Iterative Reweighted Least

ECCV, Sept 7, 2014

Squares

Three Points in R2
The Fermat point of the triangle
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What point minimizes the distance to the
three points of a triangle?

Exercise: find this point using ruler and
compass construction.
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Ruler and Compass Construction
to find Fermat point

ig.2 Yargnon frame (Weber 1929: 229)
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Weber’s Solution (1906)

@ Center of Gravity

Gustav Weler was a political decoy
(doppelganger or Body-double) of Adolf Hitler.
At the end of the Second World War, he was
executed by a gunshot to the forehead in an
attempt to confuse the Allied troops when
Berlin was taken.[citation needed] He was also
used "as a decoy for security reasons".[2]
When his corpse was discovered in the Reich
Chancellery garden by Soviet troops, it was
mistakenly believed to be that of Hitler
because of his identical moustache and
haircut. The corpse was also photographed
and filmed by the Soviets. Gustav Weler

One servant from the bunker declared that the
dead man was one of Hitler's cooks. He also
believed this man "had been assassinated
because of his startling likeness to Hitler, while
the latter had escaped from the ruins of
Berlin".[3]

Weler's body was brought to Moscow for
investigations and buried in the yard at
Lefortovo prison.[4]




Fermat Weber problem e

NICTA

Q InR!

e [, average of several points is the mean,
e [ average is the median - more rosbust to outliers.
Computable in linear time.

@ In IR? or IR™ the problem is a classical problem.

© Considered by Fermat, Torricelli (1636), Weber (1906),
Weiszfeld (1933).

@ More Recent Work:

o Speed up through prediction (Ostresh 1978),
o Banach spaces,

o Riemannian manifolds (Fletcher 2009, Yang 2010).

14/63

Andrew Vazsonyi (1916-2003), also known as
Endre Weiszfeld and Zepartzatt Gozinto) was a
mathematician and operations researcher. He
is known for Weiszfeld's algorithm for
minimizing the sum of distances to a set of
points, and for founding The Institute of
Management Sciences. 12131

Weiszfeld

E. Weiszfeld, Sur le point pour lequel la somme des distances de n
points donnés est minimum, Téhoku Mathematics Journal 43 (1937),
355 - 386.
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Weiszfeld Algorithm for points e

NICTA

@ An iterative algorithm to find Ly minimum point of a set of
points.

© Given a set of points y;, the cost function to minimize is

k
x* = argmin d(x,y;) ,
gmin > d(x,y,)

i=1

where d(x,y;) is the distance of x and y;.

17/63
Weiszfeld Algorithm for points e
NICTA
e Given points y; € RY, find the point that minimizes
the L4 cost function
n
_ Robust (L1)
Ci(x) = Zl d(x,yi) cost function
1=
e Given a current estimate x!, the Weiszfeld algorithm
computes the next estimate x‘t1 as
g0 by n
xtt1l = —E§=nl Wi 3/"” = argming 3 wld(x,y;)?
=1 i=1 Weighted L2
where w} = 1/d(x%,y;). cost function
e x!*t1 is the centre of gravity of a configuration formed
by placing a weight wg at each point y;.
18/63
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Weiszfeld Algorithm for points

NICTA

@ Given a set of points in space. We start with a random initial

estimation of the median,

@ Compute the sum of negative gradients
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Weiszfeld Algorithm for points "o
NICTA
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Weiszfeld Algorithm for points "o

NICTA

@ Move the estimate in the downbhill direction.

L1
N

23/63

Gradient descent

e In R™ the cost function
mn
Cly) = > d(xpy) =D [lai —yll
i=1

is convex, and has a single minimum (unless all z; are collinear).
s Gradient is

VO = (y—-x)/lly —xi
i=1
e Gradient descent algorithm:

n
Yy =y 44t 3 (xi = v/ IIxi — ¥
i=1

4! is the step-size.

®
®
®
®
®
®
®
Gradient of L2 distance Gradient of L1 distance
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Generalizing IRLS

Squared-
erTor

Blake-
Zisserman

corrupted
Gaussian

Functions for which IRLS works

Cauchy

L1

Huber

pseudo-
Huber

9/7/2014



Resistance to Outliers

Input::‘

Lo squared error

Corrupted Gaussian  Blake-Zisserman
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Robustness to systematic outliers
(e.g. ghost edges)
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A general IRLS algorithm

. Identify a weighted optimization problem that can be solved

optimally (e.g. in closed form)

n Written without
Clx,w) = Z w; f;(X)  the squares

i=1

. Solve iteratively: At each step, define weights (how)

wf = wi(xt‘) Define weights
and define
x Tt = argminyg C(x,w')
= argminy Z:l wf fi(x) we,\i/ghfr\"clgndlzceost
=

. Hope that it converges to what you want.

Start with initial IRLS Algorithm

value x(0)

t=0
v v

Define weights w(t)
from x(t)

| t=t+1

Solve WLS problem
x(t+1)= argmin C(x, w(t))

9/7/2014
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Start with initial

value x(0) IRLS Algorithm
t=0
Define weights w(t)
from x(t)
J t=t+1
Solve WLS problem
x(t+1)= argmin C(x, w(t))
Start with initial .
value x(0) IRLS Algorithm
t=0
A\ 4 A\ 4
Define weights w(t)
from x(t)
| t=t+1

Solve WLS problem
x(t+1)= argmin C(x, w(t))

9/7/2014
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Start with initial |R|_S Algorithm

value x(0)

t=0
y y

Define weights w(t)
from x(t)

J t=t+1

Solve WLS problem

x(t+1)= argmin C(x, w(t))
Start with initial .
value x(0) IRLS Algorithm
t=0
A4 A4
Define weights w(t)
from x(t)

| t=t+1

Solve WLS problem
x(t+1)= argmin C(x, w(t))

12



How to choose the weights

Assume we can minimize the cost

n

C(x,w) = > w;fi(x) . «— No square !!

i=1

e We wish to minimize

Cp(x) = Zn: ho f;(x) . Robustcost

i=1 function
We want

VxC(x,w) = 0 if and only if VxCp(x) =0 .

Vxw;fi(x) = Vx(ho fi(x))
w; Vxfi(x) = R'(fi(x)).Vxf;

wi = K(fi(z")) | Required weights

Example L

Let
fi(x) = d(x,y:)?
h(x) = vx
Chx) = 3 ho fix) = Y- dx,y)
= = Sum of distances
Then
w; = h'(f(x))
= 25602
= Sdexy)

9/7/2014
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Example Ly

> d(x,y;)?

i=1

Let
fi(x) = d(x,y)?
h(x) = 29/2
Cr(x) =Y ho fi(x) =
i=1
Then

wy = h'(f(x)

- %f(x)(q—2)/2

q _
w; = 5 d(x, ;) 2

Descent condition for IR least sum

Lemma: Leth: R — R beaconcave function and let h® denote
a supergradient of h. Fori=1,...,n let rf- and r§+1 be real

numbers (residuals) such that

where w; = h%(rl). Then

> AGE) € 3 6D

i=1 i=1

Weighted residual
sum decreases

Robust residual
sum decreases

with equality if and only if r§+1 =r! for all i. //

Apply this with 7t = f;(x!) and i1 = f(x!*1).

9/7/2014
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N >
—_— i . A concave function
Supergradient

always has a

supergradient

\
Proof: Since h® is a supergradient,

t+1 t 1ty pset Definition of
A7) < h(ri) + (r; ri) b2 (i) supergradient

for all . Summing over i gives

n

i=1

Y < 3 R + 3 (L — RS
1 i=1

=
The last sum is non-positive by hypothesis, completing the proof.

//

General condition for descent of IRLS

Corollary: Let h : Rt — R be a function such that
h(y/z) is concave. For i = 1,...,n let r! and r§+1 be
non-negative real numbers (residuals) such that

n n
t+1\2 t\2
Z wj (T'i—l— )° < Z Wi (Tz) Weighted squared
=1 =1 residual decreases
where w; = 1r'(rl)/rl. Then

n n
Z h(rf'l'l) < Z h(rg) Robust cost
i=1

i=1 decreases

with equality if and only if r§+1 = rf; for all i. [/

9/7/2014
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Summary
e TO minimize
Cp(x) = > ho fi(x) (1)
i=1

minimize the weighted Lo cost
n
CYe) = 3wl fi(x)? (2)
i=1
with weights
h'(y)
Y 1 y=sfixh
e Decrease in weighted Lo, cost guarantees a decrease in the
robust cost, as long as:

[
w; =

h(v/z) is concave.

Convergence

¢ Warning: Decrease in cost is no guarantee that the
sequence of iterates converges!!

Where gradient descent does not
converge to a minimum

9/7/2014
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Convergence conditions

If

e h(y/T) is concave and has continuous derivative (for z > 0);
e fi(z)? is continuously differentiable.

e argmin,C¥ (x) is continuous as a function of the weights w;,
then IRLS will converge to the set of critical points of Cj(x).

Hence of Cy(x) is convex, then IRLS will converge to the global
minimum.

L1 “

h(Va)

Advantage: Robust

Disadvantage:

¢ Function not differentiable
*  Weights not defined at 0

¢ (Can stop at non-minimum.

9/7/2014

17



08 -

06 -

041

02

Lg

h(z)

02 04 06 08 10

_ M@

w(y)

Advantage:
¢ Robust
¢ Cost function differentiable everywhere

Disadvantage:
¢ Weights not defined at 0
¢ (Can stop at non-minimum.

o7f

06 [

05

04f

03f

02f

o1f

Huber

h(x)

20~

05 -

02 04 06 08 10

h(v/)

o1f

02 04 06 08 10

Advantage:

* Robust

¢ Cost function differentiable

¢ Weights defined at zero

¢ Convex

¢ Guaranteed to converge (at least to local
minimum)

9/7/2014
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Pseudo Huber

06 06
05 05
04} h (.’L‘ ) 04
03} 03[
02} 02f h( \/E )
01 01
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Advantage:
e Robust

Cost function differentiable
¢ Weights defined at zero

* Convex
¢ Guaranteed to converge (at least to local
minimum)
00 0‘5 1‘0 1‘5 2‘0 2‘5 ﬁb
Cauchy
07|F 04}
06 |
osk 03
04F
02
wl h(V/)
02f h(ﬂf) al
01
o5 10 15 o2 01 a6 o8 1
Advantage:
* Robust
¢ Cost function differentiable
¢ Weights defined at zero
¢ Guaranteed to converge (at least to local
minimum)
‘ ‘ ‘ Disadvantage:
02 04 06
* Non-convex
¢ Increased number of local minima




Blake Zisserman

08l o7l

02t

05 10 15 20 25 30

Advantage:

¢ Very robust to outliers

¢ Cost function differentiable
Weights defined at zero

¢ Guaranteed to converge (at least to local
minimum)

Disadvantage:
* Non-convex
¢ Increased number of local minima

Corrupted Gaussian

h(z) h(Vz)

1 2 3 4 5 1 2 3 4

Advantage:
* Robust
R (y) * Cost function differentiable
= *  Weights defined at zero
¢ Guaranteed to converge (at least to local
minimum)

08
06|
04

02

Disadvantage:
1 2 3 7 5 ¢ Non-convex
¢ Increased number of local minima

9/7/2014
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Problems for which IRLS works

. Any problem that you can solve the least-squares so-

lution for exactly.

Point averaging.

3. Alignment of point sets (Horn's absolute orientation

No o s

problem)

Regression

Rotation averaging

Bundle adjustment (to local minimum)

Example. L1 Regression

9/7/2014
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Results: L; Regression e
NICTA

Line Fitting:
o [ regression is compared with L regression.

® Data points ®
=11 Regression
= Orthogonal Regression

®
58/63
Example: Regression Yo
NICTA
@ Squared distance does not work in the presence of outliers.
11/63

9/7/2014
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Example: Regression Yo

NICTA

@ The ideal model should be like this

12/63
Generalized Weiszfeld Algorithm o)
NICTA
Gradient Descent:
o Given a set of subspaces &;, the cost function to find £;
[closest point to subspaces|is
. n
CH(X) =D wi [ X =Ps (X .
i=1
Then, let Xt = argminyg C}(X).
45/63
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L, closest point to subspaces e

NICTA

47/63

[, closest point to subspaces e

NICTA

48/63
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L, closest point to subspaces e

NICTA

49/63
[, closest point to subspaces e
NICTA
]
/ f
50,63
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L, closest point to subspaces

e

NICTA

51/63

[, closest point to subspaces

NICTA

52/63
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L, closest point to subspaces e

NICTA

AN

N

AN
/ e,
/

53/63

[, closest point to subspaces e

NICTA

54/63
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Possible application

L& NICTA §

L1 optimal point of Intersection of Planes,

50/63

L, optimal point of Intersection of Planes in Aerial view,

60/63
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Example. Averaging Rotations

Multiple Rotation Averaging

/ o= R
Ri3 Rl —
3

For consistency require

R13 = RozRio.
Define absolute rotations R,; satisfying

R;; = R;R; L.

9/7/2014
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Single Rotation Averaging
for Relative Orientation of Cameras

» Five corresponding points between the two images
allow a computation of relative rotation (and transla-
tion).

Very fast (about 35 us).

» Take many different sets of 5 points and average the
computed rotations.

Individual estimates can be noisy, so we need robust
method of rotation averaging.

Single Rotation Averaging o)
NICTA

Given rotations R; € SO(3), the L, mean is equal to

n
8" = argmin d(R;, 8)" .
8e80(3) [21: [

o p =2 Least-squares Ly averaging. Usually simpler, not
robust to outliers.

o p— 1. Ly averaging. More robust to outliers.

32/63
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So how do we average rotations?

Average of rotations is the rotation that minimizes

C(S) =>_ d(R;, S)”

e p = 2 — Least-squares (L>) averaging. Usually simpler, not
robust to outliers.

e p=1— [1 averaging. More robust to outliers.
What is meant by d(R;,S) 7

1. Angular distance dang (R, S)
2. Quaternion distance min(||r —s||, [|r + s]|)
3. Chordal distance ||R — S||p.

Isometry of Rotations and Quaternions

Angle between two quaternions is

half the angle between the All rotations within a delta-neighbourhood
corresponding rotations, defined of a reference rotation form a circle on the
by quaternion sphere.

angle(ry,rp) = angle(Rlel)/Q

9/7/2014
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Rotations

(longitude lines)

radius

o s—thetaszPl
5 t=1- phiFl

Azimuthal Equidistant

Projection N 1S

texture span Angle-axis representation of

Flatten out the meridians

Rotations are represented by a ball of radius pi in 3-
Dimensional space.

IRLS Algorithm on a Manifold

e Map back and forth from the manifold to the tangent
space using the exponential and logarithm maps.

TxM

9/7/2014
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Steps of the Weiszfeld Algorithm on 503

1. Find an initial estimate SO for the median.

2. At any time t = 0,1,... apply the logarithm map centred at
St to compute

v; = loggt(Ry;). TxM
3. (Weiszfeld step): Set
X
S vi/lvil e
g 1/l
4. Set 7([) M

S+l = exp(s)st.

5. Repeat steps 1 to 3 until convergence.

Averaging over a graph

R
«—>* ¢ \.4,_..
A ey

Relative rotations are
computed between some
nodes in the graph.

Initialization: Propagate rotations
estimates across a tree.

9/7/2014
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(]
o ¢ R,L-j * Orientation of each node in
\ ® turn is recomputed, given the
ot—— o> known orientation of its
® neigbours, and the relative
® orientation.
e L s .
® This involves “single-rotation
o ® averaging”.
e
(]
Experimental Setup "o
NICTA
Nore Dame Set:
o No. of Images = 595.
@ No. of 3D points = 280, 000.
@ No. of images pairs with >= 30 matched points = 42000.
[ g
39/63

9/7/2014
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0 569 Images

0 280,000 points

0 42000 pairs of overlapping images (more than
30 points in common)

Task: Find the orientations of all cameras.

Extension: Optimization on
Riemannian Manifolds

9/7/2014
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What is a manifold, anyways?

e Think of a manifold as a smooth surface in R"

e Every point on the manifold (surface) has a neigh-
bourhood that is the same as (homeomorphic to) a
ball in R™.

Examples of manifolds

e R"

e Sphere S™

e Rotation space SO(3) — used in rotation averaging
e Positive definite matrices — “covariance features”

e Grassman Manifolds — used to model sets of images
e Essential manifold — structure and motion

e Shape manifolds — capture the shape of an object

e Essential manifold, trifocal manifold

9/7/2014
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1 printing matrixzes
3 plane

What is a geodesic?

A curve is a mapping v from an interval [a,b] to the man-
ifold M.

A geodesic has several descriptions:

e A |ocally distance-minimizing curve. The curve can be
broken up into sections [a;, b;] so that v is the shortest
curve from vy(a;) to v(b;).

e A curve on a surface whose acceleration is always
normal to the surface.

e A taut piece of elastic band on the surface.

9/7/2014
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Riemannian Manifold

e A manifold with an inner product defined in the tan-
gent space at each point.

e Allows us to measure angles at a point
e Define the length of curves.

e Define |"“geodesic distance” [on the manifold

e Find curves of shortest distance.

e Define "“geodesics” orllocally shortest curves

M

Geodesics and the exponential map

e Exponential map wraps vector in tangent space onto
the manifold.

e Constant velocity.

e Acceleration always normal to the surface.

TxM

Image from
http://en.wikipedia.org/wiki/File:Tangentialvektor.svg
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IRLS Algorithm on a Manifold

e Map back and forth from the manifold to the tangent
space using the exponential and logarithm maps.

M

o

e

NICTA

Wesiszfeld Algorithm on Manifold

04/63

9/7/2014
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Wesiszfeld algorithm on Manifold. o))

NICTA

o Start with a random point on manifold

25/63
Wesiszfeld algorithm on Manifold. e
il nicTA
@ Project the points to the tangent space
26/63
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Wesiszfeld algorithm on Manifold. o))

NICTA

o Apply the Weiszfeld algorithm

27/63
Wesiszfeld algorithm on Manifold. e
[ NiCTA
@ Project the updated point to the manifold
28/63
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Wesiszfeld algorithm on Manifold.

e

NICTA

@ Again, project all the points on manifold to the tangent space
and repeat the same procedure until convergence

29/63

Convergence of IRLS on Manifolds

Weiszfeld algorithm will converge on a manifold of non-
negative curvature (Fletcher 2009, Aftab 2011, 2014)

Why positive curvature?

e With non-negative (sectional) curvature, geodesics

converge.

e Distance in the tangent space is always greater than
distance on the manifold.

e If iteration causes distances to decrease in the tangent
space, they decrease even more in the manifold.

Toponogov's Theorem.
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Hyperbolic (negative
curvature) manifold
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