (e4

�x)(e4
�c). Suppose the point x and the camera P are

located at finite points so that the cheirality is well defined, and let them be scaled so
that x = x̂ and c = ĉ. In this case, (e4

�x)(e4
�c) = 1 and we see that cheirality is

preserved, if and only if (h4
�x̂)(h4

�ĉ) .= 1, or otherwise expressed h4
�x̂ .= h4

�ĉ. Since
h4 represents the plane π∞, this condition may be interpreted as meaning that the points
c and x both lie on the same side of the plane π∞. Hence, the cheirality of a point x is
preserved by a transformation H , if and only if it lies on the same side of the plane π∞
as the camera centre. �

98

π∞

Figure 4.2: Effect of a projective transform with positive determinant. The
principal plane of the camera and the plane π∞ divide R3 into four segments. One pair
of opposite segments (shown shaded) are transformed to points in front of the camera.
The opposite pair of segments are transformed to points behind the camera. In the local
neighbourhood of the camera centre the front and back of the camera are preserved. This
consideration determines which pair of segments become the front of the camera. Thus
the two dark shaded sets of points lie in front of the camera after transformation. For
a transform with negative determinant the opposite pair of segments become the front of
the camera.

Points x close to the camera centre will lie on the same side of π∞ as the camera
centre, and hence, their cheirality will be preserved. Thus, Proposition 4.10 implies that
cheirality is preserved in a local neighbourhood of the camera centre. This is illustrated
in Fig 4.2.

4:4.2 Quasi-affine invariance of strong realizations

For planar object sets, Theorem 4.6 established the existence of a quasi-affine mapping
between the object plane and the image plane. For non-planar objects seen in two views,
strong realizations of the epipolar configuration take the rôle played by sets of image
points in the two dimensional case.

Theorem4.11. Let (F, {ui}, {u′i}) be an epipolar configuration and let (P, P ′, {xi}) and
(P̄ , P̄ ′, {x̄i}) be two separate strong realizations of the configuration. Then the projectivity
h mapping each point xi to x̄i is quasi-affine.

Proof. If the projectivity is not quasi-affine, then there are points on both sides of π∞ =
h−1(L∞). Since h preserves the cheirality of points lying on only one side of π∞ it
follows that h does not preserve the cheirality of all points, Therefore at least one of the
realizations can not be a strong realization, and so the hypothesis that h is not quasi-
affine is not tenable. �

The particular case where one of the two realizations is the “correct” realization is of
interest. It is the analogue in three dimensions of Proposition 4.6.

4:5. WHEN ARE A SET OF IMAGE CORRESPONDENCES REALIZABLE ? 99

Corollary 4.12. If {xi} are points in R3, image coordinates {ui} and {u′i} are corre-
sponding image points in two uncalibrated views from which the fundamental matrix F is
determined uniquely, and (P, P ′, {x̄i}) is a strong realization of the triple (F, {ui}, {u′i}),
then there is a quasi-affine mapping taking each xi to x̄i.

From this corollary, we can deduce one of the main results of this section.

Theorem4.13. Let (P, P ′, {xi}) and (P̄ , P̄ ′, {x̄i}) be two different reconstructions of 3D
scene geometry derived as strong realizations of possibly different epipolar configurations
corresponding to possibly different pairs of images of a 3D point set. Then there is a
quasi-affine transformation mapping each point xi to x̄i.

What this theorem is saying is that if a point set in R3 is reconstructed as a strong
realization from two separate pairs of views, then the two results are the same up to a
quasi-affine transformation.

Proof. By corollary 4.12 there exist quasi-affine transformations mapping each of the sets
of reconstructed points {xi} and {x̄i} to the actual 3D locations of the points. The result
follows by composing one of these projectivities with the inverse of the other. �

4:5 When are a Set of Image Correspondences Real-

izable ?

Given a set of image correspondences ui ↔ u′i one may ask under what conditions these
correspondences may arise from projection of points in a real scene into the two images.
A well known constraint is the epipolar constraint u′i

�Fui = 0 for some rank-2 matrix,
the fundamental matrix. It is shown here that that condition is not sufficient, and a
necessary and sufficient condition will be given.

As usual, we avoid the problem of critical point configurations, or insufficiently many
point correspondences by assuming that the images are “weakly calibrated” meaning
that the fundamental matrix is given. In the terminology already introduced, we assume
that we have an epipolar configuration (F, {ui}, {u′i}). It has been shown in [22, 12] that
a realization (P, P ′, {xi}) of this configuration exists, and that further, all realizations
may be reached from this realization by applying a projective transformation.

Given a realization (P, P ′, {xi}) we write Pxi = wiûi and P ′xi = w′iû
′
i. Suppose that

there is a transformation H that transforms this to a strong realization. This means
that χ(Hxi;PH−1) > 0 and χ(Hxi;P ′H−1) > 0 for all i, from which it follows that
χ(Hxi;PH−1) .= χ(Hxi;P ′H−1) for all i. Substituting the formula (4.3) gives

(h4
�xi)(h4

�c)δ/wi
.= (h4

�xi)(h4
�c′)δ/w′i .

Cancelling common terms from both sides gives

(h4
�c)/wi

.= (h4
�c′)/w′i .

Now (h4
�c) and (h4

�c′) must be non-zero, since χ(Hxi;PH−1) and χ(Hxi;P ′H−1)
are non-zero. Rearranging terms leads to wiw′i

.= (h4
�c)(h4

�c′). Since the right side
does not depend on i, this means that wiw′i has constant sign for all i, which proves the
following proposition.

100

Proposition4.14. Let (P, P ′, {xi}) be a realization of a feasible epipolar configuration.
Write Pxi = wiûi and P ′xi = w′iû

′
i. Then wiw′i has the same sign for all i.

Proposition 4.14 has a geometric interpretation as follows. The principal plane of a
camera separates R3 into two regions. For points on one side of the principal plane
Pxi = wiûi with wi > 0, whereas on the other side, wi < 0. The two principal planes
divide up R3 into four quadrants. The condition that sign(wiw′i) is constant corresponds
to the geometric condition that the points xi all lie in a pair of opposite quadrants.

A Sufficient Condition Proposition 4.14 gives a necessary condition for an epipolar
configuration to be feasible. It will next be shown that this condition is also sufficient.
This will be done by explicitly showing how the weak realization may be transformed to
a strong realization. To ensure that this is possible, we need two extra conditions.

Condition 4.15.

1. The image coordinates of the points xi as seen by two cameras are bounded.

2. At least one of the camera centres is not a limit point of the point set X .

Since image coordinates are unchanged under transformation, the first condition is inde-
pendent of the particular weak realization considered. The second condition concerning
limit points is unchanged under continuous transformations. Since the transformations
we consider are continuous in a neighbourhood of the camera centres, this condition is
also independent of the particular weak realization considered. In any reasonable imag-
ing situation, both these conditions will hold. For finite point sets the two conditions are
trivially satisfied. For infinite point sets, the image coordinates of the points will still
be limited by the extent of the image, so the first condition will hold. For a topologi-
cally closed point set, the second condition will hold, since a point that coincides with
the camera centre can not be imaged. In general, for arbitrary point sets, it will not
normally be the case that the points can lie arbitrarily close to the camera centre.

This condition may be illustrated graphically as in Fig 4.3.

Now, we proceed to transform an arbitrary weak realization into a strong realization.
We proceed in steps. As a preliminary step, we need to ensure that neither of the two
camera centres lies on the plane at infinity. If this were to occur, then we would choose
a new weak realization for which the camera centres do not lie on the plane at infinity.

The principal planes of the two cameras must now meet in a line in space. Consider
a plane π∞ containing that line, but not equal to either of the two principal planes.
This plane will be contained in two opposite quadrants of R3, except where it meets the
two principal planes. Let this plane also be chosen so that it passes through the two
quadrants of space that do not contain any of the points xi. This situation is shown
in Fig 4.4. In this case the plane π∞ separates the two point sets X+ and X− lying in
opposite quadrants of space. Now consider the effect of a transformation mapping the
plane π∞ to infinity. According to Proposition 4.10, the cheirality of one of the two sets
X+ and X− (with respect to say the first camera) will be reversed and the cheirality of
the other will be preserved by this transformation. Since originally X+ and X− have
opposite cheirality, after the transformation they will have the same cheirality. In other

4:5. WHEN ARE A SET OF IMAGE CORRESPONDENCES REALIZABLE ? 101

Figure 4.3: The point set X (dark shading) must lie inside a truncated cone (dark shad-
ing). The cone represents the bounding of the image coordinates. The cone is truncated
near the camera centre c since points in X can not lie arbitrarily close to the camera
centre. In the general case, points may lie both behind and in front of the camera.

X+

X–

π∞

Figure 4.4: Step 1 of transformation. We choose the plane at infinity to pass through
the two quadrants that do not contain the point set. After this transformation, all points
will lie on one side of each camera.

102

c'

π∞c

Figure 4.5: Second camera behind the first cameraWe can separate the two camera
centres c and c′ with a plane π∞ lying just behind the principal plane of the first camera.
Since all the points lie in front of the camera, plane π∞ does not separate the point set
X.

words, the whole set X = X+ ∪ X− will lie on the same side of the first camera. The
same argument holds for the other camera.

In invoking Proposition 4.10, it was assumed that neither of the camera centres lay on
the line of intersection of the two principal planes, and hence on the plane π∞ chosen.
If this were to occur, then we would choose instead a plane π∞ slightly displaced from
this intersection line but still separating the two sets X+ and X−. This is possible since
conditions 4.15 ensure that the point set X does not approach the line of intersection of
the principal planes.

The case where the two principal planes are identical must also be handled specially. In
this case, the plane π∞ is chosen slightly displaced from the cameras’ common principal
plane, and separating X+ from X−.

If after this first transformation step, the set X lies in front of both cameras, then we
are done. If on the other hand it lies behind both cameras, then applying an affine
transformation with negative determinant (for instance H = diag(−1,−1,−1, 1)) will
swap the set X to the front of both cameras. There remains the possibility that X lies
in front of one camera and behind the other.

To handle this remaining case, we need a further transformation. We wish to find a
plane π∞ that separates the two camera centres, but does not separate the point set X .
Assuming this is possible, X will then lie on the opposite side of π∞ from one of the
camera centres (but not the other). Now we apply a transformation that takes π∞ to
infinity. According to Proposition 4.10 the cheirality of X will be reversed with respect
to one of the cameras, but not the other. Originally the cheirality of X was opposite
with respect to the two cameras, and so after the transformation the cheirality will be
the same. This means that X will lie on the same side of both cameras. By applying,
if necessary, a cheirality-reversing affine transformation it may be assured that X lies in
front of both cameras, and we are done.

It remains to explain how the required plane π∞ is to be found. We suppose that the
points X lie in front of the first camera and behind the second camera. We wish to find

4:5. WHEN ARE A SET OF IMAGE CORRESPONDENCES REALIZABLE ? 103

c'

π∞

c

Figure 4.6: Second camera in front of the first camera We can separate the two
camera centres c and c′ with a plane π∞ lying just in front of the principal plane of the
first camera. The point set X lies entirely inside the truncated cone (lightly shaded). The
plane π∞ can be chosen sufficiently close to c so as not to meet this cone. Consequently,
it will not separate the point set X.

c'

π∞

c

Figure 4.7: Second camera lies on the principal plane of the first camera. We
can separate the two camera centres c and c′ with an oblique plane π∞ which crosses the
principal plane of the first camera. Plane π∞ can be chosen so as not to meet the cone
containing X, and consequently will not separate X.

104

a plane that separates the two camera centers, but does not separate the point set X .
The method for constructing this plane is given in Figures 4.5, 4.6 and 4.7 corresponding
to whether the second camera lies behind, in front of, or on the principal plane of the
first camera. Details of the construction are given in the captions of the figures.

We can summarize this discussion in the following theorem.

Theorem4.16. Let (F, {ui}, {u′i}) be an epipolar configuration and let (P, P ′, {xi}) be
a realization of that configuration. Suppose that conditions (4.15) are satisfied. Let
Pxi = wiûi and P ′xi = w′iûi. Then (F, {ui}, {u′i}) is a feasible configuration if and only
if wiw′i has the same sign for all i.

Since an epipolar configuration always possesses a weak realization ([22]), Theorem 4.16
gives a necessary and sufficient condition for an epipolar configuration to be realizable
as a three dimensional scene.

4:6 Orientation

We now consider the question of image orientation. A mapping h from Rn to itself is
called orientation-preserving at points x where the Jacobian of h (the determinant of
the matrix of partial derivatives) is positive and orientation-reversing at points where
the Jacobian is negative. Reflection of points of Rn with respect to a hyperplane (that
is mirror imaging) is an example of an orientation reversing mapping. A projectivity h
from Pn to itself restricts to a mapping from Rn − h−1(L∞) to Rn, where L∞ is the
hyperplane (line, plane) at infinity. Consider the case n = 3 and let H be a 4× 4 matrix
representing the projectivity h. We wish to determine at which points x in R−h−1(L∞)
the map h is orientation preserving. It may be verified (quite easily using Mathematica
[78]) that if Hx̂ = wx̂′ and J is the matrix of partial derivatives of h evaluated at x,
then det(J) = det(H)/w4. This gives the following result.

Proposition4.17. A projectivity h of P3represented by a matrix H is orientation pre-
serving at any point in R3 − h−1(L∞) if and only if det(H) > 0.

Of course, the concept of orientability may be extended to the whole of P3, and it may be
shown that h is orientation-preserving on the whole of P3if and only if det(H) > 0. The
essential feature here is that as a topological manifold, P3is orientable. The situation is
somewhat different for P2, which is not orientable as a topological space. In this case,
with notation similar to that used above, it may be verified that det(J) = det(H)/w3.
Therefore, the following proposition is true.

Proposition4.18. A projectivity h of P2is orientation preserving at a point u in R2 −
h−1(L∞) if and only if w det(H) > 0, where Hû = wû′.

This theorem allows us to strengthen the statement of Theorem 4.5 somewhat.

Corollary 4.19. If h is a quasi-affine transformation of P2with respect to a set of points
{ui} in R2, then h is either orientation-preserving or orientation-reversing at all points
ui. Suppose the matrix H corresponding to h is normalized to have positive determinant
(by possible multiplication by −1) and let Hûi = wiû

′
i. Then h is orientation-preserving

if and only if wi > 0 for all i.

4:6. ORIENTATION 105

An example where Corollary 4.19 applies is in the case where two images of a planar
object are taken from the same side of the object plane. In this case, an orientation-
preserving quasi-affine projectivity will exist between the two images. Consequently, all
the wi defined with respect to a matrix H will be positive, provided that H is normalized
to have positive determinant.

The situation in 3-dimensions is rather more involved and more interesting. Two sets
of points {xi} and {x̄i} that correspond via a quasi-affine transformation are said to
be oppositely oriented if the projectivity is orientation-reversing. This definition extends
also to two strong realizations (P, P ′, {xi}) and (P̄ , P̄ ′, {x̄i}) of a common epipolar con-
figuration (F, {ui}, {u′i}), since in view of Theorem 4.11 the point sets are related via
a quasi-affine transformation. Whether or not oppositely oriented strong realizations
exist depends on the imaging geometry. Common experience provides some clues here.
In particular a stereo pair may be viewed by presenting one image to one eye and the
other image to the other eye. If this is done correctly, then the brain perceives a 3-D
reconstruction of the scene (a strong realization of the image pair). If, however, the two
images are swapped and presented to the opposite eyes, then the perspective will be
reversed – hills become valleys and vice versa. In effect, the brain is able to compute
two oppositely oriented reconstructions of the image pair. It seems, therefore, that in
certain circumstances, two oppositely oriented realizations of an image pair exist. It may
be surprising to discover that this is not always the case, as is shown in the following
theorem.

Theorem4.20. Let (F, {ui}, {u′i}) be an epipolar configuration and let (P, P ′, {xi}) be
a strong realization of (F, {ui}, {u′i}). There exists a different oppositely oriented strong
realization (P̄ , P̄ ′, {x̄i}) if and only if there exists a plane in R3 such that the perspective
centres of both cameras P and P ′ lie on one side of the plane, and the points xi lie on
the other side.

Proof. Consider one strong realization of the configuration. By definition, all the points
lie in front of both cameras. Suppose that there exists a plane separating the points
from the two camera centres. Let G be a projective transformation mapping the given
plane to infinity and let A be an affine transformation. Suppose further that detG > 0
and detA < 0. Let H be the composition H = AG. According to Proposition 4.10
the transformation H is cheirality reversing for the points, since the points are on the
opposite side of the plane from the camera centres. According to Proposition 4.9 A is
also cheirality reversing, since detA < 0. The composition H must therefore be cheirality
preserving, and it transforms the strong configuration to a different strong configuration.
Since H has negative determinant, however, it is orientation reversing, so the two strong
realizations have opposite orientations.

Conversely, suppose that two strong oppositely oriented realizations exist and let H be
the transformation taking one to the other. Since H is orientation reversing, detH < 0.
The mapping H is by definition cheirality preserving on all points, with respect to both
cameras. If π∞ is the plane mapped to infinity by H , then according to Propositions 4.10
the points X must lie on the opposite side of the plane π∞ from both camera centres. �

106

4:7 The Cheiral Inequalities

Several methods ([12, 22, 48]) have been proposed for computing a projective reconstruc-
tion (in our terminology a weak realization) of a scene from a set of point matches. In
section 4:5 a constructive method was given for transforming a weak realization into a
strong one. That method was not very suitable for computer computation. Accordingly,
in this section a straight-forward algorithm will be given for computing a strong realiza-
tion of an epipolar configuration. This will be done by transforming a weak realization
into a strong realization by finding an appropriate transformation.

We start with a weak realization (P, P ′, {xi}) of an epipolar configuration. Let wiûi =
Pxi and w′iûi = P ′xi. We assume that wiw′i has the same sign for all i. By multiplying
the matrix P by −1 if necessary, we may ensure that wiw′i > 0 for all i. Furthermore,
by multiplying xi by −1 if necessary, we may ensure that wi > 0 and hence w′i > 0 for
all i. We will assume that this has been done.

Now, we seek a transformation H that will transform the weak realization to a strong re-
alization. After this transformation, all points will lie in front of both cameras. According
to (4.3) this condition may be written (for camera P)

χ(xi;P)
.= (h4

�xi)(h4
�c)δ > 0

where δ = sign(detH). Similarly, for the other camera, we have

χ(xi;P ′)
.= (h4

�xi)(h4
�c′)δ > 0 .

Since we are free to multiply h4 by −1 if necessary, we may assume that (h4
�c)δ > 0.

From this it follows from the first inequality that h4
�xi > 0 for all i. Then, from the

second inequality, we have (h4
�c′)δ > 0. The total set of inequalities may now be written

:

xi�h4 > 0
δc�h4 > 0
δc′�h4 > 0 (4.4)

These equations (4.4) may be called the cheiral inequalities. Since the values of each xi,
c and c′ are known, they form a set of inequalities in the entries of h4. The value of δ
is not known a priori, and so it is necessary to seek a solution for each of the two cases
δ = 1 and δ = −1.
To find the required transformation H , first of all we solve the cheiral inequalities to find
a value of h4, either for δ = 1 or δ = −1. The required matrix H is any matrix having
h4
� as its last row and satisfying the condition detH .= δ. If the last component of h4

is non-zero, then H can be chosen to have the simple form in which the first three rows
are of the form ±[I | 0].
Theorem 4.16 guarantees that there will be a solution either for δ = 1 or δ = −1. In
some cases there will exist solutions of the cheiral inequalities for both δ = 1 and δ = −1.
This will mean that two oppositely oriented strong realizations exist. The conditions
under which this may occur were discussed in section 4:6.

4:7. THE CHEIRAL INEQUALITIES 107

Solving the Cheiral Inequalities Naturally, the cheiral inequalities may be solved
using techniques of linear programming. As they stand however, if h4 is a solution,
then so is αh4 for any positive factor α. In order to restrict the solution domain to
be bounded, one may add additional inequalities. For instance, if h4 = (v1, v2, v3, v4)�,
then the inequalities −1 < vi < 1 serve to restrict the solution domain to be a bounded
polyhedron.

To achieve a unique solution we need to specify some goal function to be linearized. An
appropriate strategy is to seek to maximize the extent by which each of the inequalities is
satisfied. To do this, we introduce one further variable, d. Each of the inequalities a�h4

of the form (4.4) for appropriate a is replaced by an inequality a�h4 > d. We seek to
maximize d while satisfying all the inequalities. This is a standard linear programming
problem, for which many methods of solution exist, such as the simplex method ([55])6.
If a solution is found for which d > 0 then this will be a desired solution.

4:7.1 Quasi-affine reconstruction

A strong realization of an epipolar configuration is a quasi affine reconstruction, since
it differs from the true scene by a quasi-affine transformation (Corollary 4.12). Quasi-
affine reconstructions of a scene have useful properties such as preservation of complex
hull. Furthermore, computing a quasi-affine reconstruction has been used in [29] as a
preliminary step towards computing a Euclidean reconstruction of a scene from three
views with the same camera. A strong realization of an epipolar reconstruction is a
slightly more restrictive than a general quasi-affine reconstruction, however, as will be
shown now.

The inequalities (4.4) are seen to be of two types. The first inequality involves the points
(one inequality for each i) and the other two involve the camera centres. One sees that
if only the first inequality is satisfied (for all i), but possibly not the ones involving the
camera centres, then the solution is less constrained. Instead of all points lying in front
of both cameras, all points will lie on the same side of each camera. Thus, if δc�h4

� < 0,
then all points will lie behind the first camera, since χ(xi;P) < 0. Thus, solving the first
inequality for all i is equivalent to the first step of the construction given in section 4:5.
Adding the other two inequalities as well is equivalent to carrying out the second step
of section 4:5. Note now that the transformation carried out in the second step is itself
quasi-affine. In fact, referring to Figs 4.5, 4.6 and 4.7 one sees that the plane π∞ does not
separate the point set X . Thus, just by solving the first inequality of (4.4) one obtains a
quasi-affine reconstruction of the point set. However, including the two inequalities for
the camera locations further constrains the reconstruction to bring it closer to the true
Euclidean reconstruction, and so is recommended in most cases.

If one is content with any quasi-affine reconstruction, however, then one can ignore the
two last inequalities in (4.4). An example of when this may be sufficient is when one is
computing the cheiral sequence of a set of points, to be described in section 4:10. In this
case, there is a very simple means of solution. The inequalities that we need to solve
are of the form h4

�xi > 0 for all i. Recall that we are assuming that each wi > 0 and
w′i > 0. This being so, we see that wi = p3

�xi > 0, where p3
� is the third row of

the camera matrix P . Thus, we may choose h4 = p3 as the solution to the inequalities.

6The Simplex algorithm given in [55] is not suitable for use as stands, since it makes the unnecessary
assumption that all variables are non-negative. It needs to be modified to be used for this problem

108

More generally, for any α between 0 and 1, we may choose h4 = αp3 + (1−α)p′3, where
p′3
� is the third row of the other camera matrix P ′. This corresponds precisely to the

construction of Fig 4.4.

In the case where the weak realization is carried out in a way such that P = [I | 0] (for
instance, see the method of [22]), then we have a very easy way to obtain a quasi-affine
reconstruction. In this case we choose h4 = p3 = (0, 0, 1, 0)�, and

H =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

Such an H simply swaps the two last components of any point xi, and the last two
columns of each camera matrix. This gives a very simple way of computing a quasi-affine
reconstruction.

1. Carry out a projective reconstruction of the scene for which the first camera has
matrix P = [I | 0].

2. Swap the last two coordinates of each point xi and the last two columns of each
camera matrix.

Quasi-affine reconstruction using the cheiral inequalities or the simple algorithm just
given extends naturally to reconstruction from several views. There is no analogue of
Theorem 4.16 to ensure a solution in the multi-view case, but of course if the input data
is derived from real data of a real scene, then a solution will exist.

4:8 Which Points are Visible in a Third View

Consider a scene reconstructed from two views. We consider now the question of deter-
mining which points are visible in a third view. Such a question arises when one is given
two uncalibrated views of a scene and one seeks to synthesize a third view. This can be
done by carrying out a projective reconstruction of the scene from the first two views
and then projecting into the third view. In this case, it is important to determine if a
point lies in front of the third camera and is hence visible, or not.

If the third view is given simply by specifying the camera matrix with respect to the
frame of reference of some given reconstruction, then it may be impossible to determine
whether points are in front of the third camera or behind it in the true scene. The basic
ambiguity is illustrated in Fig 4.8.

Knowledge of a single point known to be visible in the third view serves to break the
ambiguity, however, as the following proposition shows. By applying Proposition 4.14 to
the first and third views, one obtains the following criterion.

Proposition4.21. Let points (P 1, P 2, {xi}) be a realization of a set of correspondences
u1
i ↔ u2

i . Let P
3 be the camera matrix of a third view and suppose that wijûi = P ixj for

i = 1, . . . , 3. Then w1
jw

3
j has the same sign for all points xj visible in the third view.

4:8. WHICH POINTS ARE VISIBLE IN A THIRD VIEW 109

X

π∞

P1 P2

P3

Figure 4.8: Visibility. In the reconstruction as shown, the point set X lies entirely in
front of the first two cameras. Thus, this represents a strong realization of the scene
with respect to the first two cameras. As shown, the point set X lies in front of the
third camera. However, if the configuration is subjected to a projective transformation so
that plane π∞ becomes the plane at infinity, then according to Theorem 4.10 the set X
will remain in front of the first two cameras, but will be switched to lie behind the third
camera. With no way of knowing where the plane at infinity lies, one can not determine
whether X lies in front of or behind the third camera.

110

π∞

u1

u2

Figure 4.9: Which points are in front. In the reconstruction shown, point u1 is closer
to the third camera than u2. If, however, we apply an orientation-reversing projective
transformation that maps the plane π∞ to infinity, then the two points will still lie in
front of both cameras, but now point u2 will lie closer to the third camera. This is
because locally the front and back of the cameras will be reversed by the orientation-
reversing transformation. In order to reach u1 from the centre of the third camera,
without crossing π∞ it is necessary to pass through u2 first.

In practice, it will usually be the case that one knows at least on point visible in the
third view. For instance, once a projective reconstruction has been carried out using two
views, the camera matrix of the third camera may be determined from the images of six
or more points by solving directly for the matrix P3 given the correspondences u3

i = P3xi
where points xi are the reconstructed points. This may be done by linear means ([71]).

4:9 Which Points are in Front of Which

When we are attempting to synthesize a new view of a scene that has been reconstructed
from two or more uncalibrated views it is sometimes necessary to consider the possibility
of points being obscured by other points. This leads to the question, given two points
that project to the same point in the new view, which one is closer to the camera, and
hence obscures the other. In the case where the possibility exists of oppositely oriented
quasi-affine reconstructions it may once again be impossible to determine which of a
pair of points is closer to the new camera. This is illustrated in Fig 4.9. If a plane
exists, separating the camera centres from the point set, then two oppositely oriented
reconstructions exist, and one can not determine which points are in front of which.

The sort of ambiguity shown in Fig 4.9 can only occur in the case where there exists
a plane π∞ that separates the camera centres from the set of all visible points. If this
is not the case, then one can compute a quasi-affine reconstruction and the problem is
easily solved. To avoid the effort of computing a quasi-affine reconstruction, however, we
would like to solve this problem using only a projective reconstruction of the scene. How
this may be done is explained next.

The parameter χ defined in Definition 4.2 is used to distinguish the front from the back
of the camera in a Euclidean or quasi-affine frame. It is also useful for determining which
points lie in front of which, as will be seen now. Recall that χ is zero for points x on
the plane at infinity, infinite for points on the principal plane of the camera, positive for
points in front of the camera and negative for points behind the camera. Furthermore,

4:9. WHICH POINTS ARE IN FRONT OF WHICH 111

π∞

χ'>0

χ'=0

 χ >0

χ<0 χ'<0

χ<0

x1

x2

Figure 4.10: Preservation of order of points. This shows the effect of a transfor-
mation with positive determinant taking the plane π∞ to infinity. Both χ (before the
transformation) and χ′ (after the transformation) decrease monotonically along any ray
through the camera centre. We find that χ′(x1) > χ′(x2) if and only if χ(x1) > χ(x2).

given two points in front of the camera, projecting to the same point in the image , the
point with the greater value of χ lies closer to the front of the camera.

The value of χ can be used to parametrize any line in P3through the camera centre.
As one proceeds along the line in the direction of the front of the camera, the value of
χ decreases continuously from infinity at the camera centre, through positive values. It
reaches zero at the plane at infinity, and continues to decrease through negative values
eventually reaching −∞ when the line returns to the camera centre from the rear of the
camera. This is illustrated in Fig 4.10.

Now, if the configuration undergoes a projective transformation H with positive deter-
minant taking the plane π∞ to infinity, then the parameter χ will be replaced by a new
parameter χ′ defined by χ′(x) = χ(Hx;PH−1). Since the transformation is assumed
to have positive determinant, it will preserve the front of the camera locally near the
camera centre (by Theorem 4.10). Now, as one proceeds along the line in the same
direction as before, the parameter χ′ will decrease continuously through positive values
from infinity at the camera centre, reaching zero where the line crosses the plane π∞ and
then continuing to decrease through negative values until the line returns to the camera
centre. Since both χ and χ′ decrease monotonically as one proceeds along the line, one
sees that if x1 and x2 are two points on the line, then χ′(x1) > χ′(x2) if and only if
χ(x1) > χ(x2).

In the case where the projective transformation has negative determinant, then the front
and back of the camera are reversed locally. In this case the direction of increase of the
parameter χ′ will be reversed. In this case χ′(x1) > χ′(x2) if and only if χ(x1) < χ(x2).

If the case where the projective transformation transforms the scene to the “true” scene,
of two points that project to the same point in the image, the one with the higher value
of χ′ is closer to the camera. This leads to the following proposition that allows us to
determine from an arbitrary projective reconstruction which of two points is closer to
the front of the camera.

Proposition4.22. Suppose that x1 and x2 are two points that map to the same point in
an image. Consider a projective reconstruction of the scene and let the parameter χ be

112

defined (by formula (4.1)) in the frame of the projective reconstruction. If the projective
reconstruction has the same orientation as the true scene, then the point that lies closer
to the front of the camera in the true scene is the one that has the greater value of χ.
On the other hand, if the projective transformation has the opposite orientation, then the
point with smaller value of χ will lie closer to the front of the camera in the true scene.

As remarked previously, unless there exists a plane separating the point set from the
cameras used for the reconstruction, the orientation of the scene is uniquely determined,
and one can determine whether the projective transformation of theorem 4.22 has positive
or negative determinant. However, to do this may require one to compute a strong
realization of the configuration by the linear programming method as described in section
4:7. If differently oriented strong realizations exist, then as illustrated by Fig 4.9, there
is an essential ambiguity. However, this ambiguity may be resolved by knowledge of the
relative distance from the camera of a single pair of points.

4:10 3D quasi-affine invariants

One of the important properties of quasi-affine transformations is that they preserve
separation by planes as will be explained next.

Proposition4.23. Let x0 and x1 be two points in space and let π be a plane not passing
through either of the points. Let h be a quasi-affine transformation with respect to the
two points taking xi to x′i and mapping π to a plane π′. Then x0 and x1 lie on the same
side of π if and only if x0 and x1 lie on the same side of π′.

Proof. Let π be represented by a 4-vector v. The points lie on the same side of π if
and only if v�x̂0

.= v�x̂1. Let H represent the projective transformation. Since H is
a quasi-affine we have x̂′i = wiHx̂i where wi has the same sign for i = 0, 1. The plane
represented by v is mapped to the plane represented by v′ such that v′� = v�H−1.
Then v′�x̂′i = (v�H−1)(wiHx̂i) = wiv�x̂i. Since all wi have the same sign, it follows
that v�x̂0

.= v�x̂1 if and only if v′�x̂′0
.= v′�x̂′1, whence the result. �

Given a point set {xi} it results from this proposition that the set of planes that do not
separate the point set is preserved under quasi-affine transformations. Consequently, the
convex hull of a set of points is preserved by quasi-affine transformations as was claimed
in section 4:3.

Proposition 4.23 may be used to define quasi-affine invariant properties of point sets. Let
π be a plane partitioning the point set into two subsets X+ and X−. Applying a quasi-
affine mapping the transformed point set will be partitioned into the same two subsets
by the transformed plane. Thus for each plane π there exists an invariant partitioning
of the set of points. If the partitioning plane is defined in terms of the point set itself
(such as a plane passing through three specified points), then the resulting partition is
invariant under quasi-affine transformation, and may be used for indexing purposes.

4:10.1 An invariant sequence

A way of finding a better invariant plane than the one defined by three points in the set
is now described. We describe this method in general n-dimensional space.

4:10. 3D QUASI-AFFINE INVARIANTS 113

Suppose we are given a set of N ≥ n+2 points {xi}, i = 1, . . . , N in Rn. Let e1, . . .en+2

be points in Rn such that {ei} form a canonical projective basis for Pn. For n = 2,
the points (0, 0)�, (1, 0)�, (0, 1)� and (1, 1)� will do. Assume that the points xi are
numbered in such a way that the first n + 2 of them are in general position (meaning
that no n + 1 of them lie in a codimension 1 hyperplane). In this case, there exists a
projectivity g (not in general quasi-affine) such that g(xi) = ei for i = 1, . . . , n + 2.
Let π∞ = g−1(L∞) be the plane in Rn that is mapped to the plane at infinity by this
mapping, g. The invariant partition that we are interested in is the one defined by the
plane π∞.

We can define the partition more specifically as follows. Let G be a matrix representing
the projective transformation g. For each i we may define points ei such that Gx̂i = ηiêi
where x′i is the image of xi under g. In particular for i = 1, . . . , n+ 2 the points ei are
our canonical projective basis. In this way, the set {xi} is partitioned into those points
for which ηi > 0 and those for which ηi < 0. In exceptional cases the point ei = g(xi)
may lie on the plane at infinity, in which case we set ηi = 0. This invariant partitioning
is of course dependent on the choice of canonical basis {ei}.

The cheiral sequence. We define sign(ηi) to be +1, −1 or 0 according to whether
ηi is positive, negative or zero. The sequence of values sign(ηi) for i = 1, . . . , N is called
the cheiral sequence of the points xi. Except for a simultaneous change of sign of all ηi,
the cheiral sequence is invariant under quasi-affine transformations.

If desired, it is possible to code the values ηi into a single number according to the formula

χ(x1,x2, . . . ,xN) =

∣∣∣∣∣
N∑
i=1

sign(ηi)3i−1

∣∣∣∣∣ (4.5)

The value χ(xi) is invariant under quasi-affine transformation of the ordered set of points
xi.

We now make the assumption that ηi �= 0. In this case the cheiral sequence, along with
the projective invariants of the point configuration, constitute a complete quasi-affine
invariant. This may be stated as follows.

Theorem4.24. Let x1, . . . ,xN be a set of points in Rn, where N ≥ n+2. Suppose that
the first n + 2 of these points form a basis for Pn ⊃ Rn, so that the cheiral sequence
sign(ηi) may be defined as above. Suppose further that for each i we have ηi �= 0. Let
x′1, . . . ,x

′
N be another set of points in Rn, projectively equivalent to the points {xi} via

a projective transformation h. Then h is a quasi-affine mapping if and only ηi
.= η′iε for

some constant ε = ±1.

Proof. Let points ei be defined as in the definition of the cheiral sequence. Further, let g
be a projective transform represented by a matrix G and let ηi be defined by the equation
Gx̂i = ηiêi. Similarly, we may define projective transformation g′ represented by matrix
G′ and values η′i such that G

′x̂′i = η′iêi.

Since the transformation g is defined uniquely by its action on the basis set x1, . . . ,xn+2

we see that g = g′h. Let h be represented by a matrix H , which may be chosen with
the correct sign such that G = G′H . We define constants wi such that Hx̂i = wix̂

′
i. It

follows that ηi = η′iwi, since

ηiêi = Gx̂i = G′Hx̂i = wiG
′x̂′i = wiη

′
iêi .

114

This situation is represented by the following commutative diagram.
xi

x'i

ei
H

G

G'

wi

ηi

η'i

Now, if H represents a quasi-affine transformation, then all wi have the same sign by
Proposition 4.5. We may write wi

.= ε from which one sees that ηi
.= εη′i for all i, and

the cheiral sequences of the points xi and x′i differ at most by a sign change.

Conversely, suppose that ηi
.= εη′i. Then ε

.= ηi/η
′
i, since by hypothesis ηi �= 0, and so

η′i �= 0. On the other hand, from ηi = wiη
′
i we deduce that wi = ηi/η

′
i
.= ε and the wi all

have the same sign, as required. �

This theorem is not true without the assumption that ηi �= 0, as the reader is left to
discover. In practice, because of measurement inaccuracies, it will (virtually) never be
the case that a computed value of ηi will equal exactly 0. Therefore, for readability in
displaying cheiral sequences the practice will be adopted of writing 0 instead of −1, so
that the cheiral sequence becomes a sequence of 0 and 1 values, and may be interpreted
as a binary integer if desired.

4:10.2 The cheiral sequence in two dimensions

To illustrate the principle of the cheiral sequence, we illustrate it for sets of 4 points in the
plane. The interpretation of the cheiral sequence in this way for 2-dimensional sets was
suggested by Charles Rothwell. We assume that no three of the points are collinear. Let
the points be u1, . . . ,u4. We define a particular line in the plane as follows. Denote the
line through two points ui and uj by < ui,uj >. Furthermore, denote the intersection
of two lines by the symbol ×. Thus < u1,u2 > × < u3,u4 > is the intersection of the
line through u1 and u2 with the line through the points u3 and u4.

Now, construct the points p1234 =< u1,u2 > × < u3,u4 > and p1324 =< u1,u3 > × <
u2,u4 >. Then construct the line π =< p1234,p1324 > joining these two points. This
construction is shown in Fig 4.11 for several configurations of four points.

If points ui are the points of a canonical basis with homogeneous coordinates (0, 0, 1),
(1, 0, 1), (0, 1, 1) and (1, 1, 1), then points p1234 and p1324 are two points on the line at
infinity, and so the line π is the line at infinity, denoted L∞. If on the other hand, the
points ui are not the points of this canonical basis, but are mapped to that basis by a
projective transformation h, then the line π is mapped to the line at infinity. Thus, we
have π = π∞ = h−1(L∞), and so π is the line defined in the definition of the cheiral
sequence. If we choose ξi to be ±1 according to which side of π the point ui lies. The
sequence of values ξi is the cheiral sequence. It is invariant up to simultaneous reversal
of all signs. The invariant values are shown in Fig 4.11, where for readability the digit 0
is used instead of −1. The values of ξi are normalized in all cases so that ξ1 = 0.
As seen in the diagram (and proven by Theorem 4.24) the cheiral sequence distinguishes
all non-equivalent configurations of four points. These seven configurations of points

4:10. 3D QUASI-AFFINE INVARIANTS 115

1

2 3

4

(0000)

1

2 4

3

(0011)

1

4 2

3

(0110)

1
4

2

3

(0100)

1
2

4

3

(0001)

2
3

1

4

(0111)

2
1

3

4

(0010)

Figure 4.11: Cheiral sequence in two dimensions. The cheiral sequnece is the se-
quence ξi for i = 1, . . . , 4 where ξi is 0 or 1 according to whether the point ui lies on the
same side or the opposite side of π∞ from u1. Shown are the 7 distinct arrangements of
4 points in the plane.

116

in the plane were also considered by Morin (/citemorin93a,morin94a) who found them
very useful for helping distinguish point sets in the plane using projective invariants. In
that work it was shown that considering the quasi-affine structure (using the present
terminology) of the set of points significantly increased the capability of distinguishing
point sets in the plane as compared with using only projective geometric techniques.

4:10.3 Computation of 3D invariants

Computation of the cheiral sequence of a set of points seen in a set of views is relatively
straight-forward. It takes place in four steps

1. Compute a projective reconstruction of the point set from the images.

2. Transform the projective reconstruction to a quasi-affine reconstruction.

3. Determine the mapping that maps the first five points to the canonical basis ei.

4. Project each point and compute the coefficients ηi.

Many ways ([12, 22, 48]) have been given for carrying out the first step of projective
reconstruction. It will be easiest if one uses a method (for example [22]) that results
in one of the cameras having matrix [I | 0]. Then one carries out the second step of
quasi-affine reconstruction simply by swapping the last two coordinates of each point.
Otherwise, the method of section 4:3 is still fairly straight-forward.

One may ask how many quasi-affinely distinct configurations of five points in space exist,
analogous to the seven configurations of four points in the plane. We ignore configurations
in which four points lie in a plane. In this case, the cheiral sequence of five points is of
length five. Up to a common sign change, there are therefore 16 distinct cheiral sequences
for five points. This gives an upper bound on the number of distinct configurations.

One may get an exact count by enumerating the different possible geometries of the con-
vex hull of the points. As in two dimensions, there are two different types of configuration
– those in which all five points lie on the convex hull, and those in which only 4 points
lie on the convex hull. In this second case the convex hull is a tetrahedron containing
the fifth point in the interior. Corresponding to the five possible choices of which point
is in the interior, there are five possible such configurations.

We now analyze the configurations in which all five points lie on the convex hull. The
convex hull is a polyhedron, bounded by triangular faces, since no four points are copla-
nar. Let n be the number of faces. Since each face has three edges, and each edge
belongs to two faces, we see that there are 3n/2 edges, and so the Euler characteristic of
the polyhedron is 5−3n/2+n = 2, since the boundary of the convex hull is topologically
a sphere. From this it follows that there are n = 6 faces and 9 edges. Since each edge
meets two vertices, the sum of degrees of the vertices must equal 18. Since no vertex can
have degree 5 (there are only five vertices in total), the only possibility is that there are
three vertices with degree 4 and two vertices with degree 3. The polyhedron must have
the shape of two tetrahedra joined along one face. There are 10 possible such configu-
rations corresponding to the 10 different ways of choosing the two vertices with degree
3.

In total therefore there are 15 = 5 + 10 quasi-affinely distinct configurations of five
(numbered) points in three dimensions. Proposition 4.24 shows that these configurations

4:11. EXPERIMENTAL RESULTS 117

may be distinguished by their cheiral sequences. Curiously enough, 15 is one less than
the upper bound of 16 distinct cheiral sequences. Just as in the two dimensional case,
there is one cheiral sequence which can not occur. Does this observation hold in higher
dimensions also ? This question is left for the interested reader to resolve.

4:11 Experimental results

In considering real images of 3-D configurations it is necessary to take into account the
effects of noise. In some cases, a value of ηi used in computing the cheiral sequence will
lie so close to 0 that variations due to noise can swap its sign. For robust evaluation of a
cheiral sequence value, it is necessary to select a noise model and determine how errors
in the input data affect the sign of each ηi. In the following discussion, noise effects are
ignored, however. As usual, cheiral sequences are written using the digit 0 instead of 1̄,
for readability.

In section 3:1 the projective invariants of several point sets associated with three wooden
block house images were computed. The images and results were given in section 3:1.

Although the projective invariants given in table (3.18) in section 3:1 there were quite
effective at discriminating between different point sets, indicated by the fact that most
off-diagonal entries are not close to zero, entries (2, 3) and (3, 2) are small indicating that
the point sets numbered 2 and 3 are close to being equivalent up to projectivity.

Next, the cheiral sequence for each of the point sets were computed from the weak
realization using the method described here. The computed values for each of the six
point sets were as follows. The binary integer interpretation of the cheiral sequence is
given in brackets.

χ(S1) = 011100 = (28)10

χ(S2) = 110000 = (60)10

χ(S3) = 000100 = (4)10

χ(S4) = 111100 = (60)10

χ(S5) = 101010 = (42)10

χ(S6) = 100100 = (36)10

As expected these invariant values were the same whether computed using the first pair
of views or the second pair. Note that the cheirality invariant clearly distinguishes point
sets 2 and 3. Point sets S2 and S4 have the same cheiral sequence, but these are well
distinguished by their projective invariants.

Conclusions : These results show that the cheiral sequence is quite effective at distin-
guishing between arbitrary sets of points. Given the relative ease with which the cheiral
sequence may be computed, it may be extremely useful in grouping points. In addition,
it may conveniently be used as an indexing function in an object recognition system. It
has been demonstrated that the cheiral sequence gives supplementary information that is
not available in projective invariants. As a theoretical tool, the cheiral sequence provides
conditions under which image point matches may be realized by real point configurations.

118

Part V

Reconstruction from Three
Views

119

5:1. TENSOR NOTATION 121

In this part of the report, we turn to consideration of reconstruction from three images.
Though it may be thought that this will be simply an extension of the techniques used for
two views, it turns out that three views give rise to a new and interesting mathematical
theory based around the trifocal tensor. In addition, using three views instead of two
brings in the possibility of using images of lines in the reconstruction instead of only
points.

The trifocal tensor is in some respects analogous to the fundamental matrix which we
have argued is the basis for consideration of pairs of images. It is natural and convenient
to make use of some of the conventions of tensor notation in dealing with the trifocal
tensor, and we will therefore begin with a brief introduction to tensors.

5:1 Tensor notation

Consider a set of basis vectors ei for a vector space. For reasons to become clear, we will
write the indices as subscripts. In what follows, we will be using both upper and lower
indices, and we will make use of the common summation convention for tensors. When
a given index appears as both upper and lower indices in a given expression, summation
over all values of the index is implied.

A point in the vector space spanned by the ei is represented by a set of coordinates ui.
We write the coordinates with an upper index, as shown. Coordinates ui represent the
point u =

∑
i u
iei. Using the summation convention, we may write u = uiei. Now,

consider a change of coordinate axes in which the basis vectors ei are replaced by a new
basis set êj . If hij represent the entries of the transformation matrix, then we may write
this transformation as

êj = hijei , (5.1)

where we have used the summation convention to imply a summation over the repeated
index i.

We may write the vector u in the new coordinate axes as u = ûj êj . The question arises
as to how the new coordinates ûj are related to the old coordinates ui. From (5.1) one
sees that ei = (h−1)ji êj , where h

−1 is the inverse transform to h. Using this relation,
one easily computes that

u = uiei
= ui(h−1)ji êj
= ((h−1)jiu

i)êj

from which we deduce that ûj = (h−1)jiu
i. Thus, the coordinates ui transform accord-

ing to the inverse transform h−1. This fact is expressed by stating that ui transforms
contravariantly. According to (5.1) however, the basis vectors themselves transform ac-
cording to the transformation h. We say that the basis vectors transform covariantly.

As a further example, consider a hyperplane represented by a vector λ = (λi). Here we
use a lower index, since it will be seen soon that λi transforms covariantly with respect
to a change of basis. A point u = (ui) lies on the line λ = (λi) if and only if λiui = 0.
Consider a change of coordinates in which λi is transformed to λ̂j and ui is transformed to
ûj . Since incidence is preserved, we see that λ̂j ûj = 0. However from λiu

i = 0 we deduce

122

λih
i
j û
j = 0 by the transformation rule for ui. From this we deduce that λ̂j = λih

i
j , and

so λi indeed transforms covariantly.

Any indexed set that transforms according to the covariant or contravariant rule given
here is known as a tensor. We distinguish contravariant from covariant tensors by using
either a lower (for covariant) or upper (contravariant) index.

Doubly indexed quantities may be tensors also. As an example, consider a camera
matrix M mapping points xi in world coordinates to points uj in image coordinates.
The indices are written as superscripts, since as we have seen, points are represented
as contravariant vectors. The position of the indices suggests that the camera mapping
should be expressed as

uj = mjix
i .

Where M = (mji). One may in fact verify that m
j
i transforms contravariantly in the

index j and covariantly in the index i. More specifically, if g and h represent changes of
basis in the world and image spaces respectively, and m̂kl represents the transformation
with respect to the new bases, then

m̂kl = (h
−1)kjm

j
ig
i
l . (5.2)

Thus, the camera matrix is an example of a 2-dimensional tensor that is covariant in one
index, and contravariant in the other.

Note that the order of the terms in the product is not important in (5.2) since the
expression represents a sum over repeated indices, each term in the summation being a
product of scalar quantities. Similarly, in tensors having an upper and lower index, such
as mji , there is no concept of an order of the two indices. Thus, we do not consider the
index j as preceding the index i. This contrasts with what occurs with matrix notation.
If the entry of a matrixM is denoted asMij , then i represents the row index and j is the
column index. In this case the order of the two indices is important to distinguish between
row and column index. In the tensor notation mji the two indices are distinguished by
the fact that one is covariant and the other is contravariant, and not by their order.

It is possible to have tensors with multiple indices – we will see three and four-index
tensors later on. In such cases the order of the set of covariant indices is important, as is
the order of the contravariant indices. There is no order relationship, however, between
covariant and contravariant indices.

5:2 Reconstruction from Three Views

This section discusses the basic role of the trifocal tensor in scene reconstruction from
three views. This 3 × 3 × 3 tensor plays a role in the analysis of scenes from three
views analogous to the role played by the fundamental matrix in the two-view case.
In particular, the trifocal tensor may be computed by a linear algorithm from a set of
13 line correspondences in three views. It is further shown in this section, that the
trifocal tensor is essentially identical to a set of coefficients introduced by Shashua to
effect point transfer in the three view case. This observation means that the 13-line
algorithm may be extended to allow for the computation of the trifocal tensor given any
mixture of sufficiently many line and point correspondences. From the trifocal tensor
the camera matrices of image may be computed, and the scene may be reconstructed.
For unrelated uncalibrated cameras, this reconstruction will be unique up to projectivity.

5:2. RECONSTRUCTION FROM THREE VIEWS 123

Thus, projective reconstruction of a set of lines and points may be carried out linearly
from three views.

This section gives an effective algorithm for the projective reconstruction of a scene con-
sisting of lines and points in space as seen in three views with uncalibrated cameras. The
placement of the cameras with respect to the scene is also determined. This algorithm
is unique in the literature in that it gives a unified linear approach that can deal with
a mixture of points and lines. For instance, previous algorithms have been specific to
points ([42, 36, 37]) or lines ([70, 77]), but could not handle both. True, one could always
use pairs of matching points to determine line matches, which can then be used in an
algorithm for reconstruction from lines. This stratagem, however, achieves a unified ap-
proach for lines and points at considerable expense, since a pair of point matches contains
much more information than a single line match (as will be made clear quantitatively in
this section). The restraint of using only points or lines forces one to ignore important
information available in most images, particularly of man-made objects, since typically,
one can find both distinguished points and lines in matching images.

Points are important in that they give much more information than lines. For instance
although one can do relative reconstruction from only two views of a set of points ([42]),
for lines at least three views are necessary ([77]). On the other hand, lines have several
advantages. Firstly, they can normally be determined more accurately than points, often
with an accuracy of better than a tenth of a pixel. Secondly, line matches may be used in
cases where occlusions occur. Often end points of lines are not visible in the images. For
instance, in Fig 5.1, the left hand slanting roof edge of the rear house may be matched
in the three images, although its end point is occluded behind the front house. On the
other hand, if we are to use line matches, then at least three views must be used, since
no information whatever about camera placements may be derived from any number of
line-to-line correspondences in fewer than three views.

Outline. The key observation of this section is the connection (see equation (5.9))
between Shashua’s 3-view trilinearity relationships ([65]) and 7-point algorithm and the
previously published ([24, 31]) algorithm for projective reconstruction from lines. It
immediately follows from that observation that one can amalgamate the two algorithms
into one. This means that one can non-iteratively carry out projective reconstruction
from three views of 7 points, or 13 lines or anything in between (so to speak). Projective
reconstruction from 7 lines in three views was lurking behind Shashua’s work, but never
explicit previously.

In order to derive this key observation, we rederive Shashua’s trilinearity relationships
and place them in the standard context of projection using camera matrices. The hope
hope is that this rederivation has the merit of throwing further light on the meaning of
those relationships.

We take the opportunity in section 5:2.7 to provide a better method of determining the
camera matrices than the one that previously published in [31]).

5:2.1 The Trifocal Tensor

A basic tool in the analysis of this section is an entity called, here for the first time, the
trifocal tensor. Since this entity has appeared previously in the literature in different
guises, and it is therefore appropriate to discuss its history. With hindsight, we may

124

attribute the discovery of the trifocal tensor to Spetsakis and Aloimonis ([70] and Weng,
Huang and Ahuja ([77]), where it was used for scene reconstruction from lines in the
case of calibrated cameras. It was later shown by the present author in [21, 24, 31] to
be equally applicable to projective scene reconstruction from 13 lines in the uncalibrated
case. Those papers form the basis for part of this article. In all of the above papers, the
entity referred to here as the trifocal tensor was not considered as a tensor, but rather
as a set of three 3 × 3 matrices. Perhaps the first author to refer to it as a tensor was
Vieville ([76]) who continued the work on scene reconstruction from lines.

Meanwhile in independent work, Shashua introduced a set of 27 coefficients for a set of
four independent tri-linearity conditions relating the coordinates of corresponding points
in three views with uncalibrated cameras ([65]). Subsequently ([66]) Shashua gave a
linear method for computation of the coefficients from only 7 point matches in three
views.

A key result of this section is that the set of coefficients introduced by Shashua ([65])
are exactly the same as the entries of the three 3× 3 matrices of ([77, 24]), except for a
change of sign7 and rearrangement of the indices. The importance of this result is that
it allows an amalgamation of the linear algorithms for points (Shashua [66]) and for lines
([31]). This results in an algorithm of significantly greater applicability and power than
either of the line or point algorithms alone.

Whereas the line papers [77, 24, 31] consider three 3×3 matrices, Shashua’s paper defines
his coefficients as the entries of nine 3-vectors. In fact, essentially, we are dealing with
a triply indexed 3 × 3 × 3 array of values, which it is natural to treat as a tensor, as
suggested by Vieville. Therefore, in this report, we refer to this three-dimensional array
as a tensor, though without making significant use of tensor notation or machinery. In
recent unpublished work, Shashua has also considered his set of coefficients as a tensor.
As for the name, we suggest the words trifocal tensor in an attempt to establish a standard
terminology. Despite the potentially fundamental role played by this tensor in three-view
stereo, we believe that the word fundamental is too often used for us to adopt the term
fundamental tensor.

5:2.2 Notation and Basics

We adopt the tensor summation convention, which we repeat here for emphasis.

Any repeated index in a product of vectors, matrices and tensors implies
a summation over the range of index values. If the index range is not the
same in both instances of the repeated index (as happens occasionally), then
summation over the intersection of the two ranges is implied. Any formula
involving indices is intended to hold for any choice of values of the free indices
(which means those indices that are not repeated).

The three-dimensional space containing the scene will be considered to be the 3-
dimensional projective space P3 and points in space will be represented by homogeneous
4-vectors x. Similarly, image space will be regarded as the 2-dimensional projective space

7In order to avoid the sign discrepancy, Shashua’s coefficients will be defined with opposite sign in
this report

5:2. RECONSTRUCTION FROM THREE VIEWS 125

P2 and points in an image will be represented by homogeneous 3-vectors u. Homoge-
neous quantities (vectors, matrices or tensors) that differ by a non-zero scale factor are
considered to be equal. In this section, we use the symbol ≈ to indicate equality up to
a constant non-zero scale. This is necessary, since we want to keep clear the distinction
between quantities that are equal and those that are equal up to a constant factor.

The space-image mapping induced by a projective camera may be represented by a 3×4
matrix M = [mij] of rank 3, such that if x and u are corresponding object and image
points then u ≈ Mx, or in tensor notation, ui ≈ mijxj . Such a matrix will be called
a camera matrix. One special camera matrix is denoted by [I | 0], made up of a 3 × 3
identity matrix I and a final zero column.

Normal Form for Camera Matrices. Consider a set of lines and points in space
viewed by several cameras. We use the word feature to represent either a line or a point.
We suppose that the image coordinates of each feature as seen in each image are given,
but the actual positions of the features in space are unknown. The task of projective
reconstruction is to find a set of camera matricesMj and 3D-lines and points so that each
such 3D feature is indeed mapped to the given image feature in each of the images. If the
camera matrices are allowed to be arbitrary, then we have seen that the scene can not
be reconstructed more precisely than up to an arbitrary 3D projective transformation.

Consider now a reconstruction from three views, and let the three camera matrices be
M , M ′ and M ′′. We make the assumption that no two of the cameras are located at the
same point in space. Let H be formed by adding one extra row to M to make a non-
singular 4 × 4 matrix. Then since HH−1 = I4×4, it follows that MH−1 = (I|0). Since
M may be transformed to [I | 0], by applying transformation H to the reconstruction
we may assume without loss of generality that M = [I | 0].
To save the reader the trouble of having to count primes, we denote the entries of the
camera matricesM ′ andM ′′ by aij and b

i
j respectively, instead of by m

′i
j and m

′′i
j . Thus,

the three camera matrices M , M ′ and M ′′ may be written in the form M = [I | 0],
M ′ = [aij] and M

′′ = [bij]

5:2.3 Transferring lines

In this section we investigate the relationship between the images of a line as taken by
three separate cameras.

Given a general camera matrix (for instance M) and a line in the image (let it be λ),
the projection of the line from the camera centre forms a plane in space consisting of all
points in space that will map onto the given image line. We need to derive a formula for
that plane. The simple answer is as follow.

Proposition5.1. The plane in space consisting of all points that are mapped to a line λ
by a camera with matrix M is equal to π =M�λ.

Proof. By definition, a point x is on the plane π if and only if Mx lies on the line λ.
This latter condition can be expressed as x�M�λ = 0. On the other hand, x lies on π
if and only if x�π = 0. Hence, we see that x� = 0 if and only if x�M�λ = 0, and from
this we deduce that π =M�λ as required. �

126

In tensor notation we may write this expression as

πj = mijλi .

Now, given three cameras with matricesM = [I | 0],M ′ = [aij] andM ′′ = [bij], and three
lines λ, λ and λ′′ in the three images, we seek a relationship between the coordinates
of the three lines. Since the three image lines are derived from a single line in space, it
follows that the planes corresponding to the three image lines must meet at this line in
space. In particular, the three planes M�λ, M ′�λ′ and M ′′�λ′′ meet in a line. Writing
the coordinate vectors of these three planes as the rows of a matrix we obtain

 λ1 λ2 λ3 0
aj1λ
′
j aj1λ

′
j aj3λ

′
j aj4λ

′
j

bk1λ
′′
k bk2λ

′′
k bk3λ

′′
k bk4λ

′′
k

 . (5.3)

In writing this matrix, we have taken particular note of the simple form of the matrix
M = [I | 0]. Since the three planes meet in space, there is a linear dependency between
the rows of this matrix (5.3). Because of the zero entry in the top row, we deduce that

λi ≈ ajiλ
′
jb
k
4λ
′′
k − a

j
4λ
′
jb
k
i λ
′′
k

= λ′jλ
′′
k(a

j
i b
k
4 − a

j
4b
k
i)

Now, we define a 3× 3× 3 tensor T jki by the expression

T jki = aji b
k
4 − a

j
4b
k
i . (5.4)

Then we have the following formula.

λi ≈ λ′jλ′′kT
jk
i . (5.5)

The tensor T jki is the trifocal tensor, which is the basic entity investigated in this section.
Formula (5.5) has been derived previously in [77, 70] for the special case of calibrated
cameras. The above derivation shows how generalization to the case of uncalibrated
cameras leads to a simplification of the derivation.

Given T jki and the coordinates of matching lines λ′ and λ′′, expression (5.4) may be used
to compute the line in the other image. The application of this process, know as line
transfer will not be investigated in this report. Point transfer, the analogous process for
points has been explored in [2, 65] and will be mentioned taken up later in this report.
Once again, the trifocal tensor will be shown to be the fundamental entity for point
transfer.

We describe now a first method for determining the fundamental tensor. If at least 13 line
matches λ↔ λ′ ↔ λ′′ are known, it is possible to solve for the entries of the tensor T jki ,
since each line match provides two linear equations in the 27 unknown tensor entries. In
particular, if the line λ is presented by specifying the two endpoints, then each endpoint
u = (u1, u2, u3) gives rise to an equation

uiλ′jλ
′′
kT
jk
i = 0 (5.6)

To normalize these equations, the line λ′ (and similarly λ′′) should be scaled so that
λ′21 + λ′22 = 1 , and each end point u should be scaled so that u3 = 1.

5:2. RECONSTRUCTION FROM THREE VIEWS 127

5:2.4 Transferring Points.

In this section we will investigate the relationship of the trifocal tensor with point-transfer
methods, and in particular with the trilinearity relationships of Shashua.

Suppose that a point x in space is seen in three images, and that as usual the three
cameras are given in the normalized form M = [I | 0], M ′ = (aij) and M ′′ = (bij).
We suppose that the point x is seen at positions u, u′ and u′′ in the three images, where u
(and similarly u′ and u′′) is a 3-vector u = (u1, u2, u3), the representation of the point in
homogeneous coordinates. The coordinates (u1/u3, u2/u3) are the coordinates actually
seen in the image. We wish to find a relationship between the coordinates of the points
u, u′ and u′′. At any point in the following derivation, we may set u3, u′3 or u′′3 to 1 to
obtain equations relating to measured image coordinates.

Because of the form of the matrix M = [I | 0], it is extremely simple to give a formula
for the position of the point in space. In particular, since [I | 0]x ≈ u, we may write

x =
(
u
t

)
for some t, yet to be determined. It may be verified that t is the same as the

“relative affine invariant”, k, considered by Shashua ([65]). Now, projecting this point
into the second image by the usual formula u′i ≈ aijxj gives

u′i ≈ aikuk + ai4t

The notation ≈ denotes equality up to an unknown scale factor. We may eliminate this
scale factor to obtain equations

u′i(ajku
k + aj4t) = u′j(aiku

k + ai4t)

where each choice of the free indices i and j gives a separate equation. Of the three re-
sulting equations, only two are independent. From each of these equations independently,
one may compute the value of t. We obtain three separate estimates for t.

t = uk(u′iajk − u
′jaik)/(u

′jai4 − u′ia
j
4) (5.7)

Substituting the value of t from (5.7) we see that the point x may be written as

x =
(

u
uk(u′iajk − u′jaik)/(u′jai4 − u′ia

j
4)

)

≈
(
(u′jai4 − u′ia

j
4)u

uk(u′iajk − u′jaik)

)

Now, projecting this point via the third camera, u′′l ≈ blkxk we find that

u′′l ≈ blku
k(u′jai4 − u′ia

j
4)

+ bl4u
k(u′iajk − u′jaik)

≈ uku′i(ajkb
l
4 − a

j
4b
l
k)

− uku′j(aikb
l
4 − ai4blk) (5.8)

Now, referring to (5.4), we recognize the tensor coefficients T jki in this expression :

128

u′′l ≈ uk(u′iT jlk − u′jT ilk) (5.9)

As before we may eliminate the unknown scale factor implied by the ≈ sign to get (after
some slight rearranging) the equations

uk(u′iu′′mT jlk − u′ju′′mT ilk) =
uk(u′iu′′lT jmk − u′ju′′lT imk) . (5.10)

These are the trilinearity relationships of Shashua ([65]). In these equations, the indices
i, j, l and m are free variables, and there is one equation for each choice of indices with
i �= j and l �= m. Since we get the same relation by interchanging i and l, or l and m, we
may assume that i < j and l < m. There are therefore 9 different equations defined by
this expression. However, only two of the three choices of pair (i, j) given independent
equations, and the same is true for pairs (l,m). Hence, there are 4 independent equations.

One choice of the four independent equations is obtained by setting j = m = 3, and
letting i and l range freely. As stated previously, we may set u3, u′3 and u′′3 to 1 to
obtain a relationship between observed image coordinates. The equations then become

uk(u′iu′′lT 33
k − u′′lT i3k − u′iT 3l

k + T
il
k) = 0 . (5.11)

The four different choices of i, l = 1, 2 give four different equations in terms of the
observed image coordinates.

Given 7 point correspondences, we have 28 equations, which is enough to solve for the ten-
sor values T jki . Shashua states that better results are obtained by including 6 equations
for each point match. The experiments reported in a later section use all 9 equations,
but it is not clear how much advantage (if any) this gives.

5:2.5 Solving using lines and points.

We have seen that the entries of the trifocal tensor, T occur in equations involving
both points (5.11) and lines (5.6). This has the significant implication that we may
amalgamate the line and point algorithms into one algorithm. In particular, each line
correspondence λ↔ λ′ ↔ λ′′ gives two linear equations in the entries T jki , whereas each
point correspondence gives four linear equations. Therefore, provided that 2#lines +
4#points ≥ 26 we have sufficiently many matches to solve for the T jki . The tensor
entries T jki are found up to a common scale, and we find a solution such that sum of
squares of the entries is one, in symbols T jki T

jk
i = 1. In the case where there are more

than 26 equations, we find a least-squares solution satisfying this constraint.

The set of equations we construct are of the form, At = 0, where A is the equation matrix
and t is a vector containing the elements of T jmi to be found. We are not interested in
the solution t = 0, and to avoid ambiguity, we impose the constraint ||t|| = 1. Since we
do not expect an exact solution, our task is to minimize the quantity ||At|| subject to
this constraint. The solution to this problem is easily seen (using Langrange multipliers,
for instance) to be the unit eigenvector corresponding to the least eigenvalue of A�A.
Being symmetric and positive definite, A�A has only real positive eigenvalues. A good
algorithm for finding this eigenvector is the method of Jacobi ([55]).

5:2. RECONSTRUCTION FROM THREE VIEWS 129

Normalization. Before setting out to write and solve the equations, it is a very good
idea to normalize the data by scaling and translating the points. The algorithm does not
do well if all points are of the form (u1, u2, u3) in homogeneous coordinates with u1 and
u2 very much larger than 1. A heuristic that works well is to translate the points in each
image so that the centroid of all measured points is at the origin of the image coordinates,
and then scaling so that the average distance of a point from the origin is

√
2 units. In

this way the average point will be something like (1, 1, 1) in homogeneous coordinates,
and each of the homogeneous coordinates will be approximately of equal weight. This
transformation improves the condition of the matrix of equations, and leads to a much
better solution. Despite the seemingly harmless nature of this transformation, this is an
essential step in the algorithm.

This normalization step has also been shown (in unpublished work) to be effective in the
two-camera case for determining the fundamental matrix.

5:2.6 Retrieving the Camera Matrices

Formula (5.4) gives a formula for the trifocal tensor T jki in terms of the camera matrices.
It is possible to go the other way and retrieve the camera matrices, M ′ andM ′′ from the
tensor T jki .

This is done in two stages. In the first stage, one finds the vectors ai4 and b
i
4 (that is,

the last columns of M ′ and M ′′). As shown in [24, 31], vectors ai4 and bi4 may be found
as the common perpendiculars to the left (respectively, right) null-spaces of the three
matrices, T ij1 , T

ij
2 and T ij3 . In the second stage, one finds the remaining entries.

Closed form solution. In [31] closed form formulas were given for M ′ = (aij) and
M ′′ = (bij). For i, j = 1, . . . , 3 we have

aij =
∑
l(T

il
j − ai4ak4T klj)bl4

bij =
∑
k−T kij ak4

(5.12)

This closed form method of determining M ′ and M ′′ was evaluated in [31]. By carefully
examining the results of that method, it has subsequently been found that using these
formulae to determine M ′ and M ′′ is very unstable in the presence of noise, and hence
is not recommended.

The direct method If ai4 and b
i
4 and T

jk
i are all known, the equations (5.4) form a

redundant set of linear equations in the remaining entries of the matricesM ′ andM ′′. We
may solve these equations using linear least-squares methods ([55, 1]) to find M ′ = (aij)
and M ′′ = (bij). Unfortunately, this method does not seem to give any better results
than the closed form solution. In is also not recommended. The reason that this method
gives poor results is that the trifocal tensor, T jki contains small as well as large entries,
differing by several orders of magnitude. The small entries are however important, and
a changes in the large entries are less significant than changes of equal magnitude in the
small entries. Thus, a method that weights changes to all the entries of T jki equally (as
the direct method does) gives bad results.

130

The recomputation method. A third method is to go right back to the equations
(5.6) and (5.11) and substitute the formula (5.4) to get equations in terms of aij and
bij . Now that a

j
4 and b

j
4 are known these equations are linear in the remaining a

i
j and

bij . Since we have already gone to a lot of trouble to find T
jk
i we do not want to carry

out an equivalent amount of work (in terms of run time, and also coding time) to do
much the same computation again. Therefore, one can take advantage of the previous
computation of T jki as follows.

The tensor T jki was found by solving a system of equations At = 0 where t was a vector
comprising the desired elements of T jki . In solving these equations using the method
of Jacobi (see section 5:2.5) one computed the symmetric positive definite matrix A�A.
This matrix A�A will be required for the current step, and hence should have been
retained. Now, the equations (5.4) express t as a linear function of the values aij and
bij for i, j = 1, . . . , 3. This can be expressed as an equation t = Hy where y is the
vector of the entries aij and b

i
j that we are seeking, and H is the linear relationship

expressed by (5.4). To find y, we need to solve the equations AHy = 0. More exactly,
our task is to minimize ||AHy|| subject to the constraint ||y|| = 1. The solution is
the eigenvector corresponding to the least eigenvalue of H�A�AH . Since we already
have the matrix A�A we do not need to recompute it. The required eigenvector may be
computed using the method of Jacobi. In this way we compute the remaining value of
the camera matrices.

Unfortunately, there is one small problem which causes an instability in this method
as just described. In particular, it may be verified that the values of aij and b

i
j are not

uniquely determined by T jki . In particular, if a
i
j is replaced by a

i
j+αja

i
4 for any vector αj ,

and similarly bij is replaced by b
i
j+αjb

i
4 for the same αj , then the value of T

jk
i defined by

equation (5.4) is unchanged. This means that the matrix H described above is not of full
rank, and consequently the matrix H�A�AH will have a multidimensional eigenspace
corresponding to the eigenvalue 0. This means that the solution found will be unstable.
This may not be a significant problem, since any solution found by this method will be
a valid solution, giving one solution for the camera matrices. Nevertheless, I prefer to
constrain the solution by adding constraints on the entries aij and b

i
j so as to ensure a

stable solution.

One method of constraining aij is by specifying that a
i
ja
i
4 = 0. This gives three con-

straints, one for each value of j = 1, . . . , 3, which may be interpreted as meaning that
4-th column of M ′ = (aij) is orthogonal to all the other columns. One may verify that
this condition is achieved by a suitable choice of the vector αj in the last paragraph
(in particular, setting αj = −aijai4). The condition aijai4 = 0 gives a set of three linear
constraints.

The task of solving for aij and b
i
j is therefore a constrained minimization problem of the

form: minimize ||AHy|| subject to ||y|| = 1 and Cy = 0, where C is a matrix of linear
constraints. This problem may be solved as follows. Let C = UDV � be the Singular
Value Decomposition of C, written with non-zero singular values (the diagonal entries of
D) occurring before the zero ones. Let V ′ be the matrix obtained from V by eliminating
the first 3 columns (or more generally r columns where r is the rank of C). Let y′ be
the eigenvector corresponding to the minimum eigenvalue of V ′�H�A�AHV , and let
y = V ′y′. Then y is the required vector solving the constrained minimization problem,
as may be verified. Since this is a critical step in reconstruction, we summarize the

5:2. RECONSTRUCTION FROM THREE VIEWS 131

algorithm :

Algorithm for computing camera-matrices from T jki .

1. Retain the matrix A�A used to solve the set of equations At = 0 where t is the
vector containing the entries of T jki

2. Compute the set of equations t = Hy from (5.4), where y is the vector of still
unknown entries of aij and b

i
j.

3. Compute the matrix C such that Cy = 0 expresses the three constraints aija
i
4 = 0.

4. Compute the Singular Value Decomposition C = UDV �, and let V ′ be the matrix
obtained from V by eliminating the first three columns.

5. Find
the eigenvector y′ corresponding to the smallest eigenvalue of V ′�H�A�AHV ′

.

6. The required set of 18 values aij and b
i
j are contained in the vector y = V ′y′.

Since this algorithm is more complicated than either of the two previous algorithms
(closed-form solution, and direct linear solution) it is comforting to verify that it performs
at least 10 times better (in terms of measured errors) than they do. Therefore, the two
earlier algorithms may be consigned to the scrap heap.

5:2.7 Reconstruction

Once the camera matrices are computed, it is a simple task to compute the positions of
the points and lines in space. Different ways in which this may be done for points are
described in [33]. For lines, a method was described in [24, 31]

5:2.8 Algorithm Outline

To tie together all the threads of the reconstruction algorithm, an outline will now be
given. As input to this algorithm, we assume as set of point-to-point image correspon-
dences, each one of the form u↔ u′ ↔ u′′, and a set of line correspondences of the form
λ↔ λ′ ↔ λ′′, where # lines + 2 ∗# points ≥ 13. The lines are assumed to be specified
by giving the two end points of each line. The steps of the algorithm are as follows.

1. Coordinate scaling and translation. For each image separately, translate and
scale the coordinates of the points such that the centroid of all given coordinates
is at the origin, and the average distance of a point from the origin is

√
2.

2. Computing and normalizing the lines. Each line λ′ and λ′′ is computed from
its endpoints, and normalized.

3. Construct the equations. For each line correspondence, construct a pair of
equations of the form (5.5) in the entries of the tensor T jki . Similarly, for each point
correspondence, construct four equations of the form (5.11) also in the entries of
tensor T jki .

132

4. Finding the trifocal tensor. Solve the set of equations to find an estimate of
T jki .

5. Computation of the epipoles. Find ai4 and b
i
4 as the common normal to the

left (respectively, right) null spaces of the three matrices T ij1 , T
ij
2 and T ij3 .

6. Computation of the Camera Matrices. Solve for the remaining entries aij
and bij using the method given in section 5:2.6

7. Reconstruction. Given the camera matrices, the points may be reconstructed
using the triangulation methods of [33]. The lines may be reconstructed as de-
scribed in section 5:2.7.

8. Unscaling The effect of the initial scaling and translation of the images may be
undone by replacing the image coordinates by their original values, and making a
corresponding adjustment to the computed camera matrices.

5:2.9 Experimental Evaluation of the Algorithm

This algorithm has been tested with synthetic and real data. First I describe the tests
with synthetic data. A program was written to generate synthetic data, approximating
the sort of data that would be taken with a 35mm camera with a standard 50mm lens.
The images measured about 600×600 pixels. Between 0 and 10 pixels of noise was added
to all three images.

Evaluation of the performance of this algorithm is still continuing, so we give here only
a sample of the results obtained. The findings of the experiments will be given in the
captions of the following graphs. The error is given in terms of residual 2D error, that is
the RMS distance between the original points and the projection of the points obtained
by reconstruction. Although this gives only an indirect measurement of the quality of
the reconstruction, if the error is of the same order as the injected noise, then this is a
good indication that the reconstruction is very good. The graphs all show injected noise
on the horizontal axis, and residual error on the vertical axis.

Graph 1 : Residual error for 10 points. This algorithm shows the results of recon-
struction with ten points in three views. The upper curve is the linear algorithm, and

5:2. RECONSTRUCTION FROM THREE VIEWS 133

Figure 5.1: Figure 1: Three photos of houses

the lower curve is the iterative refinement. The residual errors are substantially smaller
than the injected noise. The algorithm works well with as much as 10 pixels noise in
each axial direction.

Graph 2 : 7 points and 10 lines. The curves show the results both of the iterative
algorithm and those obtained after iterative refinement of the results, using a Levenberg-
Marquardt iterative least-squares algorithm. The graphs from the bottom are iterative
algorithm line errors, iterative algorithm point errors and then linear algorithm line errors
and point errors overlapping. The results after refinement are excellent, with the residual
error being substantially less than the injected noise. The linear algorithm does not do
quite so well, but the results are good, especially for noise levels less than 4 pixels.

Next, we consider data obtained from a set of three images of a pair of wooden houses,
shown in Fig 5.1. The dimension of the images was 640 × 480 pixels. The points and
edges were extracted automatically and then matched between the images by hand. The
coordinates of the image features were then corrected so that the match corresponded
precisely with the projection model. This was so that noise could subsequently be injected
in a controlled manner. There were a set of 15 lines and 13 points identifiable in the two
images.

134

Graph 3 : Synthetic house data - linear. This shows the residual error resulting
from injection of data into the image measurements. The bottom curve shows the line
error and the top curve, the point error. For the case of 8 pixels noise, the algorithm
evidently hiccuped.

Graph 4 : Synthetic house data - iterative This shows the results obtained after
refining the linear result with using Levenberg-Marquardt. Once more, the bottom curve
represents the errors for lines. The results are very good, and the glitch is removed.

5:2. RECONSTRUCTION FROM THREE VIEWS 135

Graph 5 : Synthetic house data - comparison This compares the iterative (lower)
and linear methods. Except for the case of 8 pixels, where the linear algorithm deviated
slightly, there is very little difference. This indicates that the linear algorithm is very
nearly as good as the optimum least-squares solution.

Finally, the algorithm was run with the real uncorrected image data for the houses. The
resulting errors were

1. For the linear algorithm : 1.05 pixels error for points, and 1.06 pixels for lines.

2. For the iterative refinement : 0.87 pixels for points, and 0.67 pixels for lines.

Thus, at least expressed in terms of residual error, we have achieved a very good recon-
struction using the linear-algorithm, not very significantly improved using the iterative
least-squares methods.

5:2.10 Lines specified by several points

In describing the reconstruction algorithm from lines, we have considered the case where
lines are specified by their two end-points. Another common way that lines may be
specified in an image is as the best line fit to several points. It will be shown now how
that case may easily be reduced to the case of a line defined by two end points. Consider
a set of points ui in an image, and let λ = (λ1, λ2, λ3)� be a line, which we suppose is
normalized such that λ2

1 + λ2
2 = 1. In this case, the distance from a point ui to the line

λ is equal to ui�λ. The squared distance may be written as d2 = λ�uiui�λ, and the
sum-of-squares of all distances is

∑
i

λ�uiui�λ = λ�(
∑
i

uiui�)λ .

The matrix E = (
∑
i uiui

�) is positive-definite and symmetric.

As in the standard method for line-fitting, we may compute the line that minimizes
the sum-of-squares distance λ�Eλ as follows. The line in question will be the one that
minimizes λ�Eλ subject to the condition λ2

1 + λ2
2 = 1. Using the method of Lagrange

136

multipliers, this comes down to minimizing λ�Eλ− ξ(λ2
1+λ

2
2), where (since the conven-

tional symbol λ is already in use) we denote the Lagrange coefficient by ξ. Now, taking
the derivative with respect to λ and setting it to zero, we find that

2Eλ− ξ

 2λ1

2λ2

0

 = 0 .

This may be written as (E−ξJ)λ = 0. The minimizing solution is the line λ correspond-
ing to the minimum root of the equation det(E − ξJ) = 0. Let this minimum root be
ξ0.

Now, E − ξ0J being symmetric and positive semi-definite may be written in the form
E − ξ0J = V diag(r, s, 0)V � where V is an orthogonal matrix and r and s are positive.
It follows that

E − ξ0J = V diag(r, 0, 0)V � + V diag(s, 0, 0)V �

= rv1v1
� + sv2v2

�

where vi is the i-th column of V . Therefore E = ξ0J + rv1v1
�+ sv2v2

�. If (as we have
assumed) λ2

1 + λ
2
2 = 1, then∑

i

(ui�λ)2 = λ�Eλ

= ξ0 + (
√
rv1
�λ)2 + (

√
sv2
�λ)2 .

Thus, we have replaced the sum-of-squares of several points by a constant value ξ0, which
is not capable of being minimized, plus the weighted sum-of-squares of the distances to
two points v1 and v2.

In constructing the equations (5.6) for a line defined by a set of point, we use the pair of
equations

√
rv1
�λ = 0

√
sv2
�λ = 0 (5.13)

where λ defined by (5.5) is the transferred line. Similarly, in a full LM minimization, we
may consider the line to be defined by the two weighted end points,

√
rv1 and

√
sv2.

5:2.11 Conclusions

The algorithm described in this section is unique in that no other linear method is known
for handling both lines and points in a single non-iterative approach. The results obtained
show indicate that this algorithm behaves very well in the presence of moderate amounts
of noise. Compared with the two-view case, in which linear methods (such as the 8-point
algorithm of Longuet-Higgins [42]) are quite sensitive to noise, the present algorithm
gives superior results. This improvement may be attributed to the stabilizing influence
of a third image. Shashua has made a similar observation ([66] and conversations). The
advantage that this algorithm has over two view algorithms is that it applies to lines
as well. Lines in images may often be computed with great precision. On the other
hand, the algorithm benefits from the presence of points in the input data. The results

5:3. MULTILINEAR RELATIONS 137

obtained using this algorithm are much better than those that I obtained previously with
just lines. This is due to the use of mixed point and line data, and also to the improved
algorithm for extracting the camera matrices, reported in section 5:2.6.

There are a few points that merit further investigation regarding this algorithm. The
method for extracting the epipoles is probably the weak point of the algorithm, in that
one must solve three consecutive linear equation sets in a row in order to find the epipoles.
This is probably susceptible to noise degradation. Possibly better methods of finding the
epipoles given three views may be found.

A second point regards the relative weighting of the line and point equations. The method
of normalization of the data give some degree of standardization here, but since the two
types of equations are derived separately, there is no obvious way to weight them so as to
give equal emphasis to each sort of equation. At present, the algorithm seems to favour
the lines, since residual line errors typically are smaller. Experiments with an adaptive
weighting scheme are in progress.

The trifocal tensor seems to be a basic object in the analysis of the three-view situation.
Apart from the use here described in projective scene reconstruction, it has also been
used for point transfer and object recognition ([65]), and is suitable for line transfer as
well, as shown in this section. Just as the fundamental matrix neatly encapsulates the
geometry of the two-view case, the trifocal tensor serves a similar purpose for three views.

Finally, the perception of T jki as a tensor (properly due to Vieville [76] and Shashua)
though perhaps only a notational device, eases the formalism involved in the analysis.

5:3 Multilinear Relations

The fundamental matrix F and the trifocal tensor may be derived in a different manner
that gives greater insight into their relationship. The following derivation is based on
the work of Faugeras and Mourrain [14] and Triggs [73, 74].

5:3.1 Bilinear Relations

We consider first the relationship that holds between the coordinates of a point seen
in two separate views. Thus, let u ↔ u′ be a pair of corresponding points as seen in
two separate images. It will be convenient, for clarity of notation, to represent the two
camera matrices by A and B, instead of the usual notation, P and P ′. Both the points
u and u′ are images of the same point x in space. For convenience, we write

u =

 u1

u2

u3

 ; u′ =

 u′1

u′2

u′3

 ; x =

x1

x2

x3

x4

 (5.14)

The projection from space to image can now be expressed as follows.

k

 u1

u2

u3

 = Ax

138

k′

 u′1

u′2

u′3

 = Bx (5.15)

where k and k′ are two undetermined constants.

These equations may be written down in one matrix equation. In order to do this, we
denote the i-th row of the matrix A by ai· , and similarly the i-th row of matrix B by bi· .
The projection due to the first camera may then be written as

 a

1
· u1

a2
· u2

a3
· u3

(x

−k

)
= 0 . (5.16)

This expression may be compared with (5.15) which is is just another way of writing the
same thing.

The projections of the point x into both views may be expressed as a single matrix
equation by writing the equations derived from one view and derived from the other
view in the same equation. This gives a set of equations

a1
· u1

a2
· u2

a3
· u3

b1
· u′1

b2
· u′2

b3
· u′3

 x
−k
−k′

 = 0 (5.17)

Now, this is a 6 × 6 set of equations which by hypothesis has a non-zero solution, the
vector (x,−k,−k′)�. It follows that the matrix of coefficients in (5.17) must have zero
determinant. This condition leads to a bilinear relationship between the entries of the
vectors u and u′ expressed by the fundamental matrix F . We will now look specifically
at the form of this relationship.

Consider the matrix appearing in (5.17). Denote it by X . The determinant of X may be
written as an expression in terms of the quantities ui and u′i. Notice that the entries ui

and u′i appear in only two columns of X . This implies that the determinant of X may
be expressed as a quadratic expression in terms of the ui and u′i. In fact, since all the
entries ui appear in the same column, there can be no terms of the form uiuj or u′iu′j .
Briefly, as an expression in terms of the ui and u′i, the determinant of X is a bilinear
expression. The fact that the determinant is zero may be written as an equation

(u′1, u′2, u′3)F (u1, u2, u3)� = uiu′jFji = 0 (5.18)

where F is a 3× 3 matrix, the well-known fundamental matrix8.

We may compute a specific formula for the entries of the matrix F as follows. The entry
Fij of F is the coefficient of the term u′iuj in the expansion of the determinant of X .
In order to find this coefficient, we must eliminate the rows and columns of the matrix

8Here and elsewhere we use the tensor summation convention that an index repeated in upper (con-
travariant) and lower (covariant) positions implies summation over the range of indices. It may be more
sensible to define Fij by the formula uiu′jFij = 0, but the formula (5.18) is conventional.

5:3. MULTILINEAR RELATIONS 139

containing u′i and uj , take the determinant of the resulting matrix and multiply by ±1
as appropriate. For instance, the coefficient of u′1u1 is obtained by eliminating two rows
and the last two columns of the matrix X as shown in (5.17). The remaining matrix is

a2
·
a3
·
b2
·
b3
·

and the coefficient of u′1u1 is equal to the determinant of this 4× 4 matrix. In general,
we may write

Fji = (−1)i+j det
[
∼ ai·
∼ bj·

]
. (5.19)

In this expression, the notation ∼ ai· has been used to denote the matrix obtained from
A by omitting the row ai· . Thus the symbol ∼ may be read as omit, and ∼ ai· represents
two rows of A. The determinant appearing on the right side of (5.19) is therefore a 4× 4
determinant. This expression for the fundamental matrix was pointed out to me by Rajiv
Gupta, and is also noted by Carlsson ([8]).

A different way of writing the expression for Fji makes use of the tensor εrst which is
defined to be 0 unless all of r, s and t are different, and is ±1 depending on whether the
indices (r, s, t) constitute an even or odd permutation of (1, 2, 3). The tensor εijk (or its
contravariant counterpart, εijk) is connected with the cross product of two vectors. If a
and b are two vectors, and c = a × b is their cross product, then the following formula
may easily be verified.

ci = (a× b)i = εijka
jbk .

Using this notation, one may derive the following formula.

Fji =
(
1
4

)
εipqεjrs det

ap·
aq·
br·
bs·

 . (5.20)

To see this, note that Fji is defined in (5.20) in terms of a sum of determinants over all
values of p, q, r and s. However for a given value of i, the tensor εipq is zero unless p and
q are different from i and from each other. This leaves only two remaining choices of p
and q (for example if i = 1, then we may choose p = 2, q = 3 or p = 3, q = 2). Similarly,
there are only two different choices of r and s giving rise to non-zero terms. Thus the
sum consists of 4 non-zero terms only. Furthermore, the determinants appearing in these
four terms consists of the same four rows of the matrices A and B and hence have equal
values, except for sign. However, the value of εipqεjrs is such that the four terms all have
the same sign and are equal. Thus, the sum (5.20) is equal to the single term appearing
in (5.19).

A similar formula involving the fundamental matrix is

Fjiε
ipqεjrs = det

ap·
aq·
br·
bs·

 . (5.21)

This formula may be derived in a straight-forward manner from (5.20).

140

Invariants of Lines

In this brief section it will be shown how the fundamental matrix may be used to define
invariants of spatial objects (in this particular case, lines) in terms of the images of those
objects in a pair of images. This method was discovered by Carlsson ([8]). Given two
lines λ and µ in one image, and the corresponding lines λ′ and µ′ in the other image.
From (5.21) we may see that

(λ′ × µ′)�F (λ× µ) = Fji(λpµqεipq)(λ′rµ
′
sε
jrs)

= λpµqλ
′
rµ
′
s det

ap·
aq·
br·
bs·

= det

λpa

p
·

µqa
q
·

λ′rb
r
·

µ′sb
s
·

= det
[
A�λ,A�µ,B�λ′, B�µ′

]
(5.22)

The cross-products on the left side of this sequence of equations represent the point of
intersection of the lines in the two images. A term such as A�λ on the right represents a
plane in space that projects via camera matrix A onto the line λ. We now consider four
line correspondences in two views. For i = 1, . . . , 4 let λ(i) ↔ λ′(i) be the i-th line corre-
spondence, where the upper index indicating the line number is put in parentheses to em-
phasize that it is not a tensorial index. We denote det

[
A�λ(i), A�λ(j), B�λ′(i), B�λ′(j)

]
by Iij . It was shown in [25] that the homogeneous vector

I = (I12I34, I13I24, I14I23) (5.23)

is a complete projective invariant of the four lines in space corresponding to the matched
lines in the images. According to (5.22), we may write Iij = (λ′(i)×λ′(j))�F (λ(i)×λ(j))
Substituting this formula into (5.23) yields a neat formula due to Carlsson ([8]) for the
projective invariants of four lines in space, in terms of their projections in two views.

5:3.2 Trilinear relations

The basic idea behind the derivation of the fundamental matrix can be used to derive
relationships between the coordinates of points seen in three views. This analysis re-
sults in the definition of a triply-indexed tensor, known as the trifocal tensor, with one
covariant and two contravariant indices. Unlike the Fundamental Matrix, this trifocal
tensor relates both lines and points in the three images. We begin by describing the way
matching points are related by the trifocal tensor.

Point relations

Consider a point correspondence across three views : u↔ u′ ↔ u′′. Let the third camera
matrix be C and let ci· be its i-th row. Analogous to (5.17) we can write an equation

5:3. MULTILINEAR RELATIONS 141

describing the projection of a point x into the three images.

a1
· u1

a2
· u2

a3
· u3

b1
· u′1

b2
· u′2

b3
· u′3

c1
· u′′1

c2
· u′′2

c3
· u′′3

x
−k
−k′
−k′′

 = 0 . (5.24)

This matrix, which as before we will callX , has 9 rows and 7 columns. From the existence
of a solution to this set of equations, we deduce that its rank must be at most 6. Hence
any 7 × 7 minor has zero determinant. This fact gives rise to the trilinear relationships
that hold between the coordinates of the points u, u′ and u′′.

There are essentially two different types of 7× 7 minors of X . In choosing 7 rows of X ,
we may choose either

1. Three rows from each of two camera matrices and one row from the third, or

2. Three rows from one camera matrix and two rows from each of the two others.

Let us consider the first type. A typical such 7× 7 minor of X is of the form

a1
· u1

a2
· u2

a3
· u3

b1
· u′1

b2
· u′2

b3
· u′3

ci· u′′i

. (5.25)

Note that this matrix contains only one entry in the last column, namely u′′i. Expanding
the determinant by cofactors down this last column reveals that the determinant is equal
to

u′′i det

a1
· u1

a2
· u2

a3
· u3

b1
· u′1

b2
· u′2

b3
· u′3

.

Apart from the factor u′′i, this just leads to the bilinear relationship expressed by the
fundamental matrix, as discussed in section 5:3.1.

142

The other sort of 7 × 7 minor is of more interest. An example of such a determinant is
of the form

det

a1
· u1

a2
· u2

a3
· u3

bj· u′j

bl· u′l

ck· u′′k

cm· u′′m

. (5.26)

By the same sort of argument as with the bilinear relations one sees that this leads to a
trilinear relation of the form detX = f(u,u′,u′′) = 0. By expanding this determinant
down the column containing ui, one can find a specific formula for detX , namely

detX = ±1
2
uiu′ju′′kεilmεjqxεkry det

al·
am·
bq·
cr·

 = 0xy (5.27)

where x and y are free indices corresponding to the rows omitted from the matrices B
and C to produce (5.26). We introduce the tensor

T qri =
1
2
εilm det

al·
am·
bq·
cr·

 (5.28)

The trilinear relationship (5.27) may then be written

uiu′ju′′kεjqxεkryT
qr
i = 0xy . (5.29)

The tensor T qri is the trifocal tensor, and (5.29) is Shashua’s trilinear relation. The
indices x and y are free indices, and each choice of x and y leads to a different trilinear
relation.

Just as in the case of the fundamental matrix, one may write the formula for the tensor
T qri in a slightly different way :

T qri = (−1)i+1 det

 ∼ a

i
·
bq·
cr·

 . (5.30)

As in section 5:3.1, the expression ∼ ai means the matrix A with row i omitted. Note
that we omit row i from the first camera matrix, but include rows q and r from the other
two camera matrices.

In the often-considered case where the first camera matrix A has the canonical form
[I | 0], the expression (5.30) for the trifocal tensor may be written simply ([26, 67]) :

T qri = bqi c
r
4 − b

q
4c
r
i . (5.31)

Note that there are in fact 27 possible trilinear relations that may be formed in this way
(refer to (5.26)). Specifically, note that each relation arises from taking all three rows

5:3. MULTILINEAR RELATIONS 143

from one camera matrix along with two rows from each of the other two matrices. This
gives the following computation.

• 3 ways to choose the first camera matrix from which to take all three rows.

• 3 ways to choose the row to omit from the second camera matrix.

• 3 ways to choose the row to omit from the third camera matrix.

This gives a total of 27 trilinear relations. However, among the 9 ways of choosing two
rows from the second and third camera matrices, only 4 are linearly independent. This
means that there are a total of 12 linearly independent trilinear relations.

It is important to distinguish between the number of trilinear relations, however, and
the number of different trifocal tensors. As is shown by (5.29), several different trilinear
relations may be expressed in terms of just one trifocal tensor. In (5.29) each distinct
choice of the free indices x and y gives rise to a different trilinear relation, all of which are
expressible in terms of the same trifocal tensor T qri . On the other hand, in the definition
of the trifocal tensor given in (5.28), the camera matrix A is treated differently from
the other two, in that A contributes two rows (after omitting row i) to the determinant
defining any given entry of T qri , whereas the other two camera matrices contribute just
one row. This means that there are in fact three different trifocal tensors corresponding
to the choice of which of the three camera matrices contributes two rows.

Line relations

A line in an image is represented by a covariant vector λi, and the condition for a point
u to lie on the line is that λiui = 0. Let xj represent a point in space, and aij represent
a camera matrix. The 3D point xj is mapped to the image point ui = aijx

j . It follows
that the condition for the point xj to project to a point on the line λi is that λiaijx

j = 0.
Another way of looking at this is that λiaij represents a plane consisting of all points
that project onto the line λi. Once more, the condition for the point xj to line on this
plane is that λiaijx

j = 0.

Consider the situation where a point xj maps to a point ui in one image and to some
point on lines λ′q and λ

′′
r in two other images. This may be expressed by equations

ui = kaijx
j

λ′qb
q
jx
j = 0

λ′′r c
r
jx
j = 0

This may be written as a single matrix equation of the form

a1
· u1

a2
· u2

a3
· u3

λ′qb
q
· 0

λ′′rc
r
· 0

(
x
−k

)
= 0 . (5.32)

144

Since this set of equations has a solution, one deduces that detX = 0, where X is the
matrix on the left of the equation. Expanding this determinant down the last column
gives

0 = detX =
1
2
uiεilm det

al·
am·
λ′qb

q
·

λ′′rc
r
·

=
1
2
uiλ′qλ

′′
r εilm det

al·
am·
bq·
cr·

= uiλ′qλ
′′
rT

qr
i (5.33)

This shows the connection of the trifocal tensor with sets of lines. The two lines λ′q and
λ′′r back project to planes meeting in a line in space. The image of this line in the first
image is a line, which may be represented by λi. For any point ui on that line the relation
(5.33) holds. It follows that λ′qλ

′′
rT

qr
i is the representation of the line λi. Thus, we see

that for three corresponding lines in the three images:

λp ≈ λ′qλ′′rT qrp (5.34)

The symbol ≈ means that the two sides are equal up to a scale factor. Since the two
sides of the relation (5.34) are vectors, this may be interpreted as meaning that the vector
product of the two sides vanishes. Expressing this vector product using the tensor εijk,
we arrive at an equation

λpλ
′
qλ
′′
r ε
ipwT qri = 0w . (5.35)

In an analogous manner to the derivation of (5.29) and (5.33) one may derive a rela-
tionship between corresponding points in two images and a line in a third image. In
particular, if a point xj in space maps to points ui and u′i in the first two images, and
to some point on a line λ′′r in the third image, then one may derive a relation

uiu′jλ′′r εjqxT
qr
i = 0x . (5.36)

In this relation, the index x is free, and there is one such relation for each choice of
x = 1, . . . , 3, of which two are linearly independent.

We can summarize the results of this section in the following table, in which the final
column denotes the number of linearly independent equations.

Correspondence Relation number of equations
three points uiu′ju′′kεjqxεkryT

qr
i = 0xy 4

two points, one line uiu′jλ′′r εjqxT
qr
i = 0x 2

one point, two lines uiλ′qλ
′′
rT

qr
i = 0 1

three lines λpλ
′
qλ
′′
r ε
piwT qri = 0w 2

Table 1. Trilinear Relations

5:3. MULTILINEAR RELATIONS 145

Note how the different equation sets are related to each other. For instance, the second
line of the table is derived from the first by replacing u′′kεkry by the line λ′′r and deleting
the free index y.

Point relation as a special case of Line relations

It will now be shown that the trilinear relation (5.29) is in fact nothing but a special case
of the trilinear relation (5.33) for lines. In the trilinear relation uiu′ju′′kεjqxεkryT

qr
i = 0xy

for points, we may write λ′qx = u′jεjqx and λ′′ry = u′′kεkry. The trilinear relation then
becomes

uiλ′qxλ
′′
ryT

qr
i = 0xy (5.37)

which is beginning to looking much like the trilinear relation (5.33) for lines. Observe as
before that the indices x and y are free variables in this expression. We will now show
that for any choice of the free variables x and y, the terms λ′qx and λ′′ry do represent
geometrically meaningful lines. We concentrate on λ′qx, since the analysis for λ

′′
ry is

identical.

Consider the case x = 1. Then λ′q1 = u′jεjq1, and expanding this out, we see that
(λ′11, λ

′
21, λ

′
31) = (0,−u′3, u′2). We see that λ′.1 is a line passing through the point u′j =

(u′1, u′2, u′3) and parallel with the first coordinate axis. A similar thing occurs for the
other choices x = 2, 3. Specifically, λ′.2 is the line through u

′j parallel with the second
coordinate axis, and λ′.3 is the line through u

′j passing also through the coordinate origin,
(0, 0, 1).

What is all this saying ? Let u ↔ u′ ↔ u′′ be corresponding points in three image. If
we choose any lines λ′ and λ′′ that pass respectively through the two points u′ and u′′

then from (5.33) we obtain a relation uiλ′jλ
′′
kT

jk
i = 0. For any arbitrary choice of the

lines λ′ and λ′′ we can write down such a relation. In the particular case where the lines
λ′ and λ′′ are chosen to be lines through u′ and u′′ either horizontal, vertical or passing
through the origin, then one obtains Shashua’s trilinear relation for points (5.29). One
may choose two lines through each of the points u′ and u′′, resulting in four independent
trilinear relations.

This interpretation of the point relationships has been previously observed in [62] and
[14].

5:3.3 Quadrilinear Relations

Similar arguments work in the case of four views. Once more, consider a point corre-
spondence across 4 views : u↔ u′ ↔ u′′ ↔ u′′′. With camera matrices A, B, C and D,

146

the projection equations may be written as

a1
· u1

a2
· u2

a3
· u3

b1
· u′1

b2
· u′2

b3
· u′3

c1
· u′′1

c2
· u′′2

c3
· u′′3

d1
· u′′′1

d2
· u′′′2

d3
· u′′′3

x
−k
−k′
−k′′
k′′′

 = 0 . (5.38)

Since this equation has a solution, the matrix X on the left has rank at most 7, and so all
8×8 determinants are zero. As in the trilinear case, any determinants containing only one
row from one of the camera matrices gives rise to a trilinear or bilinear relation between
the remaining cameras. A different case occurs when we consider 8 × 8 determinants
containing two rows from each of the camera matrices. Such a determinant leads to a
new quadrilinear relationship of the form

uiu′ju′′ku′′′lεipwεjqxεkryεlszQ
pqrs = 0wxyz (5.39)

where each choice of the free variables w, x, y and z gives a different equation, and the
4-dimensional tensor Qpqrs is defined by

Qpqrs = det

ap·
bq·
cr·
ds·

 (5.40)

Note that the four indices of the four-view tensor are contravariant, and there is no
distinguished view as there is in the case of the trifocal tensor. There is only one four-
view tensor corresponding to four given views, and this one tensor gives rise to 81 different
quadrilinear relationships, of which 16 are linearly independent.

As in the case of the trifocal tensor, there are also relations between fixed lines and points
in the case of the four-view tensor. This may be summarized in the following table.

Correspondence Relation number of equations
4 points uiu′ju′′ku′′′lεipwεjqxεkryεlszQ

pqrs = 0wxyz 16

3 points, 1 line uiu′ju′′kλ′′′s εipwεjqxεkryQ
pqrs = 0wxy 8

2 points, 2 lines uiu′jλ′′rλ
′′′
s εipwεjqxQ

pqrs = 0wx 4

1 points, 3 lines uiεipwλ
′
qλ
′′
rλ
′′′
s Q

pqrs = 0w 2

4 lines λpλ
′
qλ
′′
rλ
′′′
s Q

pqrs = 0 1

Table 2. Quadrilinear Relations.

5:3. MULTILINEAR RELATIONS 147

As in the case of the trilinear relationships, equations relating points are really just
special cases of the relationship for lines.

5:3.4 Number of Independent Equations

It was asserted in considering the definition of the quadrifocal tensor Qpqrsl that each
point correspondence gives rise to 16 linearly independent equations. Similarly each point
correspondence across three views gives rise to four linearly independent equations in the
entries of the trifocal tensor T qri . We now examine this point more closely. We begin
with the four view case.

Four View Case

Given sufficiently many point matches across four views, one may solve for the tensor
Qpqrs. Subsequently, one may retrieve the camera matrices and carry out projective
reconstruction. Details of how the step of retrieving the camera matrices is done are
omitted here, but are given by Heyden ([35, 34]). A curious phenomenon occurs how-
ever, when one counts the number of point matches necessary to do this. As indicated
above, it appears to be the case that each point match gives 16 linearly independent
equations in the entries of the tensor Qpqrs. On the other hand, it seems unlikely that
the equations derived from two totally unrelated sets of point correspondences could
have any dependencies. It would therefore appear that from 5 point correspondences
one obtains 80 equations, which is enough to solve for the entries of Qpqrs up to scale.
From this argument it would appear that it is possible to solve for the tensor from only
5 point matches across 4 views, and thence one may solve for the camera matrices, up to
the usual projective ambiguity. This conclusion however is contradicted by the following
remark.

Proposition5.2. It is not possible to determine the positions of 4 (or any number of)
cameras from the images of 5 points.

Proof. Since any two sets of five points in P3are projectively equivalent (barring the case
where 3 points are in a plane), we may assume that the five points form a projective
basis for P3. Consider the first camera. The situation is that each point xi is known for
i = 1, . . . , 5, and the images ui of the points are also known. However, each such 3D to
2D correspondence gives two linear equations in the entries of the camera matrix M , a
total of 10 equations in all from the 5 points. Since M has 11 degrees of freedom, it can
not be determined uniquely from 10 equations. This is in agreement with the observation
of Sutherland ([72]) that 5 1

2 such 3D to 2D correspondences are required to determine
M . This means that the camera matrix M is not determined uniquely with respect to a
fixed projective basis. The same applies to the other cameras, and thus the proposition
is demonstrated. �

Obviously there is some error in our counting of equations. In fact, Heyden states ([35])
that six point correspondences are necessary to compute Qpqrs. The truth is that our
counting argument is false, as is shown by the following two propositions.

148

Proposition5.3. Consider a single point correspondence u ↔ u′ ↔ u′′ ↔ u′′′ across
four views. Letting the four free indices w, x, y and z in (5.39) vary from 1 to 3 one
obtains from this correspondence a set of 81 equations in the entries of Qpqrs. The rank
of this set of equations is 16. Furthermore, let the equations be written as Aq = 0 where
A is an 81 × 81 matrix and q is a vector containing the entries of Qpqrs. Then the 16
non-zero singular values of A are all equal.

What this result is saying is that indeed as expected one obtains 16 linearly independent
equations from one point correspondence, and in fact it is possible to reduce this set of
equations by an orthogonal transform (multiplication of the equation matrix A on the
left by an orthogonal matrix U) to a set of orthogonal equations. The rank of the set of
equations is a “very solid” 16. This is a very favourable result as far as the conditioning
of the problem is concerned.

The key point in the proof of Proposition 5.3 concerns the singular values of a skew-
symmetric matrix.

Lemma5.4. A 3× 3 skew-symmetric matrix has two equal non-zero singular values.

Although this is well known, a brief proof is given.

Proof. Defining matrices

E =

 0 1 0
−1 0 0
0 0 1

 ; D =

 1 0 0
0 1 0
0 0 0

 and Z = ED =

 0 1 0
−1 0 0
0 0 0

the Schurr normal form ([15]) of a 3 × 3 skew-symmetric matrix S can be written S =
kV ZV � where k is a scalar. Thus the SVD of S is given by S = kUDV � where U = V E.

�

The rest of the proof of Proposition 5.3 is quite straight-forward as long as one does not
get lost in notation.

Proof. (Proposition 5.3) The full set of 81 equations derived from a single point cor-
respondence is of the form uiεipwu

′jεjqxu
′′kεkryvu

′′′lεlszQ
pqrs = 0wxyz. A total of 81

equations are generated by varying w, x, y, z over the range 1, . . . , 3. Thus, the equation
matrix A may be written as

A(wxyz)(pqrs) = uiεipwu
′jεjqxu

′′kεkryu
′′′lεlsz (5.41)

where the indices (wxyz) index the row and (pqrs) index the column of A. We will have
occasion frequently to consider a set of indices, such as (wxyz) in this case, as a single
index for the row or column of a matrix. This situation will be indicated by enclosing
the indices in parentheses as here, and referring to them as a combined index.

We consider now the expression uiεipw. This may be considered as a matrix indexed
by the free indices p and w. Furthermore, since uiεipw = −uiεiwp we see that it is a
skew-symmetric matrix, and hence has equal singular values. We denote this matrix by
Swp. Writing the result of Lemma 5.4, using tensor notation we have

Uwa SwpV
p
e = kDae (5.42)

5:3. MULTILINEAR RELATIONS 149

where the matrix D is as in Lemma 5.4. Now, the matrix A in (5.41) may be written as
A(wxyz)(pqrs) = SwpS

′
xqS
′′
yrS
′′′
zs. Consequently, applying (5.42) we may write

Uwa U
′x
b U

′′y
c U ′′′zd A(wxyz)(pqrs)V

p
e V
′q
f V

′′r
g V ′′′sh = kk′k′′k′′′DaeDbfDcgDdh . (5.43)

Now, writing
Û

(wxyz)
(abcd) = Uwa U

′x
b U

′′y
c U ′′′zd

V̂
(pqrs)

(efgh) = V pe V
′q
f V

′′r
g V ′′′sh

D̂(abcd)(efgh) = DaeDbfDcgDdh

and
k̂ = kk′k′′k′′′

we see that (5.43) may be written as

Û
(wxyz)
(abcd) A(wxyz)(pqrs)V̂

(pqrs)
(efgh) = k̂D̂(abcd)(efgh) . (5.44)

As a matrix, D(abcd)(efgh) is diagonal with 16 non-zero diagonal entries, all equal to unity.
To show that (5.44) is the SVD of the matrix A(pqrs)(tuvw), and hence to complete the
proof, it remains only to show that U (wxyz)

(abcd) and V (pqrs)
(efgh) are orthogonal matrices. To this

end, we show that U (wxyz)
(abcd) has unit norm orthogonal columns. Thus, for two columns

with combined indices (pqrs) and (tuvw) respectively, we verify

∑
i,j,k,l

Û
(ijkl)
(pqrs)Û

(ijkl)
(tuvw) =

∑
i,j,k,l

(U ipU
′j
q U
′′k
r U ′′′ls)(U itU

′j
u U
′′k
v U ′′′lw)

=
∑
i

U ipU
i
t

∑
j

U ′jq U
′j
u

∑
k

U ′′kr U ′′kv
∑
l

U ′′′ls U ′′′lw

= δptδquδrvδsw

= δ(pqrs)(tuvw)

and so Û is orthogonal, as required. A similar argument shows that V̂ is orthogonal as
well. This completes the proof that A has rank 16, and all non-zero singular values are
equal. �

Thus, each point correspondence gives 16 equations. The surprising fact however is
that the equation sets corresponding to two unrelated point correspondences have a
dependency, as stated in the following proposition.

Proposition5.5. The set of equations (5.39) derived from a set of n general point cor-
respondences across four views has rank 16n− (n2), for n ≤ 5.

The notation (n2) means the number of choices of 2 among n, specifically, (
n
2) = n(n−1)/2.

Thus for 5 points there are only 70 independent equations, not enough to solve for Qpqrs.
For n = 6 points, 16n − (n2) = 81, and we have enough equations to solve for the 81
entries of Qpqrs. These propositions will be proven below.

150

Proof. We consider two point correspondences across four views, namely ui ↔ u′i ↔
u′′i ↔ u′′′i and vi ↔ v′i ↔ v′′i ↔ v′′′i. The first correspondence gives rise to a set of
equations : uiu′ju′′ku′′′lεipwεjqxεkryεlszQpqrs = 0wxyz where there is a different equation
for each choice of w, x, y and z. There are a total of 81 equations in the 81 entries of
the tensor Qpqrs. The coefficients of each equation may be considered as a vector in the
Euclidean space R81. According to Proposition 5.3, however, the 81 such vectors span a
subspace Su of dimension 16 in R81.

A similar set of equations may be derived from the second correspondence, and these
equations span a second 16-dimensional subspace Sv of R81. If the two subspaces Su

and Sv intersect only in the zero vector, then together the two subspaces generate a
subspace of dimension 32 of R81. The proposition we are proving asserts that this is not
so, however. Therefore, it is our goal to show that these two subspaces have non-trivial
intersection.

The vectors generating Su may be denoted by û(wxyz) where (wxyz) is a combined index
for the vector, and each û(wxyz) is a vector with components

û(wxyz)(pqrs) = uiu′ju′′ku′′′lεipwεjqxεkryεlsz

and (pqrs) is a combined index for the component of the vector. We consider a specific
linear combination of the vectors û(wxyz) given by s = vwv′xv′′yv′′′zû(wxyz). This is a
vector with components

s(pqrs) = vwv′xv′′yv′′′zuiu′ju′′ku′′′lεipwεjqxεkryεlsz . (5.45)

In a similar fashion, the subspace Sv is generated by vectors v̂(ijkl) , which have compo-
nents

v̂(ijkl)(pqrs) = vwv′xv′′yv′′′zεwpiεxqjεyrkεzsl = vwv′xv′′yv′′′zεipwεjqxεkryεlsz .

The last expression is obtained from the previous one by swapping the first and last
indices of each ε.

Now, one forms the linear combination s = uiu′ju′′ku′′′lv̂(ijkl) , which when expanded
turns out to have the same components as the vector s(pqrs) in (5.45). In brief, we have

s = vwv′xv′′yv′′′zû(wxyz) = uiu′ju′′ku′′′lv̂(ijkl) . (5.46)

This shows that the subspaces Su and Sv or R81 intersect in a subspace generated by the
vector s. Thus, the dimension of the subspace generated by vectors û(wxyz) and v̂(ijkl)

is at most 31, provided that s is non-zero. To consider the possibility that s = 0, we
rearrange (5.45) to get

s(pqrs) = (uivwεipw)(u′jv′xεjqx)(u′′kv′′yεkry)(u′′′lv′′′zεlsz)
= (u× v)p(u′ × v′)q(u′′ × v′′)r(u′′′ × v′′′)s

where (u×v) represents the vector product. Such a vector product is nonzero unless the
u and v are equal, up to scale, and hence represent the same point. Thus, s is non-zero
unless u and v (or u′ and v′, etc) represent the same point. To take care of the case
where for instance u = v, we note that then

v′xv′′yv′′′zû(wxyz) = −u′ju′′ku′′′lv̂(wjkl) (5.47)

5:3. MULTILINEAR RELATIONS 151

for each value of w. To verify this, note that the components of the vectors on each side
of (5.47) are

v′xv′′yv′′′zuiu′ju′′ku′′′lεipwεjqxεkryεlsz = −u′ju′′ku′′′lviv′xv′′yv′′′zεipwεxqjεyrkεzsl .

This means that Su and Sv intersect in at least a 3-dimensional subspace. Thus, in all
cases, we have shown that the subspace generated by Su and Sv has dimension at most
31.

We now consider the possibility that the dimension of the subspace is less than 31. In such
a case, all 31×31 sub-determinants of the matrix having as rows the vectors û(wxyz) and
v̂(ijkl) must vanish. These subdeterminants may be expressed as polynomial expressions
in the coefficients of the points u, u′, u′′, u′′′, v, v′, v′′ and v′′′. These coefficients
together make up a 24-dimensional space. Thus, there is a function f : R24 → RN for
some N (equal to the number of such 31× 31 subdeterminants), such that the equation
matrix has rank less than 31 only on the set of zeros of the function f . Any arbitrarily
chosen example may be used to show that the function f is not identically zero. It
follows, that the set of point correspondences for which the set of equations has rank
less than 31 is a variety in R24, and hence is nowhere dense. Thus, for a general pair of
point correspondences, the set of equations generated by a pair of point correspondences
across 4 views has rank 31.

We now turn to the general case of n point correspondences across all 4 views. Note that
the linear relationship (5.46) that holds for two point correspondences is non-generic,
but depends on the pair of correspondences. In general, therefore, given n point corre-
spondences, there will be (n2) such relationships. This reduces the dimension of the space
spanned by the set of equations to 16n− (n2) as required. �

Three View Case

In this section, we consider the set of equations relating the entries of the trifocal tensor
T jki generated by a single point correspondence across three views. We find the following
favourable situation holds.

Proposition5.6. Consider a single point correspondence u ↔ u′ ↔ u′′ across three
views. Letting the two free indices x and y in (5.29) vary from 1 to 3 one obtains from
this correspondence a set of 9 equations in the entries of T qri . The rank of this set of
equations is 4. Furthermore, let the equations be written as At = 0 where A is a 9 × 27
matrix and t is a vector containing the entries of T qri . Then the 4 non-zero singular
values of A are equal.

Proof. This proposition is similar to Proposition 5.3, and is proven in much the same
way. The full set of 9 equations derived from a single point correspondence is of the form
uiu′jεjqxu

′′kεkryT
qr
i = 0xy. A total of 9 equations are generated by varying x and y over

the range 1, . . . , 3. Thus, the equation matrix A may be written as

A(xy)(iqr) = uiu′ju′′kεjqxεkry (5.48)

where the indices (xy) index the row and (iqr) index the column of A. As in the proof
of Proposition 5.3, we may write u′jεjqx = S′xq and u′′kεkry = S′′yr. Then the matrix A

152

in (5.48) may be written as A(xy)(iqr) = uiS′xqS
′′
yr. Consequently, applying (5.42) we may

write
U ′xa U

′′y
b A(xy)(iqr)V

′q
e V

′′r
f = k′k′′uiDaeDbf . (5.49)

Next, introducing a vector ui with covariant (lower) index, defined such that ui = ui for
all i, we have

U ′xa U
′′y
b A(xy)(iqr)uiV

′q
e V

′′r
f = k′k′′uiu

iDaeDbf = k′k′′||u||2DaeDbf .

Now, writing
Û

(xy)
(ab) = U ′xa U

′′y
b

V̂
(qr
i

)

(ef) = uiV
′q
e V

′′r
f

D̂(ab)(ef) = DaeDbf .

and
k̂ = k′k′′||u||2

we see that (5.49) may be written as

Û
(xy)
(ab) A(xy)(iqr)V̂

(qr
i

)

(ef) = k̂D̂(ab)(ef) (5.50)

The matrix D(ab)(ef) is diagonal with 4 unit diagonal entries. As before, to complete the
proof, we need only show that Û and V̂ are orthogonal, The matrix Û is orthogonal as
is shown using the same argument as before. Since the matrix V̂ (qr

i
)

(ef) is not square (it
has dimension 27 × 9), we need to show that is has orthogonal columns. Details are as
follows.

∑
q,r,i

V̂
(qr
i

)

(ef) V̂
(qr
i

)

(e′f ′) =
∑
i,p,q

(V ′qe V
′′r
f ui)(V

′q
e′ V

′′r
f ′ ui)

=
∑
q

V ′qe V
′q
e′

∑
r

V ′′rf V ′′rf ′
∑
i

(u2
i)

= δee′δff ′ ||u||2

= δ(ef)(e′f ′)||u||2 .

Thus, in fact, the rows of V̂ are orthogonal, and each one has the same norm equal to
||u||. This completes the proof. �

Choosing equations

In the previous two sections, proofs have been given that the singular values of the full set
of equations derived from three or four point equations are all equal. The key point in the
argument is that the two non-zero singular values of a 3× 3 skew-symmetric matrix are
equal. This proof may clearly be extended to apply to any of the other sets of equations
derived from line or point correspondences given in sections 5:3.2 and 5:3.3.

Consider once more the case of three point correspondences in three views. The results
on singular values show that it is in general advisable to include all 9 equations derived
from this correspondence, rather than selecting just four independent equations. This

5:3. MULTILINEAR RELATIONS 153

will avoid difficulties with near singular situations. This conclusion is supported by
experimental observation. Indeed, numerical examples show that the condition of a set
of equations derived from a set several point correspondences is substantially better when
all 9 equations are included for each point correspondence. In this context, the condition
of the equation set is given by the ratio of the first (largest) to the n-th singular value,
where n is the number of linearly independent equations.

Including all 9 equations rather than just 4 means that the set of equations is larger,
leading to increased complexity of solution. However, whether the equations are solved
using the Singular Value Decomposition, or the method of normal equations, the increase
in complexity needs only to be linear. This point is explained in [32]. For formulae about
the complexity of the SVD, see [15].

An alternative to including all 9 equations (or all 81 in the 4-view case) is to include
the minimum number (4 or 16 respectively) of correctly chosen equations. This notion
will be illustrated for the three-view case. As we saw in section 5:3.2, the equations
uiu′ju′′kεjqxεkryT

qr
i = 0xy derived from a point correspondence across three views may

be considered as a set of line equations uiλ′qxλ
′′
ryT

qr
i = 0xy by writing λ′qx = u′jεjqx and

λ′′ry = u′′kεkry. Each choice of x or y gives a different line through the points u′j and
u′′k, a total of 9 choices.

Now, as a matrix, λ′qx is skew-symmetric, and hence has two equal singular values. As
remarked, this is the basis for the set of all 9 equations having rank 4, and 4 equal
singular values. On the other hand, if we select just two lines passing through u′j by
making a choice of two values for the index x, then the two columns of the matrix λ′qx
are not orthogonal, and the resulting 3× 2 matrix does not have equal singular values,
and in fact may be nearly rank-deficient. As previously seen, one remedy is to include
the equations derived from all 3 choices of the index x. The corresponding three lines
λ′qx are the lines parallel with the coordinate axes and through the origin and passing
through the point u′j . An alternative is to select two other lines λ̂′qx, for x = 1, 2, passing
through u′j and represented by an orthonormal pair of vectors. In this case, the matrix
λ̂′qx of dimension 3 × 2 will have two equal singular values. If this is done also for the
point u′′k, then arguments of section 5:3.4 apply, and the resulting set of 4 equations
uiλ̂′qxλ̂

′′
ryT

qr
i = 0xy for x, y = 1, 2 will be independent and orthonormal. Note that the

condition that the vectors λ̂′q1 and λ̂
′
q2 are orthonormal has nothing to do with geometric

orthogonality of the lines. A simple way of finding a pair of orthonormal vectors λ̂′qx
such that u′qλ̂′qx = 0x is using Householder transforms ([15]). A Householder matrix hqx
is an orthogonal matrix such that u′qhqx = δ3x = (0, 0, 1). Setting λ̂qx = hqx for x = 1, 2
gives the required pair of lines passing through the point u′q.

We summarize this discussion as follows.

Recommended method for formulating point equations.

Given a point correspondence u↔ u′ ↔ u′′ across three views :

1. Find Householder matrix h′qx and h
′′
ry such that u

′qh′qx = δ3x and u′′rh′ry = δ3y.

2. For x, y = 1, 2 set λ̂′qx = h′qx and λ̂′′ry = h′′ry.

3. The formula uiλ̂′qxλ̂′′ryT
qr
i = 0xy for x, y = 1, 2 gives a set of four orthonormal

154

equations in the entries of T qri .

Once more, it is evident that essentially this method will work for all the types of equa-
tions summarized in Tables 1 and 2.

5:3.5 Summary and Other Work

Although using a slightly different approach, this chapter summarized previous results
of Triggs ([73]) and Faugeras and Mourrain ([14]) on the derivation of multilinear re-
lationships between corresponding image coordinates. The formulae for relations be-
tween mixed point and line correspondences are extensions of the result of [26, 32]. This
chapter suggests that the most basic relations are the point-line-line correspondence
equation uiλ′qλ′′rT

qr
i = 0 in the three-view case, and the line-correspondence equation

λpλ
′
qλ
′′
rλ
′′′
s Q

pqrs = 0 for four views. Indeed numerical robustness may be enhanced by
reducing other correspondences to this type of correspondence, for carefully selected lines.

Part VI

Euclidean Reconstruction and
Calibration

155

6:1. THE DIAC AND CALIBRATION 157

To this point, we have been chiefly concerned with the problem of projective reconstruc-
tion. In considering the projective reconstruction problem it has been assumed that the
individual cameras involved were unrelated. In many cases, however one may know that
all the cameras involved in reconstruction of a scene from several views have the same
calibration. This will particularly be true in the case of several views taken with the
same camera for which the calibration does not change. In this case one knows that the
internal calibration for all the cameras is the same, even if one does not know exactly
what the calibration is. Under these circumstances it turns out to be possible to carry
out affine and even Euclidean reconstruction of the scene.

It has been shown by the work of Maybank and Faugeras and Luong ([46, 13]) that cali-
bration of a camera is possible from three or more views taken with the same camera. If
this is so, then the reconstruction problem can be reduced to the problem of reconstruc-
tion from calibrated cameras. It is well know (see for instance [42]) that for calibrated
cameras, reconstruction up to scale is possible. More precisely, scene reconstruction is
possible, up to a similarity transformation, namely up to unknown absolute position and
orientation of the scene, and overall scale. We will refer to such reconstruction in this
report (a little inexactly) as Euclidean reconstruction. Although the paper [46] opened
up the theoretical possibility of doing Euclidean reconstruction, no definitive or robust
algorithm for this problem was given. In this section we investigate the problem of Eu-
clidean reconstruction and give an algorithm that works quite well on three or more
views.

According to the result of Maybank and Faugeras ([46]) if all the cameras have the same
calibration then the calibration matrix K may be determined, and is at least locally
unique. (Whether this is true for exactly three views was left somewhat ambiguous in
[46] but was clarified by Luong ([43])). Consequently, we assume in this section that
all cameras have the same calibration, so that Pi = K[Ri | −Riti], where each Ri is a
rotation matrix and K is an upper-triangular matrix, the common calibration matrix of
all the cameras. We attempt to retrieve Pi and xj from a set of image correspondences
uij . The points xj and the camera matrices, Pi can not be determined absolutely. Instead
it is required to determine them up to a Euclidean transformation. In order to constrain
the solution, it may be assumed that R0 = I and t0 = 0. The solution may then be
determined up to scaling.

Because of Maybank and Faugeras’s result, with more than three views any reconstruction
for which all the camera matrices Pi have the same calibration is virtually assured of
being the true reconstruction, or at least differing by at most a Euclidean transformation
– it is a Euclidean reconstruction.

This part of the report gives an algorithm for computing a Euclidean reconstruction
of a scene based only on image correspondence data from uncalibrated cameras. An
alternative method for Euclidean reconstruction that uses extra Euclidean constraints is
reported in [7].

6:1 The DIAC and calibration

As was pointed out by Maybank and Faugeras ([46]), one of the basic concepts related to
calibration of a camera, or Euclidean reconstruction is the absolute conic. The connection
between the absolute conic and camera calibration is demonstrated next. It is seen that

158

knowledge of the image of the absolute conic in an image is equivalent to calibration of
the camera that took the image.

The absolute conic is a conic lying on the plane at infinity, having equation x2+y2+z2 =
0; t = 0, where (x, y, z, t)� are coordinates of a point in 3-dimensional space. The
absolute conic does not contain any points with real coordinates – it is composed entirely
of complex points. This does not, however, diminish its usefulness. The image of the
absolute conic in an image is representable by a real symmetric 3× 3 matrix, as will be
seen next.

Define a vector x = (x, y, z)�. A point (x, y, z, 0)� is on the absolute conic if and only
if x�x = 0. Consider a camera matrix P = K[R | −Rt]. A point (x, y, z, 0)� on
the absolute conic maps to u = P (x, y, z, 0)� = KRx. Thus, x = R�K−1u, and the
condition x�x becomes u�K−�RR�K−1u = u�K−�K−1u = 0. Thus, a point u is on
the image of the absolute conic if and only if it lies on the conic represented by the matrix
K−�K−1. In other words, K−�K−1 is the matrix representing the image of the absolute
conic. Taking inverses (dual conics) reveals that KK� is the dual of the image of the
absolute conic. We will denote KK� by C. If C is known then the calibration matrix K
may be retrieved by Choleski factorization. Specifically, any symmetric positive-definite
matrix (such as C) may be uniquely factored as a product KK� such that K is an
upper triangular matrix with positive diagonal entries. For an algorithm for Choleski
factorization, see [55].

Since we will be considering the absolute conic in subsequent pages, we adopt the fol-
lowing abbreviations :

AC means the absolute conic.

IAC means the image of the absolute conic.

DIAC means the dual of the image of the absolute conic.

We have shown how the calibration matrix K may be retrieved if the matrix C repre-
senting the DIAC is known. Conversely, if K is known, then C = KK/tr is determined.
This shows the intimate link between the IAC and calibration. An important point to
note is that the formula C = KK� for the DIAC depends only on the calibration matrix,
and not on the orientation R or the position t of the camera. The IAC is fixed under
Euclidean motions of the camera.

6:2 Kruppa’s Equations

Given two views of a scene taken with two different cameras, one may compute a projec-
tive reconstruction of the scene. If one has additional information that the cameras used
to image the two scenes have the same internal calibration, then this implies a certain
restriction on the class of possible reconstruction. This in turn implies a restriction on
the internal calibration of the camera. This restriction may be expressed by Kruppa’s
equations, which will be derived in this section. Kruppa’s equations will be formulated
here in terms of simple conditions on the DIAC, which we have seen to be equivalent to
the internal calibration.

6:2. KRUPPA’S EQUATIONS 159

The purpose of this section is to give a specific form for Kruppa’s equations in terms of
the Fundamental matrix. Kruppa’s equations can be written explicitly in terms of the
singular value decomposition (SVD) of the fundamental matrix.

Consider two camera matrices P and P ′ with the same calibration. Let C be the DIAC
as imaged by these two cameras. As was shown in section 6:6.5 the image of the absolute
conic (IAC) is independent of the pose of the camera, and so it is the same for the two
cameras in question.

Let F be the fundamental matrix for the pair of cameras. For reasons to become apparent
later, we wish to apply projective transformations represented by 3 × 3 transformation
matrices A and A′ to the two images. After the transformations, the effective camera
matrices will be AP and A′P ′, corresponding to the camera projection followed by pro-
jective transformation of the image. This will of course change the DIAC to some new
conic envelopes, which we will call D and D′. Since A and A′ may be different, we can
no longer assume that D = D′.

Suppose that A and A′ are chosen so that the fundamental matrix for the two new camera
matrices AP and A′P ′ has the special form

E =

 0 −1 0
1 0 0
0 0 0

 . (6.1)

This is a very special fundamental matrix having the property that the two epipoles are
at the origin and that corresponding epipolar lines are identical in the two images.

Now, consider a plane passing through the two camera centres, tangent to the absolute
conic. Such a plane will project to a pair of corresponding epipolar lines in the two images,
and these two lines will be tangent to the IAC. Since there are two such tangential planes,
there are two pairs of corresponding epipolar tangents.

We recall that corresponding epipolar lines in the two images are identical. Let (λ, µ, 0)�

be a tangent to the IAC. Since D is the DIAC in the first image, this tangential relation-
ship may be written as

(λ, µ, 0)D(λ, µ, 0)� = 0

and similarly, (λ, µ, 0)D′(λ, µ, 0)� = 0. Writing these two equations out explicitly gives

λ2d11 + 2λµd12 + µ2d22 = 0

and
λ2d′11 + 2λµd

′
12 + µ

2d′22 = 0

where D = (dij and D′ = (d′ij), both of which are symmetric.

Since the two tangent lines to the IAC must be the same two lines in the two images,
these two equations must have the same pair of solutions for λ and µ. This means that
they must be identical equations (up to scale), and so

d11

d′11

=
d12

d′12

=
d22

d′22

. (6.2)

These are the Kruppa equations.

160

We now repeat this argument, this time being more precise about specific values. The
purpose is to find explicit expressions for the matrices D and D′ in terms of the funda-
mental matrix F .

Let the Singular Value Decomposition of the fundamental matrix be F = UDV �, where
U and V are orthogonal, and D = diag(r, s, 0) is a diagonal matrix. We may write this
as follows:

F = U

 r

s
1

 0 −1 0
1 0 0
0 0 0

 0 1 0
−1 0 0
0 0 1

V � .

We write

A′� = U

 r

s
1

and

A =

 0 1 0
−1 0 0
0 0 1

V � .

Then, we see that F = A′�EA with A and A′ non-singular. For a pair of matching
image points u′ ↔ u we have u′�Fu = 0. Thus, u′�A′�EAu = 0. Setting û = Au
and û′ = A′u′, we see that û′�Eû = 0. Thus, A and A′ are the two transforms that we
require.

Next, we investigate the effect of this transformation of the DIAC. Consider a trans-
formation A. How does this transformation transform lines ? Well, a point u lies on
a line λ if and only if λ�u = 0. This can be written as λ�A−1Au = 0. Thus, u lies
on λ if and only if Au lies on A−�λ. Thus, A−�λ is the transformed line. Now, a
line λ belongs to a conic envelope C if and only if λ�Cλ = 0. This can be written as
(λA−1)(ACA�)(A−�λ) = 0. Thus, the transformation A maps the conic envelope C to
a D = ACA�, and similarly A′ maps C to D′ = A′CA′�.

Now, we want to compute dij , where D = (dij). Let

A =

 a1

�

a2
�

a3
�

where ai is the i-th row of A. Then, from D = ACA� we compute dij = ai�Caj .

Then (6.2) leads to the following explicit form for the Kruppa equations :

a1
�Ca1

a′1
�Ca′1

=
a1
�Ca2

a′1
�Ca′2

=
a2
�Ca2

a′2
�Ca′2

(6.3)

We can write these equations directly in terms of the SVD of the fundamental matrix
F = Udiag(r, s, 0)V �. Specifically, we have

A′ =

 r

s
1

U�

6:2. KRUPPA’S EQUATIONS 161

from which we have

A′ =

 a′1

�

a′2
�

a′3
�

 =

 ru1

�

su2
�

u3
�

 .

where ui is the i-th column of U .

For A we have

A =

 0 1 0
−1 0 0
0 0 1

V �

and so

A =

 a1

�

a2
�

a3
�

 =

 v2

�

−v1
�

v3
�

 .

where vi is the i-th column of V .

From (6.3) we obtain

v2
�Cv2

r2u1
�Cu1

=
−v2

�Cv1

rsu1
�Cu2

=
v1
�Cv1

s2u2
�Cu2

(6.4)

6:2.1 Consequences of Kruppa’s Equations

Since the numerator and denominator of (6.3) or (6.4) are linear expression in the entries
of the matrix C, the resulting equations are quadratic. From (6.4) one obtains two
independent quadratic equations in the entries of C. Since C is symmetric, and defined
only up to a scale, it has 5 degrees of freedom. A single pair of views is clearly not
sufficient to determine C. However from three views, one obtains three fundamental
matrices, one for each of the pairs of views. Now we have six quadratic equations in five
unknowns. It is not clear, of course that the six equations are independent. However,
as demonstrated empirically by Luong ([43]) they are sufficient (at least with noise-
free data) to determine C. This will also be demonstrated in this report by Euclidean
reconstruction from three views.

Special cases of the Kruppa equations are of interest, as will be seen now.

Calibrated Cameras. If we assume that the calibration matrix of the cameras is the
identity matrix K = I in both cases, then the matrix C = KK� representing the DIAC
is also equal to the identity. In this case, Kruppa’s equations (6.4) reduce to the form

1/r2 = 0/0 = 1/s2

where r and s are the singular values of the fundamental (or essential) matrix. This
implies r = s. In other words if the calibration matrix is the identity, then the two
non-zero singular values of the fundamental matrix are equal. This is an easy proof of a
result of Faugeras and Huang ([39]).

162

Camera with known principal point. If the principal point of the camera is known,
then by a suitable change of image coordinates one may assume that the principal point is
at the origin. If it is further assumed that there is no skew parameter, then the calibration
matrix is a diagonal matrix of the form diag(ku, kv, 1). In this case, C = diag(k−2

u , k−2
v , 1)

and the kruppa equations (6.4) are quadratic in the variables k−2
u and k−2

v . We have
a pair of quadratic equations in two variables – sufficient to solve for k−2

u and k−2
v in

a relatively straight-forward manner. Thus under assumption of known principal point,
and no skew one may solve for k−2

u and k−2
v , and hence for ku and kv. There may be up

to four solutions, but only positive solutions for k−2
u and k−2

v need be considered.

Translatory motion. In the case of pure translatory motion of the camera, the
fundamental matrix F is skew-symmetric. This may be seen in a variety of ways. For
instance, if K[I | 0] and K[I | t] are the two cameras, then according to Proposition (2.2)
the fundamental matrix is given by F = K−�[t]×K−1. Since F is skew-symmetric, it
factors as F = UEU� where U is orthogonal and E is as given in (6.1). The two matrices
A and A′ required to transform F to the simple form (6.1) are both equal. Thus both
numerator and denominator are equal in the form (6.3) of the Kruppa equations. Then
equations (6.3) takes the simple 1 = 1 = 1. Although this is a significant mathematical
fact, it is not a useful constraint on camera calibration. Thus, a translatory motion of
the cameras does not impose any constraint on camera calibration. It is interesting that
affine scene reconstruction is possible from translatory motions, however ([49]).

Kruppa’s equations for three of more views. For three views or more, one has
sufficiently many equations to solve for the calibration. Direct solution of simultaneous
quadratics given by Kruppa’s equations, tried by Luong ([43]) is difficult because of the
existence of multiple solutions to non-linear equations, and the difficulties involved with
solving redundant systems. Luong’s method was to solve subsets of five equations, giving
up to 25 = 32 solutions, and then selecting solutions common to all subsets of equations.
This method is somewhat inexact and prone to noise. Consequently, in the work reported
here different methods were tried.

6:3 Least-Squares Method for Euclidean Reconstruc-
tion

6:3.1 Reconstruction by Direct Levenberg-Marquardt Iteration

A direct approach to the Euclidean reconstruction problem is to solve directly for the
unknown camera matrices, Pi = K[Ri | −Riti] and points xj . In particular, we search
for Pi of the required form, and xj such that ûij = Pixj and such that the squared error
sum ∑

i,j

d(ûij ,u
i
j)

2

is minimized, where d(∗, ∗) represents Euclidean distance. Using this minimization cri-
terion is optimal under the assumption that measurement errors are caused by errors in
measurement of the pixel locations of the uij , and that these errors are independent and
gaussian. This problem may be formulated in the form y = f(x), where the independent

6:4. CONVERTING PROJECTIVE TO EUCLIDEAN RECONSTRUCTION 163

variables x comprise the 3D coordinates of each of the points x in space, the rotations Ri
of each of the cameras and the common calibration matrix K. The dependent variables
y comprise the image coordinates uij .

There are various methods of parametrizing the rotations. Horn ([36, 37]) uses quater-
nions to do this. We prefer to parametrize rotations using Eulerian angles. This has
the advantage that a rotation is parametrized by the minimum of three parameters,
instead of four using quaternions. To avoid problems of singularities in the representa-
tion of rotations by Eulerian angles, rotations are parametrized as incremental rotations
with respect to the present “base rotation”. Thus, each Ri is represented as a product
Ri = Xi∆(θi, φi, κi), where ∆(θi, φi, κi) is the rotation represented by Eulerian angles
θi, φi and κi. Initially, Xi is set to the initial estimate of the rotation, and θi, φi and κi
are all set to zero (and hence ∆ is the identity mapping). At the end of each Levenberg-
Marquardt (LM) iteration Xi is set to the product Xi∆(θi, φi, κi), and θi, φi and κi are
reset to zero. Since the incremental rotation adjustment applied at each step of iteration
is small, the Eulerian angles used to represent it are small. Consequently the difficulty
of singularities in the representation of rotations by Eulerian angles does not arise. In
this way, only three parameters are used to represent the incremental adjustment in the
estimation step, rather than four using quaternions. This provides a speed advantage
when large numbers of rotations are being estimated.

Such an approach to Euclidean scene reconstruction will work perfectly well, provided the
initial estimate is sufficiently close. With arbitrary or random guesses at initial values of
the parameters it usually fails dismally. The problem as posed is similar to the relative
placement problem. This problem was given a robust solution by Horn ([36, 37]) In
fact the algorithm given in [36] amounts essentially to Newton iteration by solving the
normal equations, using the method of back-substitution mentioned in Section 2:1.4, and
parametrizing rotations as quaternions. Horn avoids the need for an informed initial
guess by iterating from each of a number of equally spaced or random rotations and
selecting the best solution. The problem considered by Horn differs from the problem
considered here in that we are considering uncalibrated cameras, and we wish to be able
to solve for a large number of cameras at once. Thus, there is an unknown calibration
matrix that must be estimated. Furthermore, instead of one rotation, we have several.
With more than a small number of cameras the idea of sampling the rotation space is
unworkable.

In short, direct iteration may be used to refine a solution found by other techniques, but
can not be used on its own.

6:4 Converting Projective to Euclidean Reconstruc-
tion

Instead of attempting a direct reconstruction, calibration and pose estimation as in the
previous section, we use a two-step approach. In the first step, a projective reconstruction
of the scene is computed, dropping the assumption that the images are all taken with
the same camera. The scene configuration obtained in this manner will differ from the
true configuration by a 3D projective transformation. In the second step, this projective
transform is estimated. The advantage of proceeding in this manner is that projective
reconstruction is relatively straight-forward. Then step two, the estimation of the correct

164

3D transformation, comes down to solving an 8-parameter estimation problem, which is
far more tractable than the original problem.

For the present, we drop the assumption that all the cameras have the same calibra-
tion. A projective reconstruction of the scene is carried out as described in this report
(section 5:2.7). Once we have a projective reconstruction of the imaging geometry any
other reconstruction (including a desired Euclidean reconstruction) may be obtained by
applying a 3D projective transformation. In particular, if ({Pi}, {xj}) is a projective
reconstruction, then any other reconstruction is of the form ({PiH−1}, {Hxj}) where
H is a 4 × 4 non-singular matrix. We seek such a matrix H such that the transformed
camera matrices PiH−1 all have the same (yet to be determined) calibration matrix, K.
In other words, we seek H such that PiH−1 = K[Ri | −Riti] for all i, where each Ri is
a rotation matrix and K is the common upper-triangular calibration matrix.

Without loss of generality, we may make the additional restriction that the zeroeth
camera remains located at the origin and that R0 is the identity. Since in the original
projective reconstruction P0 = [I | 0], it follows that H−1 may be assumed to have the
restricted form

H−1 =
[
K 0
v� α

]
.

Since the constant α represents scaling in 3-space, we may further assume that α = 1.
Equivalently, since K is non-singular, we may (and shall) rather assume that H−1 has
the form

H−1 =
[

K 0
−v�K 1

]
=
[

I 0
−v� 1

] [
K 0
0 1

]
(6.5)

Now, writing each Pi = [Ai | −Aiti] and multiplying out leads to a requirement that

Ai(I + tiv�)K ≈ KRi (6.6)

for some rotation matrix Ri. Our goal is to find K and v to satisfy this set of conditions.
Recall thatK is upper triangular, and further assume thatK33 equals 1, henceK contains
five unknown entries. The vector v has a further three unknown entries. In total, it is
required to estimate these eight unknown parameters.

Of course, for inexact data, the equations (6.6) will not be satisfied exactly, and so we
will cast this problem as a least-squares minimization problem that may be solved using
LM. In particular, given values for K and v, we compute the expression Ai(I + tiv�)K
for each i (remembering that Ai and ti are known). Taking the QR decomposition of
this matrix, we obtain upper-triangular matrices K ′i such that

Ai(I + tiv�)K = K ′iRi . (6.7)

Subsequently, we compute the matrices Xi = K−1K ′i for all i. Since we have assumed
that P0 = [A0 | −Aiti] = [I | 0], it follows that X0 = I. Furthermore, if K and v satisfy
the desired condition (6.6) then K ′i ≈ K for all i > 0, and so Xi ≈ I. Accordingly, we
seek to minimize the extent by which Xi differs from the identity matrix. Consequently,
we multiply each Xi by a normalizing factor αi chosen so that the sum of squares of
diagonal entries of αiXi equals 3, and so that detαiXi > 0. Now, we seek K and v to
minimize the expression ∑

i>0

||αiXi − I||2 (6.8)

6:4. CONVERTING PROJECTIVE TO EUCLIDEAN RECONSTRUCTION 165

Note that each αiXi − I is an upper-triangular matrix. This minimization problem fits
the general form of LM estimation of a function f : R8 �→ R6(N−1) where N is the total
number of cameras. The function f maps the eight 9 variable entries of K and v to the
diagonal and above-diagonal entries of αiXi−I for i > 0. Since this minimization problem
involves the estimation of 8 parameters only, it is obviously a great improvement over
the original problem as stated in Section 6:3.1 that required the simultaneous estimation
of the matrix K, the N − 1 rotation matrices Ri for i > 0 and the 3D point coordinates
of all points xj .

It turns out still to be impractical to solve this minimization problem without a good
initial guess at K and v. It is possible to take a good prior guess at K if some knowledge
of the camera is available. On the other hand, it is difficult to guess the vector v, so it
will be necessary to find some way to obtain an initial estimate for v. It will turn out
that if v is known, then the calibration matrix K can be computed by a straight-forward
non-iterative algorithm, so there is no need to guess K.

6:4.1 Euclidean From Affine Reconstruction

With H−1 of the form (6.5) matrix H may be written as

H =
[
K−1 0
0 1

] [
I 0
v� 1

]
.

The right-hand one of these two matrices represents a transformation that moves the
plane at infinity, whereas the second one is an affine transformation, not moving the
plane at infinity. In fact, if x is a point being mapped to infinity by the transformation
H , then (v�1)x = 0. So (v�1) represents the plane that is mapped to the plane at
infinity by H .

We will now suppose that by some magic we have been able to determine v. This means,
in effect that we know the position of the plane at infinity in the reconstruction. Other-
wise stated, we have been able to determine the structure up to an affine transformation.
We will now present a simple non-iterative algorithm for the determination of K, and
hence of the Euclidean structure.

Equation (6.6) may be written as BiK = KRi where Bi = αiAi(I + tiv�), and the
constant factor αi is chosen so that detBi = 1. Matrix Bi is known since Ai, ti and v are
assumed known. The equation BiK = KRi may be written as K−1BiK = Ri. In other
words, each Bi is the conjugate of a rotation matrix, the conjugating element being the
same in each case – the calibration matrix K. For any non-singular matrix X , let X−�

be the inverse transpose of X . For a rotation matrix R, we have R = R−�. From the
equation Ri = K−1BiK it follows by taking inverse transposes that Ri = K�Bi

−�K−�.
Equating these two expressions for Ri we get K�Bi−�K−� = K−1BiK, from which it
follows that

(KK�)Bi−� = Bi(KK�) (6.9)

Given sufficiently many views and corresponding matrices Bi equation 6.9 may be used
to solve for the entries of the matrix KK�. In particular, denoting KK� by C and

9It is possible to assume certain restrictions on the entries of K, such as that skew is zero and that
the pixels are square, thereby diminishing the number of variable parameters

166

writing

C = KK� =

 a b c
b d e
c e f

the equation (6.9) gives rise to a set of nine linear equations in the six independent entries
of C. It may be seen that multiplying C by a constant factor does not have any effect on
the equation (6.9). Consequently, C can only be solved up to a constant factor. It turns
out that because of redundancy, the nine equations derived from (6.9) for a single known
transformation Bi are not sufficient to solve for C. However, if two or more such Bi are
known, then we may solve for C. In particular, for each view and corresponding Bi for
i = 1, . . . , N − 1 we have nine equations in the entries of C. This overconstrained system
of equations may be written in the form Xa = 0, where X is a matrix of dimension
9(N − 1)× 6 and the vector a contains the independent entries of C. The least-squares
solution a is the eigenvector corresponding to the least eigenvalue of X�X . This is easily
found using the Jacobi method for finding the eigenvalues of a symmetric matrix ([55]).
Note that the views are numbered starting at 0, so we need three views to provide two
independent transforms Bi, and hence to solve for C.

Once C = KK� is found it is an easy matter to solve for K using the Choleski factor-
ization ([1, 55]). A solution for K is only possible when C is positive-definite. This is
guaranteed for noise-free data, since by construction, C possesses such a factorization.
If we insist that the diagonal entries or K are positive, then the Choleski factorization
C = KK� is unique.

In cases where the input data is defective, or the plane at infinity is not accurately
known it is possible that the matrix C turns out not to be positive-definite, and so the
calibration matrix can not be found. In practice however, the algorithm works extremely
well, provided the plane at infinity is accurately placed and there are no gross inaccuracies
(mistaken matched points) in the data.

As has been remarked previously, the matrix C = KK� has a geometric interpretation.
It is the dual of the image of the absolute conic. The condition that C = BCB� is
related to the fact that C is invariant under translation and rotation of the camera.

Euclidean reconstruction from Affine Constraints

If certain collateral data is given that allows the affine structure of the scene to be
determined, then this algorithm can be used to determine the Euclidean structure. For
instance, if three independent pairs of parallel lines are known, then these can be used
to determine where the true plane at infinity lies in a projective reconstruction. In
particular, the points of intersection of the parallel lines must all lie on the plane at
infinity. Given three pairs of lines, and hence three points on the plane at infinity the
plane at infinity is determined. This determines the affine structure of the scene. The
above algorithm then may be used to determine the Euclidean reconstruction of the
scene.

Another affine constraint that may be used is a known ratio of distances of points on
a line. For instance, suppose collinear points O, A and B are given and the ratio of
distances OA/OB = a/b is known. The line OAB in a projective reconstruction may be
parametrized such that O, A and B have parameter values 0, a and b. The point with
parameter ∞ on this line must lie on the plane at infinity.

6:4. CONVERTING PROJECTIVE TO EUCLIDEAN RECONSTRUCTION 167

Another method using Euclidean constraints to get the Euclidean reconstruction of a
scene is reported by Boufama [7]. On the other hand, Sparr ([69]) gives a method of
computing affine structure given a single view, and Koenderink and van Doorn [40] give
a method for computing affine structure from pairs of orthographic views. Quan [57]
gives a method of affine construction from two views given affine constraints.

6:4.2 Quasi-affine Reconstruction

We have seen that once an affine reconstruction of the scene is known, it may be trans-
formed by linear means into an Euclidean reconstruction. One way of finding an affine
reconstruction is to rely on known geometric information about the scene. We are inter-
ested, however, in finding the plane at infinity without any extra given information. We
are unaware of any direct method, generally applicable of finding the plane at infinity in
the scene, equivalent to performing affine reconstruction. On the other hand, in part IV
of this report we described a method of finding a quasi-affine reconstruction of the scene.
This algorithm does not precisely locate the plane at infinity, but it finds an approxima-
tion to the plane at infinity, at least placing it correctly with respect to the convex hull
of the point set in question. Our strategy is, rather than to find an affine reconstruction
of the scene, to be content with a quasi-affine reconstruction, and proceed by iteration
from there to find the Euclidean structure.

The first step will be to get an approximation to the plane at infinity. This can be
done by solving the cheiral inequalities as in section 4:7 to find the plane at infinity. By
solving these cheiral inequalities, we find a candidate value for v, defined as in (6.6). By
the method of Section 6:4.1 we can now compute the corresponding value of K. This
estimate may then be refined using the method described in Section 6:3. There is one
flaw in this scheme, namely that it may not be possible to find K corresponding to the
estimated v, because the matrix C, which should equal KK�, is not positive definite.
In this case, it is necessary to select a different v. This may be done by carrying out a
random search over the convex region of 3-space defined by the cheirality inequalities. In
fact, a reasonable approach is to find several candidate vectors v and iterate from each
of them, finally selecting the best solution. This is what has been done in practice.

6:4.3 Algorithm Outline

Since the details of the outline have been obscured by the necessary mathematical analy-
sis, the complete algorithm for Euclidean reconstruction will now be given. To understand
the details of the steps of the algorithm, the reader must refer to the relevant section of
the previous text.

1. Compute a projective reconstruction of the scene (Section 2:1.5)

(a) Compute the fundamental matrix F for a pair of images and use this to
parametrize the first two cameras, and reconstruct the points

(b) Use LM iteration to refine this initial projective reconstruction.

(c) Parametrize the other cameras by the DLT method. Compute new point
locations as appropriate.

(d) Refine the complete projective reconstruction using LM iteration.

168

2. Compute a quasi-affine reconstruction of the scene (Section 6:4.2)

(a) Formulate the cheiral inequalities for the projective reconstruction

(b) Use LP to solve the inequalities to find a vector v.

(c) Use the transformation matrix H =
[

I 0
v� 1

]
to transform the projective

reconstruction to a quasi-affine reconstruction.

3. Search for a quasi-affine reconstruction from which the calibration matrix K may
be computed (Section 6:4.2)

(a) For a randomly selected set of vectors v contained within the region deter-
mined by the cheiral inequalities solve the equations CBi−� = BiC as de-
scribed in Section 6:4.1 until we find a v such that the solution C is positive-
definite.

(b) Determine K by Choleski factorization of C = KK�.

4. Carry out LM iteration using the method of Section 6:3 to find a Euclidean recon-
struction.

5. Using the values of K, Ri and xj that come out of the previous step, do a complete
LM iteration to find the optimal solution minimizing the image-coordinate error,
using the method described in Section 6:3.1.

Various comments are in order here. First of all, some of the steps in this algorithm
may not be necessary. Step 1(b) of the algorithm may not be needed, but it is easy to
include and ensures an accurate starting point for the computation of the other camera
parameters. The second step (determination of a specific quasi-affine reconstruction)
may not be necessary either, since the third step does a search for a modified quasi-
affine reconstruction. However, it is included, since it provides a point of reference for
the subsequent search. The vector v found in the third step of the algorithm should be
small, so that the modified quasi-affine reconstruction is close to the original one. In
fact, as mentioned previously it is possible to use the cheiral inequalities to give bounds
on the individual entries in the vector v. Finally, it has been found that the last step of
the algorithm, the final iteration is scarcely necessary, and does not make a very large
difference to the solution. It commonly decreases the value of the image coordinate error
by no more that about 10%, at least when there are many views. In addition, this last
step is relatively costly in terms of computation time.

6:4.4 Experimental Evaluation

This algorithm has been evaluated on both real and synthetic data.

Solution with Three Cameras

Since three cameras are the minimum number needed for Euclidean reconstruction the
algorithm was tested on synthetic data with three views. The algorithm was found to
converge without difficulty for noise-free data, and for data with added gaussian noise of
0.1 and 0.5 pixels in an image of size approximately 700× 600 pixels. The degradation

6:4. CONVERTING PROJECTIVE TO EUCLIDEAN RECONSTRUCTION 169

Noise pu pv kv skew ku/kv ∆
– 3.0000e+02 3.5000e+02 2.5000e+03 2.0000e+01 9.0000e-01 –
0.0 3.0008e+02 3.5003e+02 2.4999e+03 2.0013e+01 8.9999e-01 0.0
0.1 2.7604e+02 3.3369e+02 2.5590e+03 1.7532e+01 8.9947e-01 0.09
0.5 1.2937e+02 2.3553e+02 2.9044e+03 3.2273e+00 8.9715e-01 0.50
1.0 -2.5284e+02 -1.1118e+01 3.5934e+03 4.6454e+01 8.7611e-01 5.67
2.0 2.3709e+02 2.7905e+02 2.3448e+03 6.6483e+01 8.7752e-01 5.22

Table 6.1: Reconstruction from Three Views

Noise pu pv kv skew ku/kv ∆1 ∆2 ∆3

– 5.00e+02 4.00e+02 1.0000e+03 -5.0000e+01 9.0000e-01 0.0 0.0 0.0
0.0 5.00e+02 4.00e+02 9.9999e+02 -5.0000e+01 9.0000e-01 9.805e-08 0.0 0.0
0.5 4.99e+02 3.98e+02 9.9959e+02 -4.9857e+01 9.0045e-01 8.359e-04 0.95 0.88
1.0 4.99e+02 3.97e+02 9.9911e+02 -4.9722e+01 9.0091e-01 1.678e-03 1.91 1.76
2.0 4.98e+02 3.95e+02 9.9792e+02 -4.9472e+01 9.0185e-01 3.386e-03 3.82 3.52
4.0 4.97e+02 3.90e+02 9.9463e+02 -4.9062e+01 9.0376e-01 6.911e-03 7.64 7.04
8.0 4.93e+02 3.81e+02 9.8455e+02 -4.8618e+01 9.0768e-01 1.454e-02 15.25 14.00
16.0 4.84e+02 3.67e+02 9.5125e+02 -4.9325e+01 9.1536e-01 3.314e-02 30.10 27.05

Table 6.2: Reconstruction from 15 Views

becomes progressively worse for greater degrees of noise, however the ratio ku/kv remains
relatively stable. These results are shown in Table 1. The first line gives the correct values
for the camera parameters. Subsequent lines show greater degrees of noise. The final
column marked ∆ gives the residual RMS pixel error, that is, the difference between the
measured image coordinates and the ones derived from the reconstruction. This error
should be of magnitude comparable with the noise level.

Solution with Large Numbers of Views

The algorithm was then carried out on synthetic data with 15 views of 50 points. The
50 points were randomly scattered in a sphere of radius 1 unit. The cameras were given
random orientations and were placed at varying distances from the centre of the sphere
at a mean distance from the centre of 2.5 units with a standard deviation of 0.25 units.
They were placed in such a way that the principal rays of the cameras passed through
randomly selected points on a sphere of radius 0.1 units. The calibration matrix was
given a known value. In order to assess the quality of the Euclidean reconstruction the
positions of the reconstructed points were compared with the known locations of the 3D
points. Since the reconstructed points and the original points are not known in the same
coordinate frame, it is necessary to align the two sets of points first. Then the RMS error
was computed and used as a measure of quality of the reconstruction. The algorithm
of Horn ([38]) was used to compute a rotation, translation and scaling that bring the
reconstructed points into closest-possible alignment with the original point locations.

The results are shown in Table 2. The first line gives the correct values of the camera

170

parameters and subsequent lines show the computed values with added noise. The last
three columns have the following meaning.

∆1 The error in reconstruction, namely the distance between the actual and the recon-
structed point locations.

∆2 The residual pixel error after step 4 of the algorithm in Section 6:4.3.

∆3 The residual pixel error after step 5 of the algorithm. This shows only a 10%
reduction compared with ∆2.

As can be seen from the Table 2, the results of the reconstruction are extremely good and
immune to noise, both as regards the extracted camera calibration parameters and the
quality of the point reconstruction. Even for gaussian noise as high as 16 pixels standard
deviation in an image of size approximately 600 × 600 (far greater levels of noise than
will be encountered in practice) the camera parameters are reasonably accurate, and the
reconstruction is accurate to within 0.033 units, or 3.3 centimetres in a sphere of radius
1 metre. Note that the three error estimates show extraordinary linearity in terms of the
added noise.

Solution with Real Data

The algorithm was evaluated on a set of image coordinate correspondences kindly sup-
plied by Boubakeur Boufama and Roger Mohr. The object in question was a wooden
house, for which 9 views were used and a total of 73 points were tracked, not all points
being visible in all views. This is the same image set as used in the paper [48]. The
image coordinates were integer numbers ranging between 0 and 500. Figure 6.1 shows
one of the views of the house. The algorithm converged very successfully on this data.
The measured residual RMS pixel error was found to be 0.6 pixels per point, which is
about as good as can be expected, since the image correspondences were not supplied
with sub-pixel accuracy. Not having any ground truth information, I was unable to com-
pare the reconstruction against the correct points. The right side of Figure 6.1 shows a
reconstructed view of the set of 73 points looking directly down the edge of the house.
Clearly visible is the corner of the house, showing a right-angled corner. This indicates
the success of the Euclidean reconstruction, since angles are a Euclidean attribute of the
scene.

There is, however, one reason to suspect the accuracy of the reconstruction. In cases
where all the camera rotations are about a common axis (as occurs when the camera is
stationary and the image rotates), it appears that the problem is not well posed, for the
scene may be expanded in the direction of the rotation axis at will. This is possibly the
case in this present case, since the the computed camera parameters showed non-square
pixels, which seems to be unlikely.

6:5 Retrieving Focal Lengths

In section 6:4 of this report it was shown that complete camera calibration and Euclidean
reconstruction is possible from three views with the same camera. The question of what
is possible with just two views naturally arises. If the calibration of the cameras is

6:5. RETRIEVING FOCAL LENGTHS 171

Figure 6.1: On the left one of the views of a house. On the right a view of the recon-
structed house.

also known in advance, then complete Euclidean reconstruction is possible from just
two views, as shown by Longuet-Higgins ([42]). In the present section it is shown that
Euclidean reconstruction is possible from two views under a weaker assumption than
complete known camera calibration. To be precise, the fundamental matrix may be
used to solve the relative orientation problem for a pair of pinhole cameras with known
principal points, but unknown (possibly different) focal lengths. A simple non-iterative
algorithm is given for finding the two focal lengths. Once this is done, known techniques
(Longuet-Higgins ([42])) may be used to find the relative orientation of the cameras, and
to reconstruct the scene. Note that in this section, we are allowing the possibility that
the focal lengths of the two cameras are different.

The fundamental matrix is a 3 × 3 matrix with 7 degrees of freedom. On the other
hand, 5 parameters are sufficient to specify the relative placement of the two cameras.
We will show in this section how the two extra degrees of freedom of the fundamental
matrix may be used to compute the focal lengths of the two cameras, provided all other
internal parameters of the two cameras are known. A very simple algorithm is given for
the computation of the two focal lengths, based on projective geometry. This approach
allows one to gain an intuitive understanding of the method, as well as allowing the
identification of critical configurations where the algorithm will fail.

Experiments are carried out to evaluate the performance. It is shown that the algorithm
performs relatively well, and is quite robust in the presence of noisy data, provided the
camera geometry is sufficiently far from one of the critical configurations.

6:5.1 The Camera Model

In this section, we will be concerned with the pinhole camera model defined in section
6:5.1. That is, we assume no skew and equal scale factors in both axial directions. In
this case the camera projection may be written as

 u

v
w

 =

 f 0 pu
0 f pv
0 0 1

 x̂

ŷ
ẑ

 .

172

Given two images, it is not possible to estimate the focal lengths of the two cameras as
well as the principal point offset. In this section, it is assumed that the principal point
of the camera is known. It then proves possible to compute the focal lengths of the two
cameras. The principal point of a camera is rarely known precisely, but for practical
purposes, it is sufficient to assume that the principal point is at the centre of the image,
unless the image has been cropped. For instance, in [53] good scene reconstruction
is achieved under this assumption. The most evident application of this work is for
computing the focal length of a camera fitted with a zoom or changeable lens. It is
reasonable to assume that the principal point will not move during zooming, though this
is dependent on the quality of the zoom lens.

6:5.2 Computation of the Scale Factors

As observed in section 6:6.5, the key to camera calibration is the absolute conic, which
is a conic on the plane at infinity consisting of points (x, y, z, t)� such that t = 0 and
x2 + y2 + z2 = 0. As was shown in section 6:6.5, the image of the absolute conic as
viewed by a camera with matrix K[R | −Rt] is the plane conic represented by the matrix
(KK�)−1.

Consider now the special case of two cameras with calibration matrices diagonal, of the
form diag(k, k, 1) and diag(k′, k′, 1). In other words, it is assumed that the principal
point is known, and is equal to the origin (0, 0) of image coordinates. Under these
assumptions, the image of the absolute conic has matrix diag(k2, k2, 1)−1 ≈ diag(1, 1, k2)
for one camera and diag(k′2, k′2, 1)−1 ≈ diag(1, 1, k′2) for the other. These are circles
of imaginary radius centred at the origin. Their equations are u2 + v2 + k2 = 0 and
u′2 + v′2 + k′2 = 0.

Consider now two images J and J ′. Let π be a plane in space passing through the two
camera centres and tangent to the absolute conic. This plane is mapped into the image
J as a line λ through the epipole e tangent to the image of the absolute conic. Similarly
it maps to a line λ′ in the second image. The two lines λ and λ′ in the two images are
a matching pair of epipolar lines. There are in fact two tangent planes through the two
camera centres tangent to the absolute conic, which results in two pairs of epipolar lines
λ1 ↔ λ′1 and λ2 ↔ λ′2 all tangent to the image of the absolute conic.

Let the two epipoles be e and e′. We assume that neither e nor e′ lies at the origin, which
means that neither camera lies on the principal ray of the other. Simply by rotating each
of the images, it may be ensured that the two epipoles lie on the positive u-axis. Rotating
the image about the origin is equivalent to rotating the camera about the principal ray.
Note that this observation is true only because of the assumption of now skew s and
square pixels, ku = kv. Otherwise the image will undergo distortion as the camera as
rotated.

Suppose that the two epipoles are e = (e1, 0, e3) and e′ = (e′1, 0, e
′
3). Under these

conditions, the fundamental matrix has a particularly simple form. From the conditions
Fe = F (e1, 0, e3)� = 0 and e′�F = (e′1, 0, e′3)F = 0, we derive

F ≈

 e′3

1
−e′1

 a b a
c d c
a b a

 e3

1
−e1

 (6.10)

for real numbers a, b, c and d.

6:5. RETRIEVING FOCAL LENGTHS 173

Now, we consider the tangent lines from the epipole (e1, 0, e3)� to the conic with
matrix diag(1, 1, k2). The polar ([60]) of the point (e1, 0, e3)� with respect to the
conic diag(1, 1, k2) is the line (e1, 0, k2e3)�, in other words the line e1u + k2e3 = 0.
The points of tangency from (e1, 0, e3)� to the conic are therefore the intersections
of the line e1u + k2e3 = 0 with the conic u2 + v2 + k2 = 0. These are the points
û = (−k2e3, ik(e2

1 + k
2e2

3)
1/2, e1)� and the complex conjugate point. Transforming this

point by F , we will obtain the corresponding epipolar line in the second image, namely the
tangent line from e′ = (e′1, 0, e

′
3)
� to the conic diag(1, 1, k′2). Writing ∆ = (e2

1+k
2e2

3)
1/2,

we compute

F û ≈

 (−a∆2 + bik∆)e′3

−c∆2 + dik∆
(a∆2 − bik∆)e′1

 ≈

 (−a∆+ bik)e′3

−c∆+ dik
(a∆− bik)e′1

≈

 −e′3
−c∆+dik
a∆−bik
e′1

 =

 −e′3

(−c∆+dik)(a∆+bik)
a2∆2+b2k2

e′1

 (6.11)

=

 −e′3
−ac∆2−bdk2+ik(ad−bc)∆

a2∆2+b2k2

e′1

 def=

 −e′3

µ+ iν
e′1

The other tangent line is obtained as the complex conjugate of this line, namely (−e′3, µ−
iν, e′1). On the other hand, these two tangent lines are tangents from the epipole e′

to the conic diag(1, 1, k′2), which is symmetric about the u-axis. In other words, if
(−e′3, µ+ iν, e′1) is one tangent line, then the other is (−e′3,−(µ+ iν), e′1). Consequently,
−(µ+ iν) = µ− iν, and so µ = 0. This gives

µ =
−ac∆2 − bdk2

a2∆2 + b2k2
= 0 (6.12)

whence
−ac∆2 − bdk2 = −ac(e2

1 + k
2e2

3)− bdk2 = 0 .

Finally, this leads to

k2 =
−ace2

1

ace2
3 + bd

. (6.13)

A formula for k′ may be computed by reversing the role of the two images. This cor-
responds to taking the transpose of the fundamental matrix. Consequently, we may
write

k′2 =
−abe′21

abe′23 + cd
. (6.14)

Since the focal lengths must be positive, we select the positive values of k and k′ satisfying
(6.13) and (6.14).

6:5.3 Algorithm Outline

Now, we are able to describe the complete algorithm for computation of the magni-
fications of the two cameras. It is assumed that the cameras have camera matrices
diag(k, k, 1) and diag(k′, k′, 1) and that the fundamental matrix F corresponding to the

174

(ordered) pair of cameras is known. Matrix F has rank 2. It is required to determine k
and k′.

1. Determination of the epipoles : The two epipoles e and e′ are determined by
solving the equations Fe = 0 and F�e′ = 0.

2. Normalizing the position of the epipoles : The images are rotated so that the
two epipoles both lie on the x-axis, namely at points (e1, 0, e3)� and (e′1, 0, e′3)�

respectively. Subsequently, correct the fundamental matrix to reflect this change.
More precisely, if T and T ′ are the two image rotations, then F is replaced by the
new F equal to T ′−�FT−1.

3. Compute the decomposition of F in the form (6.10).

4. Computation of k and k′ : Compute k and k′ according to the formulae (6.13)
and (6.14).

Once the scales k and k′ are known, it is an easy matter to compute the rela-
tive placement of the two cameras. One simply computes the essential matrix Q =
diag(k′, k′, 1)�F diag(k, k, 1) for cameras with identity calibration matrices and then
computes the camera placement using the algorithm given in [42] or [23].

6:5.4 Failure

No solution possible : There may be no solution possible, if the right sides of (6.13)
or (6.14) are negative. This indicates that the data is faulty. The fundamental matrix F
does not correspond to a pair of cameras with the assumed simple calibration matrices.

The Principal Rays Meet : There are other cases, however, in which the algo-
rithm may fail. The most interesting situation is when the principal rays of the cameras
intersect. Any point along the principal ray is projected to the principal point in the
image, which is assumed to be the origin (0, 0, 1)�. Therefore, the point of intersection
of the principal rays maps to the origin in both images. This is an image correspondence
(0, 0, 1)� ↔ (0, 0, 1)�. It follows that (0, 0, 1)F (0, 0, 1)� = 0, and hence that the (3, 3)-
entry of F is zero. With F as in (6.10), this means a = 0. Now, from (6.12), we have
µ = −bdk2/b2k2 = −d/b. It follows that µ = 0 if and only if d = 0, and this condition is
independent of k. This means that k and k′ can not be determined from the fundamental
matrix. This condition is somewhat troublesome in practice, since if two images of the
same object are taken, then there is a good chance that they may both be taken with
the camera aimed at the same point in the scene.

In this case, however, the two magnification factors k and k′ may not be varied inde-
pendently. In fact, if a = d = 0, then from (6.11) we see that F û = (−1, ic∆/bk, 1)�.
These are the two tangent lines to the image of the absolute conic in the second im-
age. On the other hand, the points of tangency from point e′ = (1, 0, 1)� to the conic
u′2 + v′2 + k′2 = 0 are the two points (−k′2,±ik′∆′, 1)�. However F û is a tangent line,
and hence passes through one of these points. Multiplying out, we get

∆′2 ± c∆k′∆′

bk
= 0

6:5. RETRIEVING FOCAL LENGTHS 175

from which it follows that b∆′/k′ = ±c∆/k. Squaring, substituting for ∆ and ∆′ and
simplifying gives

b2(1 + k′−2) = c2(1 + k−2) .

The two magnification factors may vary freely as long as they satisfy this relationship.

Other Configurations : A similar situation occurs when b = 0. From (6.12) one
deduces as before that c = 0, and the condition that µ = 0 is independent of k.

Uniqueness It is evident that the geometric configurations that lead to failure of the
algorithm through ambiguity are somewhat special cases. In fact, in the space of all
possible configurations of cameras, the set of configurations that give rise to ambigu-
ous solutions in the determination of the focal lengths constitute a critical set of lower
dimension. This allows us to state the following uniqueness result.

Theorem6.1. For almost all configurations of a pair of pinhole cameras with known
principal points, the focal lengths and relative orientation of the two cameras are deter-
mined uniquely by the correspondence of points seen in the two images.

The words “almost all configurations” are to be interpreted as meaning all configurations,
except those lying in a lower dimensional critical set. Similarly, the term pinhole camera
is intended to denote a camera carrying out central projection from object space onto
an image plane. As explained previously, such a camera has isotropic coordinates in the
image plane, and no skew.

6:5.5 Experiments

Simulations were carried out to evaluate the algorithm in the presence of varying degrees
of noise, and with varying proximity to a critical configuration. The set of experiments
were carried out with a simulated 35mm camera with a focal length of 28mm. This focal
length is equal to the lower limit of focal lengths for one commonly available zoom lens.
Such a camera has a field of view approximately 64◦. This is a fairly wide field of view,
but also within typical ranges for aerial cameras. For this experiment, both simulated
cameras had the same focal length. Images were assumed to be digitized with pixels of
size 70µ, which means 500 pixels across the 35mm width of the image. The f parameter
of the images was 400 (the focal length in pixels).

Two images were assumed taken with one camera rotated 30 degrees from the other. The
two principal axes were skew lines in space chosen to be varying distances apart. A set
of 30 points lying in a sphere of diameter 1.5 units were viewed by the two cameras. The
cameras were placed so that the set of points approximately filled the field of view of each
of the cameras. The images of the points were computed in each of the two cameras.

As seen in Section 6:5.4, if the principal axes meet, then the algorithm will fail and the
focal lengths can not be determined. Suppose the principal axis of each camera could
actually be seen in the image taken with the other camera. If the two principal axes
meet in space, then the image of the principal axis of one camera, as seen by the other
camera, will pass through the principal point of the image. The distance (in pixels) from
the principal point in an image to the image of the principal axis of the other camera

176

is a measure of how far the configuration differs from the critical configuration. This
parameter will be denoted by α. For the configurations used in the experiment, the
value of α was the same for both images (though this need not be so).

To determine how closeness to the critical configuration affects the stability of the com-
putation a set of tests were carried out with values of α equal to 20, 39, 58 and 75 pixels.
For each α, varying degrees of gaussian noise was added to each image pixel coordinate.
The standard deviation of the added noise varied from 0.25 pixels to 5 pixels in each
axial direction, for each point. For each noise level and value of α the computation was
repeated 100 times with different added noise.

To measure the performance of the algorithm, four criteria were used.

1. Successful completion of the algorithm. In some cases, because of noise, the values
on the right of (6.13) or (6.14) will be negative, and no solution is possible.

2. Accuracy of the computation of the focal length.

3. Accuracy of the ratio of the focal lengths of the two cameras. It turns out that
errors in the computed focal lengths of the two cameras are strongly correlated.
The ratio of the focal lengths is more accurately computed than the individual focal
lengths.

4. Reconstruction error. Once the focal lengths were computed, the scene was recon-
structed and compared with the actual values of the object points. To do this the
reconstructed scene was superimposed on the actual scene using the algorithm of
Horn ([38]) and the RMS construction error was measured.

The results of these experiments are reported in Figs 1 – 4.

6:5.6 Conclusions

The algorithm described in this section provides a very simple method of computing the
focal lengths and relative position and orientation of a pair of pinhole cameras given a set
of image correspondences. As long as the principal axes of the two cameras are sufficiently
distant from each other the algorithm performs quite well in the presence of reasonable
amounts of noise. Realistic noise levels should be on the order of at most 2 pixels in each
axial direction. The deviation of the estimated from the correct values of focal length
are due to the inherent instability of the problem, rather than to an inadequacy of the
algorithm. This has been demonstrated by using least-squares minimization methods to
find the optimal solution iteratively. Images taken with a narrow field of view and long
focal length cameras differ only slightly from orthographic views, and what difference
there is can easily be swamped by noise.

6:6 Camera Rotating about a Fixed Point

In this section, another method is given for calibration of a camera in the case of a certain
restricted motion of the camera. This differs from the other self-calibration methods
discussed in the previous sections, in which unrestricted movements of the camera were
allowed. In the method discussed in this section, at least three images are taken from the

6:6. CAMERA ROTATING ABOUT A FIXED POINT 177

0

20

40

60

80

100

P
er

ce
nt

ag
e

F
ai

lu
re

Pixel Error

15 pixels off centre
30 pixels off centre
45 pixels off centre

Figure 6.2: Failure. The algorithm fails if the value of k2 or k′2 computed from (4) and
(5) is negative. This plot shows the percentage failure of the algorithm. For RMS pixel
errors of less than 3 pixels, the algorithm succeeded in all cases. Similarly for a value of
α of 75 pixels, the algorithm always succeeded for all noise levels. The graphs shows the
percentage failure for values of α of 20, 39 and 58 pixels at RMS noise levels of 3, 4 and
5 pixels. For a value of α of 20 pixels, the algorithm is not reliable for RMS pixel errors
exceeding 2 pixels.

0

50

100

150

200

250

F
oc

al
 L

en
gt

h
E

rr
or

0 1 2 3 4 5

Pixel Error

Figure 6.3: Error in estimation of focal length. The plot shows the standard de-
viation in the estimate of focal length at different noise levels. In all cases, the mean
estimated focal length was close to 400 (the correct value). The four plots show the stan-
dard deviation for values of α equal to (from the top) 20, 39, 58 and 75 pixels. Thus, in
most cases, for noise levels less than 2 pixels, the estimated focal length lies in the range
between 350 and 450. The apparent improvement in performance for pixel errors of 5
pixels in the top two plots is due to the fact that the algorithm failed for a substantial
percentage of such tests, which were therefore not included in this statistic.

178

0

0.05

0.1

0.15

0 1 2

F
oc

al
 L

en
gt

h
R

at
io

 E
rr

or

3 4 5

Pixel Error

Figure 6.4: Error in focal length ratio. This plot shows standard deviation in the
estimated ratio of the focal lengths of the two cameras for differing noise levels. Each
curve represents a different value of α – from the top 20, 39, 58 and 75 pixels. The graph
shows that except for high noise levels, the estimated ratio of the two focal lengths lies
between 0.95 and 1.05. Once more the apparent improvement in performance for α = 20
pixels at a noise level of 5 pixels is due to the exclusion of those cases where the algorithm
fails.

0

0.1

0.2

0 1

R
ec

on
st

ru
ct

io
n

E
rr

or

2 3 4 5

Pixel Error

Figure 6.5: Reconstruction Error. This graph shows the RMS reconstruction error
for different noise levels and the same values of α as before. The vertical axis gives the
absolute RMS reconstruction error in length units where the reconstructed set of points
has radius about 1.5 units.

6:6. CAMERA ROTATING ABOUT A FIXED POINT 179

same point in space with different orientations of the camera and calibration is computed
from an analysis of point matches between the images. The method requires no knowledge
of the orientations of the camera. Calibration is based on the image correspondences only.
This method differs fundamentally from the previous methods of self-calibration using
the epipolar structure of image pairs. In the method of this section, there is no epipolar
structure since all images are taken from the same point in space, and so methods based
on epipolar structure, and Kruppa’s equations do not apply. Since the images are all
taken from the same point in space, determination of point matches is considerably easier
than for images taken with a moving camera, since problems of occlusion or change of
aspect or illumination do not occur. A non-iterative calibration algorithm is given that
works with any number of images. An iterative refinement method that may be used
with noisy data is also described. The algorithm is implemented and validated on several
sets of synthetic and real image data.

Recently several papers on self-calibration have appeared ([10, 3, 11]). relying on known
motions of the cameras. In [10] the motion of the camera is assumed to be purely
translational. In [3, 11] rotational motions of the camera are considered, but the rotation
must be through known angles. This simplifies the calibration task enormously. For
instance, in this case, the focal length of the camera can be estimated simply as a ratio of
feature displacement to incremental angle of rotation ([11]). In addition, the methods of
[3, 11] require tracing features in the image through many frames. In [3] an approximate
guess at the location of the principal point is also necessary. In this section, on the
other hand, calibration is carried out solely on the basis of image content, and without a
priori assumptions of calibration values. Calibration can be carried out by finding point
matches in as few as three images, though for best results, more images may be used.
The method is based on analysis of the projective distortion that an image undergoes
when the camera is rotated.

The calibration algorithm is demonstrated on real and synthetic data and is shown to
perform robustly in the presence of noise.

The purpose of this section is to give a method for determining the matrix K of internal
camera parameters of a perspective camera. In the method to be described, the camera
will be held in the same location in space and rotated to different orientations. For
convenience, the common location of all the cameras will chosen to be the origin of the
coordinate system. We will speak of several cameras each with its own camera matrix,
whereas in fact the cameras will be the same camera, with the same interior parameters,
differing only in their orientation. Thus, we consider a set of cameras with camera
matrices Mj = K[Rj | 0]. Often, we will identify a camera with its transformation
matrix.

A point x = (x, y, z, 1)� is mapped by the camera Mj to the point u = K[Rj |
0](x, y, z, 1)� = KRj(x, y, z). In other words, since the last column of Mj is always
0, the fourth coordinate of x is immaterial. Therefore, in this section, we will drop the
fourth column of the camera matrix, and write instead

Mj = KRj

where K is upper triangular, the same for all cameras, and Rj is a rotation matrix.
This transformation sends points x = (x, y, z)� to u = KRjx. Note that the points kx,
where k is a non-zero factor, are all mapped to the same point independent of the scale
factor. Consequently, Mj represents a mapping between a two-dimensional projective
object space with coordinates (x, y, z)� and two-dimensional projective image space with

180

coordinates (u, v, w)�. This situation has a very convenient feature, not shared by the
usual 3D to 2D projective mapping, namely that the mapping Mj from object to image
space is invertible.

6:6.1 Rotating the Camera

Now, we will consider what happens to an image taken by a camera when the camera is
rotated. Thus, let M = KR and M ′ = KR′ be two cameras, and let ui = KRxi and
u′i = KR′xi. From this it follows that

u′i = KR′R−1K−1ui

This simple observation gives the following important result

Proposition6.2. Given a pair of images taken by cameras with the same interior pa-
rameters from the same location, then there is a projective transformation P taking one
image to the other. Furthermore, P is of the form P = KRK−1 where R is a rotation
matrix and K is the calibration matrix.

In standard terminology, the relation P = KRK−1 may be described by saying that
P is a conjugate of a rotation matrix, K being the conjugating element. Since P is
meaningfully defined only up to a non-zero factor, Proposition 6.2 may be interpreted as
meaning that P = KRK−1 only up to a non-zero factor. However, the right hand side of
this equation has unit determinant. Therefore, if P is chosen to have unit determinant
(as may always be done by multiplying P by an appropriate factor if necessary), then
exact equality will hold.

Now, suppose we have several cameras with matrices Mj = KRj for j = 0, . . . , N .
For convenience, we assume that the coordinate axes are chosen to be aligned with
the 0-th camera, so that R0 = I, the identity matrix, and hence M0 = K. Write
Pj =MjM

−1
0 = KRjK

−1. This gives the following proposition.

Proposition6.3. Given a set of images J0, . . . JN taken from the same location by cam-
eras with the same calibration (or with the same camera), then there exist 2D projective
transforms, represented by matrices Pj , taking image J0 to image Jj. The matrix Pj
may be written in the form

Pj = KRjK
−1

where K is the common calibration matrix of the cameras, and Rj represents the rotation
of the j − th camera with respect to the 0-th. The camera matrix for the j-th camera is
Mj = KRj = PjK.

6:6.2 Algorithm Idea

The idea of the calibration algorithm will now be described. Suppose we are given a set
of overlapping images J0, J1, . . . , JN where N ≥ 2, all taken from the same location with
cameras with the same calibration (or the same camera). It is required to determine the
common calibration matrix of the cameras. The steps of the algorithm are as follows.

1. Establish point correspondences between the images. (Section 6:6.7)

6:6. CAMERA ROTATING ABOUT A FIXED POINT 181

2. For each j = 1, . . . , N compute the 2D projective transformation Pj matching J0

to Jj . (Section 6:6.3)

3. Find an upper triangular matrix K such that K−1PjK = Rj is a rotation matrix
for all j > 0. The matrix K is the calibration matrix of the cameras, and Rj
represents the orientation of the j − th camera with respect to the 0-th camera.
(Section 6:6.4)

4. Refine the estimated camera matrix using Levenberg-Marquardt iterative tech-
niques. (Section 6:6.6)

The steps of this algorithm will be described in detail later in this section of the report,
as indicated. The main subject of this section comprises the last three steps of this algo-
rithm, which will be described first. The first step (establishing point correspondences)
is of peripheral interest, and a description of the method used for point matching in
validation of this algorithm will be postponed to a later section.

6:6.3 Determination of the Transformations

Consider a set of matched points ui ↔ u′i. It is required to find a two-dimensional
projectivity, P mapping each ui to u′i. In the presence of noise, the matches will not be
exact. Therefore, a best approximation will be computed instead. First, of all, a quick
linear, but non-optimal method for computing P will be described.

Linear determination of P

Writing ui = (ui, vi, 1)� and u′i = (u
′
i, v
′
i, 1)

�, the 2D transform is given by the equation
w′i(u

′
i, v
′
i, 1)

� = P (ui, vi, 1)�, where w′i is unknown. Denoting the rows of P by vectors
p1
�, p2

� and p3
�, this set of equations can be written as

w′iu
′
i = p1

�ui
w′iv
′
i = p2

�ui
w′i = p3

�ui

Eliminating the unknown w′i leads to two equations

p3
�uiu′i = p1

�ui
p3
�uiv′i = p2

�ui

This is a set of two linear equations in the entries of P . Four such point matches provide
a set of eight equations in the entries of P . Since P is determined only up to a scale,
this is enough equations to solve linearly for the entries of P . If there are more than four
matched points, then we have an overdetermined set of equations of the form Ap = 0,
where p is a vector consisting of the entries of P . We seek to find p such that ||p|| = 1
and such that ||Ap|| is minimized. The solution is the eigenvector corresponding to the
smallest eigenvalue of A�A, and may be conveniently found using the Singular Value
Decomposition of A or Jacobi’s method to find the eigenvalues of the symmetric matrix
A�A ([55]).

182

Computing all the transforms

Now, we consider the case where point matches are known in several images. It is not
assumed, however, that all points are visible in all images. As a first step the images
are reordered. We start by choosing the image J0 to be the one for which the greatest
number of image matches are given. The next image J1 is the image with the greatest
number of matches with J0, then J2 is the image with the greatest number of matches
with J0 and J1. Once Ji is chosen, then Ji+1 is the image with the greatest number of
matches with the images J0, . . . , Ji.

We choose P0 = I, the identity transform. It is desired to find the other transformations
Pj for j > 1. Suppose that transformations P0 to Pj−1 have been determined and we are
to determine the transformation Pj . Consider a matched point between a point in image
k and a point in image j, where k < j. We denote this as uk ↔ uj where the superscripts
identify the image involved. Since the transformation Pk is known, we may relate the
point uk back to a point P−1

k u
k in image J0. Thus, the match uk ↔ uj between points

in the k-th and j-th images is equivalent to a match P−1
k u

k ↔ uj between points in
images J0 and Jj . If there are at least four of these image matches, we may solve for
the transformation Pj such that PjP−1

k u
k = uj for all the matched points. If there are

more than four matches, the equation is of course to be solved in the least-squares sense
described previously. Proceeding in this way, we identify all the transformations Pj , as
long as sufficient matches are given.

Refining the transforms

First, suppose that a set of matches ui ↔ u′i are known between a pair of images.
Suppose that there are errors in the measurement of both ui and u′i, and suppose further
that errors are Gaussian and independent (the usual assumption). Then, the optimum
(maximum likelihood) transform P is found by estimating the transform P and points
ûi and û′i (the “correct” values of ui and u′i) so as to minimize the squared error sum,

∑
d(ui, ûi)2 + d(u′i, û

′
i)

2

where û′i = P ûi, and d(∗) represents Euclidean distance. This non-linear problem can
be solved by iterative techniques starting from an initial guess with ûi = ui and û′i = u

′
i

and P provided by the linear solution.

This method generalizes to the case of several images with point matches. Denote by uji
the coordinates of some point xj as seen in the i-th image. It is not assumed that all points
are seen in all images. Once more, we assume that errors in the measured coordinates
uji are gaussian and independent. The optimal estimate of the transformations Pj is
obtained by minimizing the error term

∑
d(uji , û

j
i)

2 (6.15)

where the sum is over all pairs (i, j) for which uji is defined. The values û
j
i are estimates

of the “correct” image point locations, which must satisfy the equation

ûji = PjP
−1
k û

k
i (6.16)

6:6. CAMERA ROTATING ABOUT A FIXED POINT 183

whenever both uji and u
k
i are defined. Both the transformations Pj and the estimates

ûji are to be varied in minimizing the error expression (6.15), subject to the constraint
(6.16).

One can turn this into an unconstrained minimization problem by introducing variables
xi defined by the equation x̂i = P−1

j û
j
i if u

j
i is defined. According to (6.16), it does not

matter which point ûji is used in defining x̂i, since P
−1
j û

j
i = P−1

k û
k
i for all applicable

j and k. The problem now becomes to minimize the error expression (6.15), where
ûji = Pj x̂i. The transforms Pj and the points x̂i are to be varied in minimizing (6.15),
but transform P0 should be locked to the value P0 = I in to avoid over-parametrization.
The problem is solved by a Levenberg-Marquardt iterative minimization method ([55]).
The transformations Pj are initialized to the values found using the non-iterative method
given above, and the value of x̂i is initially set to P−1

j u
j
i for some j such that u

j
i is known.

This problem is essentially the same as a camera parameter estimation problem as de-
scribed in [68]. In fact, what we are doing is effectively equivalent to computing a
projective reconstruction of the scene. The vectors x̂i represent the directions to the
reconstructed scene points. It is of course not possible to determine the depths of the
points from the common camera centre. The minimization problem was solved with min-
imal extra coding using a general purpose camera-parameter estimation program called
Carmenwritten by the author. The general method used is a Levenberg-Marquardt least-
squares parameter estimation method ([55]). The minimization problem formulated in
the previous paragraph has the advantage that measurements in each of the images are
treated equally. If one assumes that the pinhole camera model is exact, and that errors
in measurements take the form of independent gaussian variables, then this problem for-
mulation leads to an estimate of the transformations, Pj , corresponding to the optimal
(maximum likelihood) estimate of the true image point positions.

It may appear that there are a large number of parameters to be estimated, namely the
entries of each of the transformation matrices Pj , as well as the values of xi for all i.
However, in solving this problem one may (in fact must) take advantage of the block
structure of the Jacobian matrix (of the measurements with respect to the parameters).
At each iteration, this allows one to compute the updated estimates of the transforms Pj
first, and then to get the values of xi by a sort of back-substitution. This is a standard
technique in photogrammetry, and is well described in the Manual of Photogrammetry
([68]), and also in [29]. Using this technique, it was possible to handle cases with more
than 30 transformations and over 4,500 point matches within a reasonable time (a few
minutes on a Sun Sparcstation 2). Without this refinement, each iteration would take
thousands of times longer, if it would be possible at all.

In estimating the transformations Pj for a large number of cameras using the direct
non-iterative approach, it is advantageous to pause after every few transformations are
computed to apply the iterative least-squares method. In this way, errors are prevented
from accumulating. In our experiments the approach of allowing one step of iteration
after the computation of each transformation, Pj , and then five steps of iteration at the
end proved more than adequate, while not taking excessive time. If time were important,
the iterative estimation steps could be applied less frequently. Alternatively, a Kalman
filter approach could be used.

184

6:6.4 Determining the Calibration Matrix

We now suppose that transformations Pj are known for j = 1, . . . , N . We wish to find the
calibration matrix K, which will be an upper triangular matrix satisfying the condition
that K−1PjK = Rj is a rotation matrix for all j. The condition that P should be a
conjugate of a rotation matrix means that P is somewhat special, as will be seen now.
For any non-singular matrix A, let A−� be the inverse transpose of A. For a rotation
matrix R, we have R = R−�. From the relation Rj = K−1PjK it follows that Rj =
K�Pj

−�K−�. Equating the two expressions for Rj gives K�Pj−�K−� = K−1PjK,
from which it follows that

(KK�)Pj−� = Pj(KK�) (6.17)

Given sufficiently many views and corresponding matrices Pj equation 6.17 may be used
to solve for the entries of the matrix KK�. In particular, denoting KK� by C and
writing

C = KK� =

 a b c
b d e
c e f

the equation (6.17) gives rise to a set of nine linear equations in the six independent
entries of C. It may be seen that multiplying C by a constant factor does not have any
effect on the equation (6.17). Consequently, C can only be determined up to a constant
factor. It turns out that because of redundancy, the nine equations derived from (6.17)
for a single known transformation Pj are not sufficient to solve for C (see Section 6:6.9).
However, if two or more such Pj are known, then we may solve for C. In particular, for
each view and corresponding Pj for j = 1, . . . , N we have nine equations in the entries of
C. This overconstrained system of equations may be written in the form Xa = 0, where
X is a matrix of dimension 9N × 6 and the vector a contains the independent entries of
C. This is the same sort of minimization problem as in Section 6:6.3. The least-squares
solution is the eigenvector corresponding to the least eigenvalue of X�X . Note that the
views are numbered starting at 0, so we need three views to provide two independent
transforms Pj , and hence to solve for C.

Once C = KK� is found it is an easy matter to solve for K by Choleski factorization
([1]). A solution for K is only possible when C is positive-definite. This is guaranteed
for noise-free data, since by construction, C possesses such a factorization. With noisy
input data, it is possible that the matrix C turns out not to be positive-definite, and so
the calibration matrix can not be found. In practice this was found to happen only in
the case of gross errors in the point matching. In fact, this algorithm was found to work
very well, as will be seen later.

6:6.5 Interpretation of Calibration using the Absolute Conic

This method of camera calibration may be interpreted in terms of the absolute conic.
The connection between the absolute conic and camera calibration is well known. For
instance, in [46] it is shown how Kruppa’s equations ([41]) are related to the dual of the
absolute conic.

The absolute conic is a conic on the plane at infinity consisting of points (x, y, z, t)�

such that t = 0 and x2 + y2 + z2 = 0. Writing as usual x = (x, y, z)�, this last
condition is x�x = 0. The image point corresponding to such an object point is given

6:6. CAMERA ROTATING ABOUT A FIXED POINT 185

by uj = KRjx, from which we obtain x = R−1
j K−1uj . Then from x�x = 0 follows

uj�K−�RjR−1
j K−1uj = uj�(KK�)−1uj = 0. In other words, uj is on the image of

the absolute conic if and only if uj�(KK�)−1uj = 0. Thus, the image of the absolute
conic is a plane conic represented by the matrix (KK�)−1. In other words, KK� is the
dual of the image of the absolute conic. By finding the image of the absolute conic, one
can retrieve K using the Choleski factorization, as already discussed.

The image of the absolute conic is unaffected by the location and orientation of the
camera. Consequently, if Pj is a projective transformation from image J0 to Jj taking
a point in J0 to its matching point in Jj , then in particular it must take a point on
the image of the absolute conic in J0 to a point on the image of the absolute conic in
Jj . In short, Pj must preserve the image of the absolute conic. Since a 2D projective
transform P acting on a conic C transforms it to the conic P−�CP−1 it follows that
Pj
−�CP−1

j = C where C is the absolute conic (KK�)−1. In other words,

Pj
−�(KK�)−1P−1

j = (KK�)−1

from which it follows that

Pj(KK�) = (KK�)Pj−� ,

which is the same equation as (6.17).

6:6.6 Iterative Estimation of the Calibration matrix

In section 6:6.3 a method was given for determining the transformations Pi. Similar
least-square techniques are also available for an iterative determination of the calibration
matrix K. In particular, we seek a set of points xi, a matrix K and a set of rotation
matrices Ri such that

uji = KRjxi + ε
j
i

for each pair (i, j) for which uji is defined, and such that the squared error sum,
∑
εj2i is

minimized. The difference between this and the iteration problem described in 6:6.3 is
that matrix K is common to all the transforms KRj , and that the matrix Rj must be
constrained to be a rotation matrix. There is no particular technical problem with sharing
the transform K between all the transforms. Adapting the sparse block techniques
described in [68] to this added complication is straight-forward enough. Indeed it is built
in to our camera-parameter estimation program.

The matrix K is parametrized by its five independent entries. This makes it easy to set
any of the camera parameters to known values (for instance skew may be forced to zero,
or the two magnifications ku and kv may be forced to be equal). This capability is built
into Carmen.

Before carrying out this iterative estimate of K, it is necessary to provide an initial
estimate. This initial estimate is provided by the methods of Sections 6:6.3 and 6:6.4. In
particular, from Section 6:6.3 or Section 6:6.3 we obtain a set of transformations Pj and
points xi such that P0 = I and Pjxi = u

j
i whenever u

j
i is defined. From Section 6:6.4

we obtain rotation matrices Rj and a calibration matrix K such that Pj = KRjK
−1 for

all j. Now, writing x′i = K−1xi, one verifies that

KRjx′i = PjKK
−1xi = Pjxi = u

j
i

186

as required, with x′i being the initial point locations.

Using Carmen, therefore, an optimal estimate of the calibration matrix and the orienta-
tion of the parameters is possible. However, in the examples used for experimentation it
turned out that this did not yield very great benefits. The solution for K given by the
non-iterative method of section 6:6.4 was so good that the difference between the esti-
mates found with and without this final estimation step did not differ very significantly.

6:6.7 Finding Matched Points

Finding matched points between images taken from the same point is easier than the gen-
eral point-matching problem, because apart from the image transformation determined
by the changing orientation of the camera, the images look essentially the same. There
is no occlusion and no lighting changes. Points that are visible in one image are visible
in the other (provided that they are inside the field of view). One method of finding
matched points in sequences of video images would be to track them from from frame
to frame. In the experiments carried out to test the calibration algorithm, individual
images, rather than an image sequence were used, and a different approach to image
matching was taken.

To find match points between images a correlation-based matching algorithm was used.
The algorithm was based on parts of the STEREOSYS stereo algorithm ([19, 20]) adapted
to the particular purposes of the current problem. The matching algorithm consisted of
the following steps

1. Identify manually a small number (at least four) matching points between overlap-
ping images. This identification need not be made very exactly.

2. Automatically find matches between pairs of overlapping images by resampling the
second image of each pair to the same reference frame as the first, and then carrying
out correlation based hierarchical matching.

3. Weed out outliers (false matches) among the matched points by a least median
error algorithm.

Details of the second step are as follows. Given the small number of seed matches, a pro-
jective transformation mapping each selected point in the second image to its matching
point in the first image is computed. The second image is then resampled according to
this transformation. After resampling, the two images should correspond precisely, pixel
for pixel. In reality, the accuracy of the initial matches is only approximate, so the match
will not be exact. However, it will be sufficiently good for a correlation-based matching
algorithm to work effectively. The accuracy of the point matching is ensured by doing
the match in both directions. In a first step, a point u in the first image is matched with
a point u′ in the second image. In the second step, u′ is matched with a point u′′ in the
first image. Only if u and u′′ are close together (within one pixel) is the match u ↔ u′
accepted.

Using this method, about 100 or more matches between each pair of overlapping images
were found without difficulty. Even with this two-way matching method, it is possible for
there to be some erroneous matches, and it is important to detect and eliminate them.
This was done using a least median error approach. If we assume a small percentage

6:6. CAMERA ROTATING ABOUT A FIXED POINT 187

of outliers (false matches), not exceeding 25%, then a set of four matches chosen at
random will contain no outliers with about 32% probability. If sufficiently many sets of
four matches are chosen, then one can be almost certain that one of the sets contains
no outliers. For instance, if we test 100 sets of four matches chosen at random, then
the probability of not selecting one set without an outlier is inconceivably small. The
complete algorithm is as follows.

1. Select several sets of four matched points and carry out the following steps for each
of these sets.

2. Given four matched points, compute the projective transformation P consistent
with these four matches.

3. Compute the distance δi = d(Pui,u′i) for all matched point pairs ui ↔ u′i.

4. Sort the set of distances δi, and find the median distance (or alternatively the 75th,
or any other percentile).

5. Find the set of four matched points that leads to the least median distance δi, and
accept this as being close to the correct transform.

6. Discard all matched point pairs ui ↔ u′i for which the error δi exceeds some
threshold (for instance, three times the median error).

This least median error approach is particularly suitable to apply to the present prob-
lem for two reasons. First, the small number (four) matches required to determine the
transform P means that one can be very sure of selecting an outlier-free set with a small
number of trials. Second, the computation of each trial is very fast, since a 2D projective
transformation is very quick to compute. Because of this, the time to weed out the out-
liers is very small compared with the time to find the point matches by correlation-based
search.

One slight refinement is used in the selection of sets of four matched points. The matched
points are divided into four equal sized sets, denoted NW, NE, SW and SE (after the
compass directions) corresponding to their position in the first image. Then, sets of four
matched points are selected by taking one point at random from each of the four sets.
This means that the four points will not be clustered together in one part of the image,
and the projective transform that they determine will be more accurately defined for the
whole image.

6:6.8 Experimental Verification of the Algorithm

Tests with Synthetic Data

First of all, the calibration algorithm was carried out on synthetic data to determine its
performance in the presence of noise.

The synthetic data was created to simulate the images taken with a 35mm camera with
a 50mm lens, and digitized with 20 pixels per mm. For such a camera, the image
measures approximately 35mm by 23mm. When digitized with 20 pixels per mm, the
image measures 700 × 460 pixels. The field of view is approximately 38◦ × 26◦. This
is approximately the resolution of the images used for the experiments with real images

188

Noise ku kv pu pv skew
– 1000.0 1000.0 0.0 0.0 0.0

0.125 995.3 995.8 -0.5 1.3 0.1
0.25 990.6 991.5 -1.0 2.5 0.2
0.5 981.4 983.2 -2.0 4.9 0.3
1.0 963.4 967.0 -3.6 9.4 0.6
2.0 946.0 952.6 -7.3 20.9 1.2
4.0 898.2 910.0 -10.2 35.8 2.2
8.0 864.4 882.3 -10.8 40.1 5.4
16.0 715.9 744.6 54.5 20.4 -4.6

Table 6.3: Calibration from three images in the presence of various degrees of noise, with
one run at each noise level. The three views directions lie in a circle of radius 10◦. The
table shows the results of the Choleski (that is, non-iterative) algorithm. The first row
shows the expected parameter values, whereas subsequent rows show the effects of different
levels of noise (measured in pixels). Although the noise level differs for different runs,
the displacements of each pixel due to noise are in the same direction for all noise levels.

described later. For such images, the magnification factors, ku and kv in the two image-
plane axial directions are equal to the focal length in pixels. In other words, ku = kv =
1000. The skew calibration parameter, s was taken to be zero, and image coordinates
were taken to be centred at the principal point of the image, so that pu = pv = 0.0.

A set of N camera matrices were chosen with arbitrary orientations so that the principal
ray of the camera lay within a prescribed angle θ of the positive z-axis. A set of 100 points
were chosen, randomly placed on the unit sphere, subject to the restriction that each
point is visible in at least two cameras. The image of each of the points was computed
in each camera for which it lay inside the field of view. These image coordinate values
were then used to compute the camera calibration using the algorithm of section 6:6.2.
A Levenberg-Marquardt iteration algorithm was used to refine the estimate given by the
non-iterative method. Ideally, the computed calibration parameters should be close to
the true values given in the previous paragraph.

Two experiments are reported here. The first experiment was with N = 3 with principal
rays lying within an angle θ = 10◦ of the positive z axis. The results are summarized
in tables 6.3, 6.4 and 6.5. The second experiment was with N = 10 images with view
directions lying within an angle θ = 30◦ of the positive z-axis. Results are summarised
in tables 6.6, 6.7 and The results are very satisfactory. Experiments with real images to
be described later indicate that images may be matched with an RMS error of about 0.5
pixels, which suggests that this is a realistic noise level. The results with synthetic data
show that the algorithms are robust for noise levels well beyond this range. The noise
levels indicated in the table are the standard deviation of the deltas applied to each of u
and v. Hence the actual RMS pixel displacement is

√
2 times the indicated value.

Tests with Real Images

Calibration tests were carried out on two sets of real images. In the first set of images five
images of the Capitol building in Washington (Fig 6.6) were taken with a 35mm camera

6:6. CAMERA ROTATING ABOUT A FIXED POINT 189

Noise ku kv pu pv skew
– 1000.0 1000.0 0.0 0.0 0.0

0.125 999.2 999.5 -0.2 -0.3 0.0
0.25 998.4 999.0 -0.4 -0.5 0.1
0.5 996.8 998.0 -0.7 -0.9 0.1
1.0 993.5 996.0 -1.5 -1.8 0.2
2.0 956.1 960.7 -7.5 19.1 0.8
4.0 946.0 955.3 -12.4 26.4 1.5
8.0 938.7 956.6 -15.8 23.6 3.7
16.0 1077.9 1108.7 -0.2 -13.7 5.1

Table 6.4: Calibration from three views. The table shows the results of Levenberg-
Marquardt algorithm with one run at each of the noise levels. The results of the non-
iterative calibration algorithm are used for initialization. Results show significant im-
provement over those of the non-iterative algorithm.

Noise Algorithm statistic ku kv pu pv skew
1.0 Choleski Mean 997.6 997.8 0.9 -1.1 -0.1

σ 24.5 24.3 7.5 8.7 1.0
Marquardt Mean 1016.2 1016.4 5.6 -13.0 -0.2

σ 29.1 29.2 7.5 14.7 0.9
2.0 Choleski Mean 1005.7 1006.3 -1.8 -0.5 -0.1

σ 81.9 92.1 24.4 4.4 8.5
Marquardt Mean 979.4 976.1 18.5 -1.1 -4.2

σ 44.0 45.2 15.2 2.8 7.5

Table 6.5: Result of 100 runs with 3 views, with random noise of 1 and 2 pixels. The
parameters ku and kv were highly correlated, whereas other parameters showed little cor-
relation. The Levenberg-Marquardt algorithm does not show a clear advantage over the
non-iterative algorithm.

Noise ku kv pu pv skew
– 1000.0 1000.0 0.0 -0.0 0.0

0.125 996.1 997.0 -1.7 2.0 -2.2
0.25 992.9 994.3 -3.4 4.4 -4.3
0.5 986.0 988.9 -6.8 8.5 -8.6
1.0 970.7 976.6 -14.2 16.2 -17.4
2.0 945.8 958.0 -29.0 28.7 -33.3
4.0 1224.9 1163.7 -30.8 -310.8 -44.6
8.0 739.1 815.4 -95.0 15.4 -83.0

Table 6.6: Calibration from ten images in the presence of various degrees of noise. The
three views directions lie in a circle of radius 30◦. The table shows the results of the
non-iterative algorithm. The first row shows the expected parameter values. For noise
level of 16 pixels, the calibration failed due to failure of the Choleski factorization, the
matrix KK� not being positive-definite.

190

Noise ku kv pu pv skew
– 1000.0 1000.0 0.0 -0.0 0.0

0.125 1000.8 1000.6 0.1 -0.2 -0.2
0.25 1002.3 1001.8 -0.0 -0.6 -0.3
0.5 1004.5 1003.7 -0.1 -1.2 -0.6
1.0 1008.8 1007.0 -0.2 -2.7 -1.2
2.0 972.2 968.1 -10.8 17.6 -0.8
4.0 1489.0 1467.2 -27.7 -240.2 -16.3
8.0 984.5 971.9 -14.0 5.0 -3.2

Table 6.7: Calibration from ten views in the presence of various degrees of noise. Results
of iterative Levenberg-Marquardt algorithm. The results of the non-iterative calibration
algorithm are used for initialization. Results are satisfactory, except for noise-level 4
pixels, where a local minimum has been found.

6:6. CAMERA ROTATING ABOUT A FIXED POINT 191

Method ku kv pu pv skew residual
Choleski 964.4 966.4 392.8 282.0 -4.9 unknown
Marquardt 956.8 959.3 392.0 281.4 -6.4 0.33

Table 6.8: Calibration results for five images of the Capitol with a 35mm camera. The
results from the two methods of calibration are very similar. The calibration seems very
plausible, since the measured skew is small, magnification is almost the same in both
directions and the principal point is near the centre of the image. The last column gives
the difference in pixels between predicted image coordinates (given the calibration and
reconstruction) and the measured values. A value of ku or kv of 960 corresponds to a
focal length of approximately 35× 960/776 = 43.3mm.

Figure 6.6: Five images of the capitol, numbered 1 – 5 left-to-right and top-to-bottom.

with a zoom lens. The focal length of the lens was approximately 40mm (though not
known exactly, since it was a zoom lens). The camera was hand-held, and no particular
care was taken to ensure that the camera centre remained stationary. The images were
printed, enlarged and digitized. The images were then scanned at 150 pixels per inch,
resulting in images of size 776 × 536 pixels. Corresponding points were found between
the images according to the algorithm of section 6:6.7, and the calibration was carried
out. A composite of the five images is shown in Fig 6.7. The calibration results are
summarized in Table 6.8.

A second set of 29 images were taken covering a region of about 48× 22 degrees with a
105mm lens. The images were of size 470×320 pixels. The lens has a fairly small field of
view, which increases the difficulty of calibration using the methods of this section. The
results of this experiment were as shown in Table 6.9. Two of the images used are shown
in Fig 6.8. The Levenberg-Marquardt iteration was carried out using an extra parameter
to estimate the radial distortion in the image proportional to the square of the radius.
However, the effect was found to be minimal.

192

Figure 6.7: A composite image constructed from five different views of the Capitol. The
composite image shows very clearly the projective distortion necessary for matching the
images. Analysis of this projective distortion provides the basis for the calibration algo-
rithm.

Method ku kv pu pv skew residual
Choleski 1226.1 1226.5 238.1 170.4 -5.1 unknown
Marquardt 1242.1 1242.7 245.5 169.4 -6.6 0.26

Table 6.9: Results of camera calibration of a set of image of a parking lot. The results
suggest that the focal length of the camera shows some instability, but that the ratio of
the magnifications ku and kv is very stable.

Figure 6.8: Two images of a parking lot

6:6. CAMERA ROTATING ABOUT A FIXED POINT 193

6:6.9 Calibration from only two views

The constraint that the transformation matrix P must be the conjugate of a rotation is
not sufficient to determine the conjugating element K exactly. Nevertheless, with just
one additional constraint on the calibration matrix it is possible to determineK uniquely.
For instance, it will be shown that under the assumption that the skew parameter s = 0,
calibration matrix K is uniquely determined, and it is possible to calibrate from only two
views. Since s is usually very small, the assumption that s = 0 is a very reasonable one,
commonly used by other authors ([3]). Alternatively, one may make other assumptions
about the calibration, for instance that the camera has square pixels, ku = kv.

According to Proposition 6.2, given two views the transformation taking one image to the
other is of the form P = KRK−1 where K is the calibration matrix and R is a rotation
representing the relative orientation of the two cameras. Matrix P may be normalized
so that its determinant detP = 1. Given such a P , it will next be shown how to find
an upper-triangular matrix K such that P = KRK−1. It will turn out that there exist
many such K (in fact a one-parameter family), but for now, we will concentrate on how
to find just one of them. Later it will be shown how to find such a K with given desired
properties (such as zero skew).

The fact that P is a conjugate of a rotation matrix has the immediate consequence that
P and R have the same eigenvalues. The eigenvalues of a rotation matrix are equal
to 1, exp(iθ) and exp(−iθ), where θ is the angle of rotation. Therefore, by finding the
eigenvalues of P , we are able to find the angle of rotation of R. Furthermore, it is possible
to find a matrix K ′ such that P = K ′diag(1, exp(iθ), exp(−iθ))K ′−1. The columns of K ′

are the eigenvectors of P . Since the eigenvectors are defined only up to multiplication by a
non-zero factor, so are the columns of K ′. Multiplying the columns of K ′ by independent
factors preserves the condition that P = K ′diag(1, exp(iθ), exp(−iθ))K ′−1. One could
continue this line or reasoning to determine the required calibration matrix, but this
involves computations using complex numbers. Instead, we proceed slightly differently.

Any rotation is conjugate to a rotation about the x axis. Since P is conjugate to a
rotation, it is therefore conjugate to a rotation about the x axis. From the eigenvalues
of P one may determine the angle of rotation, θ. Then one may write P = HRxH

−1,
and hence PH = HRx. We write

Rx =

 1

c −s
s c

where c = cos(θ) and s = sin(θ). Further, write H = (h1,h2,h3) where hi is the i-th
column of H . Then from PH = HRx we obtain equations

Ph1 = h1

Ph2 = ch2 + sh3

Ph3 = −sh2 + ch3

This gives rise to a pair of equations

(P − I)h1 = 0 (6.18)

and [
P − cI −sI
sI P − cI

](
h2

h3

)
= 0 . (6.19)

194

Because of the choice of c and s, the matrices in (6.18) and (6.19) will be singular.
Consequently, we can solve (6.18) to find h1 and (6.19) to find h2 and h3. In the
presence of noise, P will not be exactly equal to a conjugate of a rotation. In this
case, the equations (6.18) and (6.19) will not have an exact solution. The least-squares
solution is to be used. From the hi we may reassemble a matrix H . This matrix will
satisfy P = HRxH

−1. Now, using QR decomposition, we may obtain H = KR, whereK
is upper-triangular and R is a rotation. It follows that P = KRRxR

−1K−1 = KR̂K−1

as required.

It was shown above how to find a matrix H such that HRxH−1 = P . Such an H is
not unique, and so we now inquire how other solutions may be found. Suppose that
HRxH

−1 = P = H ′RxH
′−1. It follows that (H−1H ′)Rx = Rx(H−1H ′), in other words,

H−1H ′ commutes with Rx. It may be shown by direct symbolic manipulation that if
Rx is not a rotation through 0 or π radians, then H−1H ′ = diag(α1, α2, α2)R′x where
R′x is some other rotation about the x axis. Hence, H

′ = Hdiag(α1, α2, α2)R′x. Since we
are only concerned with finding H up to a non-zero scale factor, we may assume that
H ′ = Hdiag(α, 1, 1)R′x. Now, if H = KR, and Rdiag(α, 1, 1) has QR decomposition
K ′′R′′, then

H ′ = Hdiag(α, 1, 1)R′x = KRdiag(α, 1, 1)R′x = KK ′′R′′R′x .

The foregoing discussion may be summarized in the following proposition.

Proposition6.4. Let P be a 2D projective transformation matching two images taken
from the same location with the same camera. Let P = HRxH

−1 where Rx is a rotation
about the x axis. Further, let H = KR be the QR decomposition of H. Then K is
a calibration matrix for the camera, consistent with the transformation P . Any other
calibration matrix K ′ consistent with P is of the form K ′ = KK ′′ where K ′′R′′ is the
QR decomposition of Rdiag(α, 1, 1) for some α.

This shows that the set of calibration matricesK corresponding to a given transformation
matrix P is a one-parameter family. To find a unique calibration matrix, one extra
constraint is necessary.

We next turn to the problem of finding a calibration matrix K satisfying additional
constraints. To do this, we investigate the QR decomposition of a matrix Rdiag(α, 1, 1).
Let (rij) be the entries of the matrix R. The QR decomposition may be computed
explicitly. Indeed, it may be verified after some computation that Rdiag(α, 1, 1) = K ′′R′′

with K ′′ defined by

K ′′ =
1√
AB

 α
√
A (α2 − 1)r11r21 (α2 − 1)r11r31

√
B

0 B (α2 − 1)r21r31

√
B

0 0 A
√
B

 (6.20)

where A = (1 − r2
31) + α

2r2
31 and B = r2

11 + α
2(1 − r2

11).

There seems to be no pretty way of demonstrating the truth of this formula, and so
it must be done by algebraic manipulation. The best way is probably to verify that
K ′′K ′′� = I + (α2 − 1)r1r1� = Rdiag(α, 1, 1)(Rdiag(α, 1, 1))� where r1 is the first
column of R. From this it follows that Rdiag(α, 1, 1) = K ′′R′′ for some rotation R′′ as
required. This formula leads us to the following extension to Proposition 6.4.

6:6. CAMERA ROTATING ABOUT A FIXED POINT 195

Proposition6.5. Let P = HRxH
−1 and H = KR. Any calibration matrix consistent

with P may be written as KK ′′ where K ′′ is of the form given in (6.20) for some α > 0.

The condition that α > 0 is required to ensure that the magnification factor ku of KK ′′

remains positive. Now, it is an easy matter to choose α so that the calibration matrix
KK ′′ has desired properties.

Zero skew. We consider the condition that the skew parameter is zero. Suppose
K = (kij) and R = (rij). The (1, 2)-entry (that is, the skew) in the product KK ′′ is zero
exactly when k11(α2 − 1)r11r21 + k12B = 0. Solving for α gives

α2 =
k11r11r21 − k12r

2
11

k11r11r21 − k12(r2
11 − 1)

; α > 0 (6.21)

This gives a simple algorithm for the calibration of a camera from two views, assuming
that the skew is zero.

1. Compute the transformation matrix P that matches points in the two images, such
that detP = 1.

2. Compute the rotation angle θ which is the argument of one of the complex eigen-
values of the matrix P .

3. Find a matrix H such that P = HRxH
−1 where Rx is a rotation through angle θ

about the x-axis. This is done by solving the equations (6.18) and (6.19).

4. Take the QR-decomposition H = KR.

5. Find α > 0 by solving (6.21).

6. Compute the QR decomposition Hdiag(α, 1, 1) = K ′R′. The matrix K ′ is the
calibration matrix.

Square pixels. An alternative to setting the skew to zero is to set the two magni-
fications ku and kv in the two axial directions to be equal. Multiplying out KK ′′ and
equating the first two diagonal entries leads to an equation k11α

√
A = k22B. Squaring

both sides of this equation leads to a quadratic equation in α2. In particular, we obtain

α4(k2
11r

2
31) + α

2
(
k2

11(1− r2
31)− k2

22(1− r2
11)
)
− k2

22r
2
11 = 0

This equation is easily solved for α, but in this case there may be two solutions, since
a quadratic equation is involved. We have chosen the strategy of selecting the solution
that has the smaller skew. The algorithm for finding the calibration matrix is otherwise
the same as the previous one.

6:6.10 Exceptional Cases

It was seen that the calibration algorithm fails if P represents a rotation through 0 or π
radians. The first case means that the two images are identical, and the second means
that two images are taken with the camera pointing in opposite directions. These special
cases are of no interest. There are, however other exceptional cases.

196

Rotation about the x-axis. If the rotation is about the x axis, then the trans-
formation matrix P is of the form P = KRxK

−1 where Rx is a matrix of the form
previously given. Any other conjugating element K ′ satisfying this relationship is of the
form K ′ = Kdiag(α, 1, 1) for any α. However, the matrix K ′ so obtained is the same as
K, except that the (1, 1) entry, representing the parameter ku is multiplied by α. The
skew is unchanged. It follows therefore, that constraining the skew to be zero may be an
impossible constraint, and in any case puts no restriction on ku. In other words, we can
not determine ku if the rotation is about the x axis.

Rotation about the y-axis. Similar considerations apply to rotations about the
y-axis. In this case, if P = KRyK

−1, then any other conjugating element K ′ must be of
the form K ′ = Kdiag(1, α, 1). In this case, the the value of kv can not be determined.

Rotation about the z-axis. Unless the camera is calibrated, we do not know
precisely where the principal axis (that is the z-axis) is. However, if the rotation does
happen to be about the z axis, so that K satisfies the condition P = KRzK

−1, then any
other matrix of the form K ′ = Kdiag(α, α, 1) will do so as well. This means that the
two magnification factors, ku and kv as well as the skew are multiplied by the factor α.
Consequently, it is not possible to determine any of these parameters. Only the position
of the principal point and the ratio ku/kv may be computed.

6:6.11 Experiments with Calibration from Two Images

Tests with Synthetic Data

First of all, the calibration algorithm was applied to synthetic data to determine its
performance in the presence of noise.

The synthetic data was created to simulate the images taken with a 35mm camera with
a 50mm lens, and digitized with 20 pixels per mm. For such a camera, the image
measures approximately 35mm by 23mm. When digitized with 20 pixels per mm, the
image measures 700 × 460 pixels. The field of view is approximately 38◦ × 26◦. This
is approximately the resolution of the images used for the experiments with real images
described later. For such images, the magnification factors, ku and kv in the two image-
plane axial directions are equal to the focal length in pixels. In other words, ku = kv =
1000. The skew calibration parameter, s was taken to be zero, and the principal point
was taken to have coordinates (pu, pv) = (20, 30).

The square-pixel constraint: A first set of experiments were conducted with two
images overlapping by 50% side-by-side. Thus, the rotation was through an angle of
19.29◦ (that is, half the image width) about the y axis. A set of 100 matched points were
generated, and varying degrees of noise were added. Noise was zero mean Gaussian noise,
with the indicated standard deviation. The quoted noise levels are for the deviation
applied to each of the u and v image coordinates, hence the root-mean-squared pixel
displacement is

√
2 times as great. The calibration algorithm was run with the constraint

that magnification factors were equal : ku = kv. First the non-iterative calibration
algorithm was run. It was found that for large amounts of noise the skew parameter s
became substantially different from zero. Therefore, starting from the calibration already

6:6. CAMERA ROTATING ABOUT A FIXED POINT 197

Non-iterative algorithm Levenberg-Marquardt
Noise ku skew pu pv angle ku pu pv
0.0 1000.0 0.0 20.0 30.0 19.29 1000.0 20.0 30.0
0.1 1002.3 0.7 19.8 31.0 19.25 1002.3 19.9 31.0
0.25 1005.7 1.9 19.6 32.6 19.18 1005.7 19.7 32.5
0.5 1011.7 3.8 19.2 35.2 19.07 1011.4 19.4 35.1
1.0 1023.5 9.6 18.2 40.7 18.86 1022.5 18.7 40.4
2.0 1050.7 21.2 16.3 52.4 18.38 1046.6 17.4 51.9
3.0 1082.3 35.5 14.4 65.5 17.85 1072.5 15.9 64.5
4.0 1119.0 53.4 12.4 80.2 17.27 1100.3 14.3 78.5
5.0 1162.2 76.0 10.4 97.0 16.62 1130.4 12.5 94.1

Table 6.10: Calibration from two images with 50% overlap assuming the condition
ku = kv. For the Levenberg-Marquardt iteration, the condition that skew s = 0 was also
assumed. The 6-th column shows the computed rotation angle between the two views.
The rotation was 19.29 degrees about the x axis.

obtained, an iterative Levenberg-Marquardt optimization was run, clamping the skew to
zero and maintaining the condition ku = kv. The results of these experiments are found
in table 6.10. As may be seen, the calibration becomes progressively less exact as noise
increases, but for noise levels of the order of 0.5 pixels, which may be obtained in practice,
the magnification is accurate to about 1% and the principal point is displaced by about 5
pixels. The results obtained by the Levenberg Marquardt algorithm are not significantly
better, except for the zero skew. Note that setting skew to zero does not affect the other
parameters very much, which suggests that skew is somewhat hard to estimate exactly.

The zero-skew constraint: A second set of experiments were conducted with the
second image panned sideways through 10◦ and then rotated 90◦ about the principal
axis. In this case, calibration was carried out assuming zero skew. Because of the 90◦

rotation about the principal axis, the ratio of ku/kv was computed very exactly, and a
complete Levenberg-Marquardt optimization makes little difference to the final result.
These results are shown in table 6.11.

Using knowledge of the rotation: During the Levenberg-Marquardt parameter
fitting it is easy to add a constraint fixing the camera rotation to the known value. This
was done for comparison using the same data as in table 6.10 for noise level of 2.0 pixels.
The results of the calibration were then :

ku = kv = 1000.35 ; pu = 15.9 ; pv = 47.7

This is (as expected) considerably more accurate that the results for with unknown
camera motion. The magnification factors are determined almost exactly, though there
is still some error in the estimated position of the principal point (about 20 pixels).

Experiments with real data: Finally, calibration was carried out on the Capitol
data set (Fig 6.6). The calibration computed using all five views is provided as a good

198

Non-iterative algorithm Levenberg-Marquardt
Noise ku kv pu pv angle ku pu pv
0.0 1000.0 1000.0 20.0 30.0 90.63 1000.0 20.0 30.0
0.1 1002.6 1002.5 19.7 30.5 90.60 1002.3 19.7 30.4
0.25 1006.6 1006.4 19.2 31.2 90.57 1005.9 19.2 30.9
0.5 1013.6 1013.0 18.4 32.3 90.51 1012.3 18.3 31.7
1.0 1028.2 1027.1 16.6 34.7 90.39 1027.0 16.0 33.0
2.0 1088.8 1086.5 0.1 34.2 90.18 1080.4 4.4 28.5
3.0 1160.8 1157.4 -17.4 36.4 89.96 1150.3 -10.6 25.0
4.0 1260.1 1255.8 -43.0 38.4 89.72 1253.3 -34.5 20.2
5.0 1409.2 1404.6 -85.4 40.4 89.48 1457.3 -85.3 15.4

Table 6.11: Calibration from two images assuming no skew. For the Levenberg-Marquardt
iteration, the condition that ku = kv was also assumed. The rotation angle is 10◦ about
the x-axis and 90◦ about the z axis, for a combined rotation of 90.63◦.

6:6. CAMERA ROTATING ABOUT A FIXED POINT 199

Image numbers constraint ku kv skew pu pv angle
1,2,3,4,5 – 964.4 966.4 -4.9 392.8 282.0 –
2,3 k 1002.9 1002.9 -25.0 330.1 214.8 25.49
2,5 k 963.6 963.6 -11.3 396.5 286.6 31.43
3,5 k 882.2 882.2 38.0 386.1 277.2 23.40
4,5 k 943.7 943.7 -4.7 389.3 250.8 9.57
1,5 k 1197.3 1197.3 -43.7 531.4 416.7 54.15
1,5 s 812.7 819.4 -0.0 381.3 224.3 54.15

Table 6.12: Calibration from real images. The second column shows the type of
constraint used (k = square-pixels, s = zero-skew). The first line gives the result of a
calibration using all five images, provided as (approximate) ground truth. The next four
lines show results of calibration for pairs of images for which the main component of
rotation is a panning rotation. For such a rotation, the constraint skew = 0 will not
give good results. The sixth and seventh lines show the result for a pair of images that
differ by a rotation with its major component about the principal axis. As demonstrated
theoretically, rotations about the principal axis do not lead to good calibration results.
Accordingly, the results in the last two lines are substantially inferior.

approximation to truth, since it is derived from more images and is expected to be
accurate. Pairs of images were then taken and calibration carried out. Between 100 and
200 matched points were found between image pairs. The results are given in table 6.12.

In general, magnification is accurate within 10%, usually much less, and the principal
point is accurate within 30 pixels. These results verify the conclusion suggested by the
results with synthetic data that best results are obtained using panning rotations and
the square-pixel constraint.

6:6.12 Handling translations

It is a basic assumption of the method described in this section that the camera centre
remains fixed for all the images. In practice, the camera centre is not easily determined.
Furthermore, for cameras mounted on a robot, the task of rotating about the camera
centre, even if it is accurately known, may require careful calibration of the robot. For this
reason, we are led to consider what strategy to adopt to account for small translatory
motions of the camera from view to view. The methods described here are given as
suggestions only, and no results are given to validate their performance.

In the images used for the experiments reported in this section, no particular care was
taken to fix the camera centre. For instance the parking lot images were taken with
a hand-held camera, only a token effort being made to keep the camera approximately
fixed. In this case, the possible displacements of the camera are very small compared
with the distance to the scene, and the displacements of the image points caused by
translatory motion of the camera will be small, and may be safely ignored. In fact if the
points in the scene are at infinite distance, then translations of the camera centre have
no effect whatever. In a general case, therefore, we wish to determine the image of the
plane at infinity. The projective transformations of the image of the plane at infinity,
caused by the camera rotation, may be used to determine the camera calibration.

200

Finding the plane at infinity. A strategy will be suggested now for handling outdoor
scenes in which most of the scene is distant from the camera. We suppose, however that
there are near-by objects that may be displaced appreciably by the translatory motion
of the camera. Our task is to ignore these points and determine the transformation of
the points at infinity only (or distant points). A way to do this is provided in [6], where
a method is described for determining a 2D transformation between two images of a
plane. In this method, determination of the 2D transformation is cast as a parameter
optimization problem in which the variable parameters are the 8 parameters of a plane-
to-plane transformation and the quantity to be minimized is the difference in image
intensity at corresponding points, summed over the image. One proceeds from coarse
to fine resolution using a multi-resolution pyramid, the 2D transformation found at one
level being used as the initial estimate at the next level. As observed in [6], the 2D
projective transformation ultimately determined by this method will “lock” on to the
dominant plane in the images. If this plane is the plane at infinity, then we obtain the
desired transformation. One minor difference between the method of [6] and what is
proposed here is that the transformation model they use is a quadratic model, and not
the projective motion model assumed here, but with this minor modification, the method
should apply unchanged.

Even in cases where the plane at infinity is not the dominant plane in the image, this
method may be valuable if the plane at infinity can be determined, at least approxi-
mately, by other means. For instance, points on the plane at infinity may be determined
by vanishing points in the image, or by known ratios of distances along a line. If four
corresponding points on the plane at infinity are determined, then these may be used
to initialize the transformation between the images. This should cause the transforma-
tion found by iteration to lock onto the plane at infinity. Relying on such extraneous
information, however, restricts the generality of the method.

Note that this method of determining the transformations Pj does not require the ex-
plicit identification of matched points in the two images. Even if there is no effect due
to translational motion of the camera, this method provides an attractive alternative
to the methods described in this report (Sections 6:6.3 and 6:6.7) for determining the
transformations.

Determining the translations. A more generally applicable method is to allow for
small translations of the camera centre and solve for the rotation, and the translations
all together. According to [46], it is possible to find the camera calibration explicitly
from three views or more taken from a camera undergoing arbitrary motions. In [29] an
iterative algorithm was given to find this calibration, provided that a sufficiently good
initial estimate was known. In the algorithm described in the present section, a final
iterative refinement of the camera calibration is suggested (Section 6:6.6) as a method of
improving the calibration results. It would be an easy matter to modify this final iterative
step to allow for a full 3 × 4 matrix camera model, which includes camera translation.
For details of the iterative solution method, refer to section 6:6.6, or [29]. As in section
6:6.6, initialization is important. In section 6:6.6, the projection matrices are initialized
to KRj, and the points to values x′ = (x′, y′, z′)�. Instead of this, we initialize the
cameras to [KRj | 0], and the points to values (αx′, αy′, αz′, 1)�, where α is chosen such
that α2(x′2+y′2+z′2) = 1. Thus, the point lies on a unit sphere centred at the origin. In
addition, the sign of α should be chosen such that the point lies in front of the cameras in
which it is visible. This will be possible for all the cameras simultaneously, unless some

6:6. CAMERA ROTATING ABOUT A FIXED POINT 201

gross error of calibration has occurred.

6:6.13 Conclusions

The self-calibration algorithm given here represents a practical approach to camera cali-
bration, giving good accuracy, and showing graceful degradation in the presence of noise.
The non-iterative algorithm based on Choleski factorization does not show markedly
inferior results to the optimal Levenberg-Marquardt method, and should be preferred
except where highest possible accuracy is needed.

The use of the iterative Levenberg-Marquardt method allows the calibration problem to
be cast as a general parameter fitting problem and allows the imposition of additional
constraints, such as the known aspect ratio ku/kv, zero skew, or even known rotation
angles for the various images. In addition, it allows the possibility of small translations
of the camera to be taken into account.

The two-view algorithm given in this section derives the camera calibration from the
smallest possible number of views, without using calibration rigs with known geometry.
Naturally, the results are inferior to those obtained with a greater number of views, but
they suggest that for suitable rotations, particularly panning rotations, the results are
quite good. Further work is required to determine the optimal rotation that should be
applied to give best calibration.

The mathematical derivations in this section make clearer the theory behind self-
calibration schemes such as those of [3, 11]). As was demonstrated in Section 6:6.11,
knowledge about the actual motion of the camera (which was assumed in [3, 11]) may
be incorporated into our algorithm to give high quality results.

Clearly, the algorithms in this section can not hope to give such accurate results as
will be obtained by calibration methods involving calibration grids, or other metric data.
Nevertheless, for many purposes they will be adequate. As a means of calibrating cameras
in the field, the methods of this section seem much more practical than methods based
on a moving camera ([46]), both because of the ease of point matching and the simplicity
of the calibration algorithms (for instance compare with [43, 29]).

The greatest use of such algorithms is expected to be in the calibration of robot-mounted
cameras. The calibration obtained by this method could be used to do euclidean scene
reconstruction, for purposes of navigation, or grasping. This would be particularly useful
for cameras for which the calibration is subject to change, such as a camera with a zoom
lens. Beardsley et. al. ([4, 5]) discuss navigation in a “quasi-euclidean” frame obtained
by making a rough guess at the camera calibration. They also use purely translational
motions of the camera to obtain an affine estimate of the coordinate frame. The algorithm
of this section provides an alternative method, which furnishes euclidean, rather than just
affine information, and which eliminates the need to guess at the camera calibration.

Also in [4, 5] a method is described for projective scene reconstruction from image se-
quences, using a Kalman filter. That method could be adapted to carry out euclidean
scene reconstruction. The methods of the present section would provide a good ini-
tial estimate for calibration which could be refined by the Kalman filter. In this way,
Euclidean reconstruction would be possible from a sequence of images from a camera
undergoing unrestrained motion, provided the sequence begins with a series of purely
rotational camera motions.

202

Finally, it is important to realize the restrictions on the self-calibration algorithms of this
section. The algorithm relies ultimately on detecting the curvature of the vision sphere.
As such, it works best for wide angle images. For the parking-lot images the field of
view was only 18.92◦ in the maximum dimension (a 105mm lens in a 35mm camera).
Calibration was possible, but a mosaic of 29 images was used. For a 40mm lens, only 5
images were needed.

Bibliography

[1] K.E. Atkinson. An Introduction to Numerical Analysis, 2nd Edition. John Wiley
and Sons, New York, 1989.

[2] Eamon. B. Barrett, Michael H. Brill, Nils N. Haag, and Paul M. Payton. Invariant
linear methods in photogrammetry and model matching. In J.L. Mundy and A. Zis-
serman, editors, Geometric Invariance in Computer Vision, pages 277 – 292. MIT
Press, Boston, MA, 1992.

[3] Anup Basu. Active calibration: Alternative strategy and analysis. In Proc. IEEE
Conf. on Computer Vision and Pattern Recognition, pages 495–500, 1993.

[4] P. A. Beardsley, A. Zisserman, and D. W. Murray. Navigation using affine structure
from motion. In Computer Vision - ECCV ’94, Volume II, LNCS-Series Vol. 801,
Springer-Verlag, pages 85–96, 1994.

[5] P. A. Beardsley, A. Zisserman, and D. W. Murray. Sequential update of projective
and affine structure from motion. Report OUEL 2012/94, Oxford University, 1994.
To appear in IJCV.

[6] James R. Bergen, P. Anandan, Keith J. Hanna, and Rajesh. Hingorani. Hierarchical
model-based motion estimation. In Computer Vision - ECCV ’92, LNCS-Series Vol.
588, Springer-Verlag, pages 237–252, 1992.

[7] B. Boufama, R. Mohr, and F. Veillon. Euclidean constraints for uncalibrated recon-
struction. Technical Report, LIFIA - IRIMAG, 1993.

[8] Stefan Carlsson. The double algebra: An effective tool for computing invariants in
computer vision. In Applications of Invariance in Computer Vision : Proc. of the
Second Joint European - US Workshop, Ponta Delgada, Azores – LNCS-Series Vol.
825, Springer Verlag, pages 145 – 164, October 1993.

[9] R. Deriche, Z. Zhang, Q.-T. Luong, and O. Faugeras. Robust recovery of the epipolar
geometry for an uncalibrated stereo rig. In Computer Vision - ECCV ’94, Volume
I, LNCS-Series Vol. 800, Springer-Verlag, pages 567–576, 1994.

[10] Lisa Dron. Dynamic camera self-calibration from controlled motion sequences. In
Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pages 501–506,
1993.

[11] Fenglei Du and Michael Brady. Self-calibration of the intrinsic parameters of cameras
for active vision systems. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition, pages 477–482, 1993.

203

204 BIBLIOGRAPHY

[12] O. D. Faugeras. What can be seen in three dimensions with an uncalibrated stereo
rig? In Computer Vision - ECCV ’92, LNCS-Series Vol. 588, Springer-Verlag,
pages 563 – 578, 1992.

[13] O. D. Faugeras, Q.-T Luong, and S. J. Maybank. Camera self-calibration: Theory
and experiments. In Computer Vision - ECCV ’92, LNCS-Series Vol. 588, Springer-
Verlag, pages 321 – 334, 1992.

[14] Olivier Faugeras and Bernard Mourrain. On the geometry and algebra of the point
and line correspondences between N images. In Proc. International Conference on
Computer Vision, pages 951 – 956, 1995.

[15] Gene H. Golub and Charles F. Van Loan. Matrix Computations, Second edition.
The Johns Hopkins University Press, Baltimore, London, 1989.

[16] P. Gros and L. Quan. Projective Invariants for Vision. Technical Report RT 90
IMAG - 15 LIFIA, Irimag–Lifia, Grenoble, France, December 1992.

[17] P. Gros and L. Quan. 3D Projective Invariants from Two Images. In Geometric
Methods in Computer Vision II, SPIE 1993 International Symposium on Optical
Instrumentation and Applied Science, pages 75–86, July 1993.

[18] Patrick Gros. How to use the cross ratio to compute projective invariants from two
images. In Applications of Invariance in Computer Vision : Proc. of the Second
Joint European - US Workshop, Ponta Delgada, Azores – LNCS-Series Vol. 825,
Springer Verlag, pages 107–126, October 1993.

[19] M. J. Hannah. Bootstrap stereo. In Proc. Image Understanding Workshop, College
Park, MD, pages 210–208, April 1980.

[20] M. J. Hannah. A description of SRI’s baseline stereo system. Technical Report Tech.
Note 365, SRI International Artificial Intelligence Center, Oct. 1985.

[21] R. Hartley. Invariants of points seen in multiple images. unpublished report, May
1992.

[22] R. Hartley, R. Gupta, and T. Chang. Stereo from uncalibrated cameras. In Proc.
IEEE Conf. on Computer Vision and Pattern Recognition, pages 761–764, 1992.

[23] R. I. Hartley. Estimation of relative camera positions for uncalibrated cameras. In
Computer Vision - ECCV ’92, LNCS-Series Vol. 588, Springer-Verlag, pages 579 –
587, 1992.

[24] R. I. Hartley. Camera calibration using line correspondences. In Proc. DARPA
Image Understanding Workshop, pages 361–366, 1993.

[25] R. I. Hartley. Invariants of lines in space. In Proc. DARPA Image Understanding
Workshop, pages 737–744, 1993.

[26] R. I. Hartley. A linear method for reconstruction from lies and points. In Proc.
International Conference on Computer Vision, pages 882 – 887, 1995.

[27] R. I. Hartley and A. Kawauchi. Polynomials of amphicheiral knots. Math. Ann,
243:63 – 70, 1979.

BIBLIOGRAPHY 205

[28] Richard Hartley and Rajiv Gupta. Computing matched-epipolar projections. In
Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pages 549 – 555,
1993.

[29] Richard I. Hartley. Euclidean reconstruction from uncalibrated views. In Applica-
tions of Invariance in Computer Vision : Proc. of the Second Joint European - US
Workshop, Ponta Delgada, Azores – LNCS-Series Vol. 825, Springer Verlag, pages
237–256, October 1993.

[30] Richard I. Hartley. Projective reconstruction and invariants from multiple images.
IEEE Trans. on Pattern Analysis and Machine Intelligence, 16:1036–1041, October
1994.

[31] Richard I. Hartley. Projective reconstruction from line correspondences. In Proc.
IEEE Conf. on Computer Vision and Pattern Recognition, pages 903–907, 1994.

[32] Richard I. Hartley. Lines and points in three views and the trifocal tensor. Inter-
national Journal of Computer Vision, 22(2):125–140, March 1997.

[33] Richard I. Hartley and Peter Sturm. Triangulation. In Proc. ARPA Image Under-
standing Workshop, pages 957–966, 1994.

[34] Anders Heyden. Geometry and Algebra of Multiple Projective Transformations. PhD
thesis, Department of Mathematics, Lund University, Sweden, December 1995.

[35] Anders Heyden. Reconstruction from multiple images using kinetic depths. Techni-
cal Report ISRN LUFTD2/TFMA-95/7003-SE, Department of Mathematics, Lund
University, 1995.

[36] B. K. P. Horn. Relative orientation. International Journal of Computer Vision, 4:59
– 78, 1990.

[37] B. K. P. Horn. Relative orientation revisited. Journal of the Optical Society of
America, A, Vol. 8, No. 10:1630 – 1638, 1991.

[38] Berthold K. P. Horn. Closed-form solution of absolute orientation using unit quater-
nions. Journal of the Optical Society of America, A, Vol. 4:629 – 642, 1987.

[39] T. S. Huang and O. D. Faugeras. Some properties of the e-matrix in two-view motion
estimation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 11:1310 –
1312, 1989.

[40] Jan J. Koenderink and Andrea J. van Doorn. Affine structure from motion. Journal
of the Optical Society of America, A, 1992.

[41] E. Kruppa. Zur ermittlung eines objektes aus zwei perspektiven mit innerer ori-
entierung. Sitz.-Ber. Akad. Wiss., Wien, math. naturw. Abt. IIa., 122:1939–1948,
1913.

[42] H.C. Longuet-Higgins. A computer algorithm for reconstructing a scene from two
projections. Nature, 293:133–135, Sept 1981.

[43] Q.-T Luong. Matrice Fondamentale et Calibration Visuelle sur l’Environnement.
PhD thesis, Universite de Paris-Sud, Centre D’Orsay, 1992.

206 BIBLIOGRAPHY

[44] Quang-Tuan Luong, Rachid Deriche, Olivier D. Faugeras, and Theodore Pa-
padopoulo. On determining the fundamental matrix: analysis of different methods
and experimental results. Report RR-1894, INRIA, 1993.

[45] S. J. Maybank. The projective geometry of ambiguous surfaces. Phil. Trans. R.
Soc. Lond., A 332:1 – 47, 1990.

[46] S. J. Maybank and O. D. Faugeras. A theory of self-calibration of a moving camera.
International Journal of Computer Vision, 8:2:123 – 151, 1992.

[47] R. Mohr, L. Quan, F. Veillon, and B. Boufama. Relative 3D reconstruction using
multiples uncalibrated images. Technical Report RT 84-I-IMAG LIFIA 12, Irimag–

Lifia, 1992.

[48] R. Mohr, F. Veillon, and L. Quan. Relative 3D reconstruction using multiple uncal-
ibrated images. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition,
pages 543 – 548, 1993.

[49] Theo Moons, Luc Van Gool, Marc van Diest, and Eric Pauwels. Affine reconstruction
from perspective image pairs obtained by a translating camera. In Applications of
Invariance in Computer Vision : Proc. of the Second Joint European - US Workshop,
Ponta Delgada, Azores – LNCS-Series Vol. 825, Springer Verlag, pages 297 – 316,
October 1993.

[50] L. Morin. Quelques Contributions des Invariants Projectifs à la Vision par Ordina-
teur. PhD thesis, Institut National Polytechnique de Grenoble, January 1993.

[51] L. Morin, P. Brand, and R. Mohr. Indexing with projective invariants. In Proceedings
of the Syntactical and Structural Pattern Recognition workshop, Nahariya, Israel.
World Scientific Pub., 1995.

[52] J. L. Mundy and A. Zisserman. Introduction – towards a new framework for vision.
In J.L. Mundy and A. Zisserman, editors, Geometric Invariance in Computer Vision,
pages 1 – 39. MIT Press, Boston, MA, 1992.

[53] Jean Ponce, Todd Cass, and David Marimont. Relative stereo and motion recon-
struction. Report UIUC-BI-AI-RCV-93-07, Beckman Institute, University of Illinois,
1993.

[54] Jean Ponce, David H. Marimont, and Todd A. Cass. Analytical methods for uncali-
brated stereo and motion reconstruction. In Computer Vision - ECCV ’94, Volume
I, LNCS-Series Vol. 800, Springer-Verlag, pages 463–470, 1994.

[55] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling.
Numerical Recipes in C: The Art of Scientific Computing. Cambridge University
Press, 1988.

[56] L. Quan. Invariants of 6 Points from 3 Uncalibrated Images. Rapport Technique
RT 101 IMAG 19 LIFIA, LIFIA-IMAG, Grenoble, October 1993. To appear in
ECCV94.

[57] Long Quan. Affine stereo calibration for relative affine shape reconstruction. In
Proc. BMVC, pages 659–668, 1993.

BIBLIOGRAPHY 207

[58] L. Robert and O.D. Faugeras. Relative 3D positioning and 3D convex hull compu-
tation from a weakly calibrated stereo pair. In Proc. International Conference on
Computer Vision, pages 540–544, 1993.

[59] Charles A. Rothwell, Andrew Zisserman, David A. Forsyth, and Joseph L. Mundy.
Canonical frames for planar object recognition. In Computer Vision - ECCV ’92,
LNCS-Series Vol. 588, Springer-Verlag, pages 757 – 772, 1992.

[60] J.G. Semple and G. T. Kneebone. Algebraic Projective Geometry. Oxford University
Press, Oxford, 1952.

[61] Larry S. Shapiro, Andrew Zisserman, and Michael Brady. Motion from point
matches using affine epipolar geometry. In Computer Vision - ECCV ’94, Volume
II, LNCS-Series Vol. 801, Springer-Verlag, pages 73–84, 1994.

[62] A. Shashua and P. Anandan. Trilinear constraints revisited: Generalized trilinear
constraints and the tensor brightness constraint. In Proc. ARPA Image Understand-
ing Workshop, pages 815 – 820, 1996.

[63] Amnon Shashua. On geometric and algebraic aspects of 3D affine and projective
structures from perspective 2D views. In Applications of Invariance in Computer
Vision : Proc. of the Second Joint European - US Workshop, Ponta Delgada, Azores
– LNCS-Series Vol. 825, Springer Verlag, pages 127 – 144, October 1993.

[64] Amnon Shashua. Projective depth: A geometric invariant for 3D reconstruction from
two perspective/orthographic views and for visual recognition. In Proc. International
Conference on Computer Vision, pages 583–590, 1993.

[65] Amnon Shashua. Trilinearity in visual recognition by alignment. In Computer
Vision - ECCV ’94, Volume I, LNCS-Series Vol. 800, Springer-Verlag, pages 479–
484, 1994.

[66] Amnon Shashua. Algebraic functions for recognition. IEEE Trans. on Pattern
Analysis and Machine Intelligence, 17(8):779–789, August 1995.

[67] Amnon Shashua and Michael Werman. Trilinearity of three perspective views and
its associated tensor. In Proc. International Conference on Computer Vision, pages
920 – 925, 1995.

[68] C. C. Slama, editor. Manual of Photogrammetry. American Society of Photogram-
metry, Falls Church, VA, fourth edition, 1980.

[69] Gunnar Sparr. Depth computations from polyhedral images. In Computer Vision -
ECCV ’92, LNCS-Series Vol. 588, Springer-Verlag, pages 378–386, 1992.

[70] Minas E. Spetsakis and John Aloimonos. Structure from motion using line corre-
spondences. International Journal of Computer Vision, 4:3:171–183, 1990.

[71] I.E. Sutherland. Sketchpad: A man-machine graphical communications system.
Technical Report 296, MIT Lincoln Laboratories, 1963. Also published by Garland
Publishing Inc, New York, 1980.

[72] I.E. Sutherland. Three dimensional data input by tablet. Proceedings of IEEE, Vol.
62, No. 4:453–461, April 1974.

208 BIBLIOGRAPHY

[73] Bill Triggs. The geometry of projective reconstruction I: Matching constraints and
the joint image. unpublished report, 1995.

[74] Bill Triggs. Matching constraints and the joint image. In Proc. International Con-
ference on Computer Vision, pages 338 – 343, 1995.

[75] R. Y. Tsai and T. S. Huang. Uniqueness and estimation of three dimensional motion
parameters of rigid objects with curved surfaces. IEEE Trans. Patt. Anal. Machine
Intell., PAMI-6:13–27, 1984.

[76] T. Viéville and Q.T. Luong. Motion of points and lines in the uncalibrated case.
Report RR-2054, INRIA, 1993.

[77] J. Weng, T.S. Huang, and N. Ahuja. Motion and structure from line correspon-
dences: Closed-form solution, uniqueness and optimization. IEEE Trans. on Pattern
Analysis and Machine Intelligence, Vol. 14, No. 3:318–336, March, 1992.

[78] S. Wolfram. Mathematica : A System for Doing Mathematics by Computer.
Addison-Wesley, Redwood City, California, 1988.

[79] Z. Zhang, R. Deriche, O. Faugeras, and Q.-T Luong. A robust technique for matching
two uncalibrated images through the recovery of the unknown epipolar geometry.
Report RR-2273, INRIA, 1994.

