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Description. From several images of a scene and the coordi-
nates of corresponding points identified in the different images, it
is possible to construct a 3-dimensional point-cloud model of the
scene, and compute the camera locations. From uncalibrated im-
ages the model can be reconstructed up to an unknown projective
transformation, which can be upgraded to a Euclidean model by
adding or computing calibration information.

1 Introduction

Projective reconstruction refers to the computation of the struc-
ture of a scene from images taken with uncalibrated cameras, re-
sulting in a scene structure, and camera motion that may differ
from the true geometry by an unknown 3D projective transfor-
mation.

Suppose that a set of interest points are identified and matched
(or tracked) in several images. The configuration of the corre-
sponding 3D points and the locations of the cameras that took
these images are supposed unknown. The task of reconstruction
is to determine the values of these unknown quantities.

Formally, assume that a set of image points {xij} are known,
where xij represents the image coordinates of the j-th point seen
in the i-th image. It is generally not required that every point’s
location be known in every image, so only a subset of all possi-
ble xij are given. The Structure from Motion (SfM) problem is
to determine the camera projection matrices Pi and the 3D point
locations Xj such that the projection of the j-th point in the i-th
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image is the measured xij . Assuming a pinhole (projective) cam-
era model, this relationship is expressed as a linear relationship

xij = PiXj , (1)

where Pi is a 3 × 4 matrix of rank 3, Xj and xij are expressed
in homogeneous coordinates, and the equality is intended to hold
only up to an unknown scale factor λij . More precisely, therefore,
the projection equation is

λij xij = PiXj . (2)

In the SfM problem, cameras Pi and points Xj are to be deter-
mined, given only the point correspondences.

1.1 Homogeneous coordinates

Both 2D (image) points and 3D (world) points are most conve-
niently expressed in homogeneous coordinates. Thus, an image
point x is represented by a 3-vector x = (u, v, w)�, known as
its homogeneous representation. The relationship to the standard
Euclidean (non-homogeneous) coordinates (x, y) of the point is
given by x = u/w and y = v/w. This process of division
by the final coordinate of the homogeneous vector is known as
dehomogenization. Note that two vectors x = (u, v, w)� and
x′ = (u′, v′, w′)� represent the same point in Euclidean coordi-
nates if and only if x = kx′ for some non-zero constant k. Thus
a given point may be expressed in infinitely many different ways
in homogeneous coordinates. This is analogous with the way a
given rational number has many different representations, such as
1/2 = 2/4 = 3/6 = k/2k for any k. One particularly convenient
homogeneous representation of a point is the 3-vector with unit
final coordinate: (x, y, 1)�.

Homogeneous coordinates (3-vectors) with final coefficient
zero do not coincide to any real point in non-homogenous coor-
dinates, since the process of dehomogenization involves division
by zero. Such points are commonly known as points at infinity.
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The vector (0, 0, 0)� is not considered to be a valid set of homo-
geneous coordinates.

In a similar way, 3D points are represented by homogeneous
4-vectors X = (X, Y, Z, T)�. The main advantage of using homo-
geneous coordinates to represent world and image points is that
equation (1) has a particularly simple form as a linear relationship
between the homogeneous coordinates of the points.

Two homogeneous vectors differing by a constant multiplica-
tive factor are considered to be equivalent representations of the
same point. The set of all equivalence classes of (non-zero) ho-
mogeneous (n+ 1)-vectors forms the projective n-space, Pn. In
studying projective reconstruction, it is conventional to consider
image points to lie in projective 2-space P2, whereas 3D points
lie in projective 3-space P3. This identifies the projective space
P2 as consisting of the (image) plane, augmented with points at
infinity. Similarly, P3 consists of IR3 along with a plane of points
at infinity.

2 Ambiguity
Expressed in full generality, the solution to the reconstruction
problem may only be determined up to an unknown projective
transformation, applied both to points and cameras.

A projective transformation of P3, the model for 3-space con-
taining world points, is a mapping

X �→ HX

where H is a non-singular 4 × 4 matrix representing a mapping
between homogeneous coordinates. Using this relationship, it
is easily seen that the determination of camera matrices Pi and
points Xj cannot be unique, given only corresponding image co-
ordinates xij . Consider

xij = Pi Xj

= (PiH
−1) (HXj)

= P′i X
′
j . (3)

In this relationship, new points X′
j = HXj are defined in terms

of points Xj , and similarly new camera matrices P′i = PiH
−1 in

terms of the camera matrices Pi. Since both ({Pi}, {Xj}) and
({P′i}, {X′

j}) give rise to the same projected image coordinates
xij , there is no way to choose between these two solutions to the
reconstruction problem. In fact, there exists a complete family of
solutions to the problem, corresponding to all possible choices of
the matrix H. All such solutions are related to each other by the

application of a projective transformation, and are hence called
projectively equivalent. A particular solution, consisting of cam-
era matrices Pi and points Xj satisfying (1) is known as a projec-
tive reconstruction of the scene, computed from the given corre-
sponding image points.

The effect of projective ambiguity is given shown in fig 1.

2.1 The projective reconstruction theorem
The above analysis does not rule out the possibility that other so-
lutions to this reconstruction problem exist, not related to a par-
ticular obtained solution by any projective transformation.

However, this possibility is excluded by the projective recon-
struction theorem, which essentially says that if the set of corre-
sponding points xij are sufficiently numerous (at least 8 in num-
ber), and do not lie in some degenerate configuration, then the
solution to the reconstruction problem is unique up to a projec-
tive transformation.

The exact statement of the theorem requires the definition of
the fundamental matrix which will be considered next.

3 Two view reconstruction
Consider the reconstruction problem for only two images. Rather
than using a subscript, entities belonging to the second camera are
distinguished by a prime. Thus, the given input to this problem
consists of corresponding points xi ↔ x′

i; i = 1, . . . , n, where
the points xi come from one image and the x′

i are the correspond-
ing points in the other.

Let the camera matrices (unknown) be P and P′, and let Xi be
the 3D point corresponding to the image points xi ↔ x′

i. The
projection equations are

λi xi = PXi

λ′
i x

′
i = P′Xi

where the scale factors λi and λ′
i are explicitly written (but are

unknown). These equations may be written in a single system

[
P xi

P′ x′
i

]⎛⎝ Xi

−λi

−λ′
i

⎞
⎠ = 0 . (4)

Since this equation must have a non-zero solution
(Xi

�,−λi,−λ′
i
�)�, the determinant of the matrix on the

left (which shall be denoted as A) must be zero. Since the point
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coordinates xi and x′
i each appear in a single column, it follows

that the determinant is a bilinear expression in (xi,x
′
i), and hence

the equation det(A) = 0 can be written in the form

x′
i
�Fxi = 0 , (5)

where F is a 3 × 3 matrix depending only on the two camera
matrices P and P′. Consequently, this equation will hold for any
pair of corresponding points (xi,x

′
i). The matrix F is called the

fundamental matrix corresponding to the camera pair (P, P′).
Closer examination of the matrix A appearing in (4) reveals the

exact form of the matrix F. Expanding det(A) by cofactors down
the last two columns yields the following formula:

Fjk = (−1)j+k det

[
P(∼j)

P′(∼k)

]
, (6)

where P(∼j) is the 2× 4 matrix obtained by omitting the j-th row
of P, and P′(∼k) is similarly defined.

Another way of writing the equation (5) is

(xi ⊗ x′
i)

� f = 0 , (7)

where (xi ⊗ x′
i)

� is the vector

(u′
iui, u′

ivi, u′
iwi, v′iui, v′ivi, v′iwi, w′

iui, w′
ivi, w′

iwi) (8)

expressed in terms of coordinates xi = (ui, vi, wi)
� and x′

i =
(u′

i, v
′
i, w

′
i)

�. Further, f is the vector (F11, F12, . . . , F33)� made
up of the entries of the fundamental matrix F.

3.1 Computing the fundamental matrix
Note that the equation (7) is a linear equation with unknowns
equal to the entries of the fundamental matrix. The explicit form
of the equation is given by (8). Given n ≥ 8 point correspon-
dences, one has a set of linear equations

Af = 0

where A is an n×9 matrix, with entries determined by the coordi-
nates of the matched image points. This set of equations is solved
to find f .

Since this is a set of homogeneous equations, there is a solution
f = 0, which is not interesting; a non-zero solution is required.
With exactly 8 point correspondences, there is an exact solution to
this problem. With more points, a least-squares solution is com-
puted. This is most conveniently done by solving the problem

Minimize ‖Af‖
subject to ‖f‖ = 1 ,

where the condition ‖f‖ = 1 is imposed in order to obtain a
unique solution (apart from sign). The solution is the eigenvector
of A�A corresponding to the smallest eigenvalue. Alternatively, if
A has singular value decomposition

A = UDV�

then the required f is the last column of V (assuming that the sin-
gular values of D are in descending order). Once the solution f is
found, the fundamental matrix F is reconstituted from the entries
of f .

The algorithm just described is the so-called 8-point algorithm
for computing the fundamental matrix [20]. In order to get good
results, it is necessary to preprocess the input image coordinates,
using the so-called normalized 8-point algorithm, which will be
described later.

Projective Reconstruction Theorem. This discussion leads to
the basic theorem of projective reconstruction, which states that
under appropriate conditions, the reconstruction of a scene from
sufficiently many point correspondences in two views is unique
up to projective transformation.

Theorem 3.1. Let xi ↔ x′
i; i = 1, . . . , n be point correspon-

dences in two views and let (P, P′, {Xi}) be a pair of camera ma-
trices, and some 3D points forming a 3D reconstruction; specifi-
cally stated:

λixi = PXi

λ′
ix

′
i = P′Xi (9)

for some unknown λi, λ
′
i 	= 0. Let H be an invertible 4× 4 matrix

H, and define

P̃ = PH−1

P̃
′

= P′H−1 (10)
X̃i = HXi .

Then the triple (P̃, P̃
′
, {X̃i}) is also a reconstruction satisfying the

equations (9).
Furthermore, if the set of vectors {xi ⊗ x′

i} has rank 8 (spans
a linear subspace of dimension 8 in R9), then any reconstruction
(P̃, P̃

′
, {X̃i}) satisfying (9) is related to the original reconstruc-

tion (P, P′, {Xi}) by (10) for some non-invertible matrix H.

This theorem was proved in [7, 13].
Note the condition that the set of vectors {xi ⊗ x′

i} has rank
8 is exactly the condition that the set of equations of the form
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(7) has a unique solution. If the rank of the vectors {xi ⊗ x′
i} is

equal to 9, then there is no solution to the equations (7) and the
point correspondences xi ↔ x′

i can not be a valid set of points
corresponding to projections of a set of 3D points in two images.

If the vectors {xi ⊗ x′
i} span a space of dimension less than

8 (for instance if there are fewer than 8 point correspondences),
then there is not a unique matrix F satisfying the condition (5),
and the reconstruction may not be unique up to projectivity.

3.2 Extraction of Camera Matrices
Once the fundamental matrix has been computed, it is possible
to extract a pair of camera matrices directly from F. The decom-
position is not unique, since according to Theorem 3.1 there are
many pairs of camera matrices (P, P′) that correspond to the same
fundamental matrix F. It is always possible to assume that one of
the camera matrices is of the form P = [I | 0], so the problem is
simply to compute the other camera matrix P′.

An algorithm to do this is as follows.

1. Compute the singular value decomposition

F = UDV�

where D ≈ diag(p, q, 0). Note that since F should have rank
2, the last singular value should be zero, but with noise this
will not exactly hold.

2. Define matrices

W =

⎡
⎣ 0 −1 0

1 0 0
0 0 1

⎤
⎦ ; Z =

⎡
⎣ 0 −1 0

1 0 0
0 0 0

⎤
⎦

Define D̂ = diag(p, q, r) for some value of r, and observe
that

F = UDU� = (UZU�) (UW�D̂V�) = S M . (11)

where S is a skew-symmetric matrix, and M is defined by this
equation. The value of r may be arbitrarily chosen.

3. A pair of camera matrices corresponding to the fundamental
matrix F are now

P = [I | 0] ; P′ = [M | u3] (12)

where u3 is the third column of U.

Notes.

1. The vector u3 satisfies u3
�F = u3

�S = 0; it is the genera-
tor of the left null-space of F.

2. The value of r, the last diagonal entry of D̂, may be chosen
arbitrarily, but a good choice is to set r = (p+ q)/2 so that
M is far from singular.

3. If r = 0, the matrix M is singular, but has a particularly
simple form; namely M = SF. The corresponding camera
P′ = [SF | u3] is sometimes used, but it has the property that
the left-hand 3 × 3 block is singular, so the camera centre
lies at a non-finite point.

3.3 Complete projective reconstruction algorithm
It is now possible to state a complete algorithm for projective re-
construction of a scene from two images. Suppose a set of image
correspondences xi ↔ x′

i; i = 1, . . . , n are given.

1. From the image correspondences, compute the fundamental
matrix F linearly from equations (7), as described in sec-
tion 3.1.

2. From F find the two camera projection matrices P = [I | 0]
and P′ = [M | t], as in section 3.2.

3. The corresponding 3D points Xi may be computed linearly
as the least-squares solution to equations (4). This process is
called triangulation.

The linear triangulation method via equations (4) does not give
optimal results. A method optimal in the presence of noise is
given in [14, 15].

3.4 The normalized eight-point algorithm
It was pointed out in [11] that the simple version of the 8-point
algorithm given above can lead to very poor results in some cir-
cumstances, but this problem is largely alleviated by simple nor-
malization of the image coordinates.

The issue with the 8-point algorithm for computing F is that
the vector (8) expressed in terms of image point coordinates can
contain entries of widely different magnitude. This leads to poor
conditioning of the linear equations used to solve for F. In addi-
tion, the results are dependent on the particular coordinate system
(origin and scale) used to express image points.

Given corresponding image points xi ↔ x′
i one may define

normalized coordinates x̂i and x̂′
i obtained from the original co-

ordinates by the following operations.
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1. Each xi is replaced by xi−x̄, where x̄ is the mean (barycen-
tre) of all the coordinates xi. This corresponds to a shift of
the coordinate origin so that the mean of the xi is at the ori-
gin.

2. The points are scaled so that their average (alternatively,
their root-mean-squared) Euclidean distance from the origin
is equal to

√
2. This is done by applying a common scaling

to all the points xi − x̄. The resulting point is x̂i.

The reason for choosing an average distance of
√
2 is so that

the average point has homogeneous coordinates (1, 1, 1)�.
One applies these operations to the points xi and x′

i indepen-
dently, Note that both normalization steps are simple affine trans-
formations of the points. These transformations may be written
as

x̂i = Txi ; x̂′
i = T′x′

i (13)

where T and T′ are 3 × 3 matrices acting on the homogeneous
representations of the points.

Once this normalization has taken place, the computation of the
fundamental matrix, and the complete projective reconstruction
may be carried out using the normalized coordinates. The result
is a fundamental matrix F̂ satisfying the condition

x̂′
i
�F̂x̂i = 0 (14)

from which by substitution using (13) one has

(x′
i
�T′�)F̂(Txi) = 0 = x′

i
�Fxi .

From this it follows that F = T′�F̂T is the fundamental matrix
corresponding to the original points.

Similarly, if P̂ and P̂′ are camera matrices belonging to a recon-
struction from the normalized image coordinates, then

x̂i = P̂X̂i ; x̂′
i = P̂

′
X̂i .

Once more, substituting for x̂i and x̂′
i, it follows that

xi = T−1P̂X̂i ; x′
i = T′−1P̂

′
X̂i

which implies that the reconstruction (P, P′, {Xi}) for the original
points xi ↔ x′

i is given by

P = T−1P̂ ; P′ = T′−1P̂
′
; Xi = X̂i .

This normalized 8-point algorithm gives markedly superior re-
sults to the unnormalized algorithm, which should never be used
directly. For more details and analysis, see [11].

4 Three view reconstruction

The 8-point algorithm and other methods involving the funda-
mental matrix are useful for reconstruction from two views.

If three images of a scene are available, and point correspon-
dences are known across all three views, then such linear methods
can be extended to three-image reconstruction, using the trifocal
tensor. This is an extension of the fundamental matrix to three
views.

In this analysis of three-view reconstruction, it is convenient
from a notational point of view to denote the three camera matri-
ces as A, B and C, instead of P1, P2 and P3.

Given a three-way image-point correspondence xi ↔ x′
i ↔

x′′
i , the goal is to find camera matrices A, B and C and points Xi

such that

xi = AXi ; x′
i = BXi ; x′′

i = CXi . (15)

This may be written in a form similar to (4), as follows:

⎡
⎣ A xi

B x′
i

C x′′
i

⎤
⎦
⎛
⎜⎜⎝

Xi

−λi

−λ′
i

−λ′′
i

⎞
⎟⎟⎠ = 0 . (16)

In this case, the 9×7matrix on the left is not square. Nevertheless,
since there is a solution (Xi,−λi,−λ′

i,−λ′′
i )

�, the matrix must
be rank-deficient. Consequently, any 7 × 7 submatrix must have
vanishing determinant. Each such determinant implies a trilinear
relationship between the coefficients of the matching points xi ↔
x′
i ↔ x′′

i .
It is not necessary to consider all possible 7× 7 submatrices to

obtain useful relationships. Given three camera matrices A, B and
C one can define a triply-indexed entity T qr

i

T qr
i = (−1)i+1 det

⎡
⎣ A(∼i)

B(q)

C(r)

⎤
⎦ . (17)

Here, all indices range from 1 to 3. Further, B(q) and C(r) repre-
sent rows q and r of the matrices A and B, whereas A(∼i) means the
matrix A with row i omitted. This results in a 4× 4 matrix, whose
determinant with the indicated sign is the chosen value T qr

i . This
triply-indexed set of 27 values is known as the trifocal tensor cor-
responding to the three cameras. Note that this tensor depends
only on the camera matrices, and not any image points.
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Now, it may be shown [16, 12] that the coordinates of any
matching triple xi ↔ x′

i ↔ x′′
i satisfy trilinear relations

3∑
i,j,k,q,r=1

xix′jx′′kεjquεkrvT qr
i = 0uv. (18)

This relation may is to be interpreted as follows:

1. The indices on the point coordinates, such as xi, denote the
i-th coordinate of the homogeneous vector representing the
point x = (x1, x2, x3)�.

2. The symbol εjqu (and similarly εkrv) has value 0 unless j,
q and u are all distinct; otherwise it is +1 if jqu is an even
permutation of the three indices 1,2 and 3, and −1 if it is an
odd permutation.

3. The indices u and v are free indices, and each choice of u
and v leads to a different trilinear relation, for a total of 9
distinct relations. However, only 4 of these relations are lin-
early independent.

In the case where the first camera matrix A has the canonical
form [I | 0], the expression (17) for the trifocal tensor may be
written simply as

T qr
i = bqi c

r
4 − bq4c

r
i , (19)

where bqi is the element in row q, column i of B and cri is defined
analogously.

A complete three-view reconstruction algorithm can then be
outlined as follows:

1. From point correspondences xi ↔ x′
i ↔ x′′

i for i =
1, . . . , n each relation of the form (18) gives 4 linearly inde-
pendent linear constraints on the entries of the trifocal tensor.
From 7 point correspondences there are sufficiently many
equations to compute T qr

i linearly.

2. As with with two-view reconstruction, it is possible to deter-
mine the form of the two other camera matrix B and C from
the entries of the trifocal tensor using the formula (19).

3. Finally, by triangulation from three views based on the equa-
tion (16), one can find the world points Xi, completing the
reconstruction from three views.

A few more comments.

1. In the definition (18), the first camera matrix A is treated
differently from the two others (in that two rows of A appear
in the determinant, but only one from B and C). There are two
other similarly defined trifocal tensors in which matrices B or
C are distinguished in this way.

2. Unlike with the fundamental matrix, there are relations sim-
ilar to (18) that hold for line correspondences, or mixed line
and point correspondences. Thus, computation of the tri-
focal tensor, and hence projective reconstruction is possible
not only from point correspondences, but from mixed corre-
spondences of this type.

Minimal configurations. The reconstruction algorithms from
two or three views described in section 3 and section 4 require
8 or 7 points respectively. However, it is possible to carry out
reconstruction using only 7 points from 2 views, or as few as 6
points from three views.

From two views, the algorithm is easily explained. Given only
7 points correspondences, the set of equations x′

i
�Fxi = 0 rep-

resents a set of 7 homogeneous equations in the 9 entries of
F. The solution to this equation set is a two-parameter family
F = λF1 + μF2 where F1 and F2 are determined by solving this
system.

The condition that the fundamental matrix F must be a singu-
lar matrix gives a further equation det F = 0. Since F is a 3 × 3
matrix, this leads to a cubic homogeneous equation in λ and μ.
Solving this cubic equation gives either one or three real solutions
for the ratio λ : μ, and hence one or three solutions (determined
as ever up to scale) for the fundamental matrix F. In short, from
7 point correspondences one or three possible fundamental matri-
ces may be computed. From these possible values of F the rest of
the method described previously will lead to a projective recon-
struction, in fact either a unique or three possible reconstructions.

A method for computing the projective reconstruction from
three views of 6 points is described in [27].

5 Factorization algorithms
The algorithms described previously for projective reconstruction
work on two or three images. In many cases, one has many more
images of a scene to use for reconstruction. To handle this situa-
tion, a variant of the Tomasi-Kanade factorization algorithm [30]
may be used to do reconstruction from many views at once. This
is the algorithm of Sturm and Triggs [29] for projective recon-
struction.
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As input, consider a set of image points xij for i = 1, . . . ,m
and j = 1, . . . n, where xij represents the image of the j-th point
in the i-th image. It is assumed (and required) that every point
should be visible in every image, so xij is defined for all (i, j).

The projection equations are of the form

λij xij = PiXj , (20)

where the constants λij are required scale factors, the so-called
projective depths of the points. This set of equations may be put
together in one matrix equation as follows.

⎡
⎢⎢⎢⎣

λ11x11 λ12x12 . . . λ1nx1n

λ21x21 λ22x22 . . . λ2nx2n

...
. . .

...
λm1xm1 λm2xm2 . . . λmnxmn

⎤
⎥⎥⎥⎦ (21)

=

⎡
⎢⎢⎢⎣

P1
P2
...
Pm

⎤
⎥⎥⎥⎦ [

X1 X2 . . . Xn

]
. (22)

In this equation the matrix on the left has dimension 3m×n, since
each λijxij is a 3-vector. This set of equations has the form

Λ� W = PX (23)

where

Λ =

⎡
⎢⎣

λ11 . . . λ1n

...
. . .

...
λm1 . . . λmn

⎤
⎥⎦ ; W =

⎡
⎢⎣

x11 . . . x1n

...
. . .

...
xm1 . . . xmn

⎤
⎥⎦
(24)

and � is to be interpreted as an elementwise product, so that Λ�W

is the matrix on the left of (21).
From the form of (21) it is evident that the matrix on the right

has rank 4, since it is the product PX of matrices of dimension
3m × 4 and 4 × n. This is a low-rank constraint on the matrix
Λ� W of depth-weighted image coordinates.

Unfortunately, although the matrix W of image coordinates is
known, the matrix Λ of projective-depths is not known. With an
incorrect set of projective depths, the matrix Λ � W will not have
the expected rank 4. This suggests an algorithm in which the
factorization and the projective depths are estimated alternately
as follows.

1. Form the matrix W of homogeneous image coordinates as
given in (24), and define Λ0 in which all λ0

ij = 1. Then
carry out the following steps iteratively for k = 0, . . . , N

(a) Find the closest rank-4 matrix Wk to Λk � W.

(b) Define Λk+1 to be the matrix of weights λk+1
ij so that

Λk+1�W is as close as possible to Wk under Frobenius
norm.

2. Compute a final factorization WN = PX, to obtain P and
X providing the camera matrices and point locations respec-
tively.

In step 1(a), the low-rank factorization is carried out by Sin-
gular Value Decomposition. Suppose Λk � W = UDV�. Let D̂ be
the matrix obtained by setting all but the four first (largest) diag-
onal entries of D to zero. Then set Wk = UD̂V�. The number of
iterations N is vaguely defined in this algorithm. The intention
is to continue until “convergence” but as will be remarked below,
continuing to convergence is problematic.

Variants of the method. It has been observed [24] that the
bare projective algorithm as given above will converge to a triv-
ial limit in which all the values of λij will be zero, except for
those values in 4 columns of Λ. This solution is spurious, since
zero-values of the projective depths are not possible for a geo-
metrically valid reconstruction. In addition, convergence is very
slow. Therefore, different variants on the algorithm have been
proposed, as follows.

1. In the original paper of Sturm and Triggs [29] an initializa-
tion of the projective depths is proposed, in which projective
depths are derived from two-view reconstructions.

2. A viable strategy is to carry out only a fixed small number
of alternation steps, since this significantly improves the so-
lution without encountering a trivial solution.

3. A further step of normalization of the projective depths λij

may be used [16]. Observe that if λijxij = PiXj , for all
(i, j), then for any constants ci and dj ,

cidjλijxij = (ciPi) (djXj) . (25)

Thus, each λij may be replaced by cidjλij without materi-
ally changing the factorization. Thus, one may at will mul-
tiply each i-th row of Λ by ci and the j-th column by a con-
stant dj . In [16] it is suggested that constants ci and dj may
be chosen so that first the rows, then the columns of Λ sum to
unity. However, no analysis of this normalization procedure
is given there.
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4. More complex schemes for normalization schemes are given
in [24] and [21, 22], for which convergence to a meaningful
(local) minimum of some cost function is demonstrated.

5. Methods to accommodate missing data or outliers in projec-
tive factorization algorithms have been proposed. Though
many algorithms have addressed missing data in matrix fac-
torization (for instance [18, 28, 2, 3, 4], a notable paper ad-
dressing projective factorization specifically is [5].

6. L1-factorization has been recognized as more robust alterna-
tive to matrix factorization; an effective method is given in
[6].

6 Bundle adjustment
Given measured image points xij in several images, the projec-
tion equations λijxij = PiXj can not be satisfied exactly if there
is any inaccuracy, or noise, in the measurements. Therefore, in
finding the projection matrices Pi and 3D points Xj to satisfy
these equations, it is appropriate to find an approximate solution.
Typically, this solution will be one that minimizes some appropri-
ate cost function representing a residual error in the solution.

Since errors arise in the measurement of the coordinates of im-
age points, it is appropriate to seek a solution that minimizes the
error with respect to the measured image coordinates. This corre-
sponds to choosing a cost function of the form

C({Xj}, {Pi}) =
∑

i,j∈N
d(xij , PiXj)

2 . (26)

where N is a set of pairs (i, j) for which xij is measured. Fur-
ther, d(xij , PiXj) represents the Euclidean distance in the 2-
dimensional image plane between the measured point xij and the
projected point PiXj , This is commonly referred to as the repro-
jection error. The cost is to be minimized over all choices of Pi
and Xj . This is a non-linear function. The choice of the squared
distance means that a non-linear least-squares cost function is to
be minimized. The motivation for this choice is the observation
that the solution to this least-squares problem represents the Max-
imum Likelihood (ML) solution, under the assumption that each
image measurement error conforms to an isotropic Gaussian dis-
tribution, each point measurement being independent of the oth-
ers.

Minimizing the cost function (26) over all choices of the vari-
ables Pi and Xj is known as bundle-adjustment. Since this is

a non-linear optimization problem, an iterative algorithm is re-
quired. The most common algorithm used to minimize this cost
function is the Levenberg-Marquardt algorithm [19, 23, 16, 31].
In order to converge to the globally optimal solution a good initial
solution is necessary. Such an initial solution is found by applying
any of the algorithms previously described in this article.

Robust cost functions. The cost function (26) is suitable, and
represents the ML solution if the measured point coordinates con-
form to a Gaussian distribution, and may be used if there are no
gross errors (outliers) among the measured points. In most cases,
this is unlikely, and a more robust cost function is to be preferred.
In this case, the squared Euclidean distance function d(·, ·)2 is re-
placed by some other function f(·, ·) that is more tolerant of out-
liers, meaning that f(x,y) grows less rapidly than d(x,y)2 as the
distance between the two arguments x and y increases. A good
choice of robust cost function is the Huber cost function [17, 16]

C({Xj}, {Pi}) =
∑

i,j∈N
H (d(xij , PjXi))

2
. (27)

where H(x)2 is quadratic for |x| < δ and linear for |x| ≥ δ, and
δ is some threshold approximately equal to the standard deviation
of the measurements.

Sparse methods. A reasonable sized reconstruction problem
may involve 1000 camera matrices Pi and 100, 000 points Xj .
Consequently, the cost function (26) depends on a large number
of variables (311, 000 parameters if the cameras are parametrized
by 11 parameters). Since the central step in the Levenberg-
Marquardt optimization process involves the solution of equations
to compute the update of the parameters, this would involve solv-
ing a very large set of equations in all the variables. For a dense
set of equations in 300, 000 parameters, this would be almost im-
possible.

Fortunately, the set of equations involved in this update process
is quite sparse, so the problem is tractable. To see this, note that
if a single point Xj is moved, then only the image points xij in-
volving this point are affected. Similarly, if some camera matrix
Pi is altered, then only image points xij are changed. This means
that each image measurement depends only on the parameters of
one 3D point and one camera. This sparse dependence structure
for the cost function results in a special sort of sparse structure for
the Jacobian matrix. Sparse solution methods may then be used
to accelerate the update step, and allow it to be run in reasonable
time. Methods that are used for this numerical problem include
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the Schurr complement method [16], in which the sparseness of
the Jacobian is used to allow the camera updates to be computed
first, followed by the point updates. The exact form of the equa-
tions is given in [16]. Alternatively, conjugate gradient methods
[1] may be used; in such methods the sparseness of the equation
set lends itself naturally to sparse methods.

7 Euclidean update
A projective reconstruction may be used as an initial step towards
a geometrically correct (Euclidean) reconstruction. There are var-
ious ways in which this can be done:

1. By determining or knowing the calibration of the cameras.
The camera calibration may be known a-priori, or deter-
mined through the process of auto-calibration [9]. Con-
straints on the camera parameters, such as known focal
length, or an assumption that some cameras have the same
shared internal parameters, may be enforced easily during
bundle-adjustment. Automatic methods for auto-calibration
often compute an affine reconstruction first, followed by an
update to a Euclidean reconstruction and full determination
of the camera calibration parameters [10, 8, 26]. This pro-
cess is known as stratification.

2. By the knowledge of the 3D Euclidean coordinates of some
number of ground-control points; at least 5 such points are
required [13].

3. If partial camera calibration is known, the full calibration
and Euclidean reconstruction may be computed more sim-
ply than if no calibration information is given. A notable
paper demonstrating this is [25] and more details on self-
calibration given different types of partial camera calibration
are given in [16].

Figure 2 illustrates the steps from projective to Euclidean re-
construction via stratification.

A large scale reconstruction, computed from thousands of im-
ages is shown in fig 3.
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Figure 1: Projective reconstruction. (Top) Original image pair. (Bottom) Two views of a 3D projective reconstruction of the scene. The
lines of the wireframe link the computed 3D points. The reconstruction requires no information about the camera matrices, or informa-
tion about the scene geometry. In a projective reconstruction, the resulting model is distorted by an arbitrary projective transformation
from the true geometrically correct model. (Figures derived from [16].)
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Figure 2: Stratification. The projective reconstruction (top row) obtained by uncalibrated reconstruction techniques is first upgraded
to an affine reconstruction (second row). In the affine reconstruction, parallel lines in the image are parallel in the reconstruction, but
geometric structures are still skewed. In the final stage of the reconstruction, the true Euclidean model (third row) is computed, in which
angles and dimensions are correct up to an indeterminate scale. The fourth row shows two views of the texture-mapped model. (Figures
derived from [16].)
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Figure 3: Views of reconstruction of San Marco, Venice from Flickr images. The top image shows San Marco Cathedral and the doge’s
palace. Below is shown the campanile at left, and the palace on the right. Black pyramids show the position and orientation of the
cameras. Figures are reproduced with thanks to Noah Snavely.
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