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Abstract—Images captured in foggy weather conditions exhibit
losses in quality which are dependent on distance. If the depth
and atmospheric conditions are known, one can enhance the
images (to some degree) by compensating for the effects of the
fog. Recently, several investigations have presented methods for
recovering depth maps using only the information contained in
a single foggy image. Each technique estimates the depth of each
pixel independently, and assumes neighbouring pixels will have
similar depths.

In this work, we employ the fact that images containing fog are
captured from outdoor cameras. As a result, the scene geometry is
usually dominated by a ground plane. More importantly, objects
which appear towards the top of the image are usually further
away. We show how this preference (implemented as a soft
constraint) is compatible with the alpha-expansion optimization
technique and illustrate how it can be used to improve the
robustness of any single image dehazing technique.

Index Terms—fog; haze; image; enhancement; optimization;
graph cuts; alpha expansion; monotonic;

I. INTRODUCTION

Poor visibility, which arises in foggy weather conditions,
hinders the usefulness of outdoor cameras. However, it is
possible to compensate for the effects of fog — at least, to
some degree — if the optical and depth information about the
scene is known [1]. Recent investigations [2], [3], [4] have
shown how a reasonably accurate depth map can be estimated
automatically from a single foggy input image using a variety
of techniques. Although each method uses a different statistical
measure to drive the estimation process, they all share a
common shortcoming: when the appearance information of a
pixel is unreliable, the algorithms are unable to produce a good
depth estimate for the corresponding location in the image.
As we will explain in Section II, each algorithm assumes
neighbouring pixels will have similar depths, and incorporates
this regularization into the estimation process.

In foggy conditions, the appearance of an object becomes
more similar to that of the fog as the distance between the cam-
era and the object increases. Therefore, the colour dissimilarity
between each pixel and the fog gives an indication about its
depth. However, it is difficult to estimate the depth of objects
which are naturally white or light grey, since their change in
appearance within fog is relatively independent of depth. In
[2], [3], [4], any errors in the estimated depth maps are not
usually visible in the enhanced images, since the solutions
are applied to the same data used for the estimation process.
However, in other situations, a more accurate depth map may
be necessary.

In outdoor surveillance applications, cameras are usually
placed high in the air, and the depth of each pixel changes only
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Fig. 1. A foggy image (a) is enhanced by estimating the optical depth
of the scene (b). Here, the probability of a particular depth is based on the
contrast of the enhanced image (c). The technique of [2] is unable to handle
the appearance of the swan, resulting in: (1) an incorrect depth estimate in (b);
and (2) an over-enhanced result in (c). Our geometric prior prefers that the
depths of pixels increase as one scans the image from bottom to top. When
incorporated into [2], the resulting depth (d) and enhancement (e) of the swan
are improved without introducing significant artifacts — i.e., the depth of the
tree (which does not adhere to this model) is still mostly correct.

slightly depending on whether a foreground object is present or
not. As a result, one can enhance a series of images using the
same depth map, as long as the atmospheric properties remain
constant. However, errors in the depth map will become quite
obvious, as the results are now being applied to a set of data
that is different from that used for the estimation process.

In this work, we focus on the assumption that neighbouring
pixels should have similar depths. We show how a stronger
prior based on camera geometry can be used to improve
the results of any of the single image estimation methods
mentioned above (see Figure 1). Our key observation is that
weather degradation occurs in outdoor scenes, which means
the majority of the images should exhibit the geometry of a
camera located above a ground plane. As we will show in
Section III, this geometry leads to a simple relationship that
objects which appear closer to the top of the image are usually
further away. Furthermore, we will show that within the graph-
cut based α-expansion energy minimization framework, our
trend can be implemented as a preference, and does not always
have to hold.



Fig. 2. The radiance reaching the observer is the sum of the transmitted (top)
and airlight (bottom) components [5]. As photons travel through the medium,
there is a chance of being scattered, so the radiance of light decreases with
distance. This leads to attenuation of the transmitted component. The airlight
component arises from photons which were not originally incident on the
observer being scatter towards the observer. As with the transmitted case,
some of these photons may re-scatter off the path towards the observer.

II. BACKGROUND

The presence of aerosols in the lower atmosphere means
light may scatter and/or be absorbed while travelling through
the medium [1]. This can happen anywhere along the path,
and leads to a combination of radiances incident towards
the camera (see Figure 2). The transmitted component is an
attenuated version of the signal that would have reached the
camera if no aerosols were present. The airlight component
arises from ambient light which was scattered towards the
camera — i.e., it did not reflect off the corresponding scene
surface element.

If the atmospheric and lighting conditions are constant, and
the fog is suitably dense to assume the ambient illumination is
isotropic [1], [5], the observed image I is a combination of the
transmitted J and airlight A components, with the magnitudes
determined by the optical distance βdi of each pixel i:

Ii = e−βdiJi + (1− e−βdi)A (1)

To recover the scene radiance J of a given foggy input
image I, one needs to estimate the optical depth of each pixel,
as well as the appearance of the horizon (which is equivalent to
A). The transmission map t combines the unknown geometric
distance di and extinction co-efficient β (the net loss from
scattering and absorption) into a single variable:

ti = e−βdi (2)

When an object has the same appearance as the fog, Ji = A
and (1) is satisfied for any transmission value; making it
is impossible to estimate the depth of that particular pixel.

Furthermore, since the observed radiance Ii is a linear combi-
nation of Ji and A and the transmission (2) is limited to the
range [0, 1], the observed radiance Ii must be between these
two values. Formally, either Ji ≥ Ii > A or Ji ≤ Ii < A.

Finally, the aerosols of fog are sufficiently large to cause
scattering which is independent of wavelength. As a result, A
tends to have a whitish-grey colour, and only the transmission
of each pixel and not that of each channel of each pixel (for
colour images) needs to be estimated — i.e., a one needs to
estimate a scalar value ti and not a vector ti.

A. Related Work

Previous methods for enhancing weather degraded imagery
required additional input [1], [6], [7], or specialized hardware
[8]. None of these methods are suitable for wide-spread
implementation in outdoor surveillance networks.

Oakley and Bu [9] developed a method for automatically es-
timating the amount of airlight within an image. They assumed
every pixel was at the same depth and analysed the mean
and variance of blocks of pixels. A global cost function was
formulated by considering the normalized standard deviation
of the entire image. Although the experimental results illustrate
that the method works quite well, the assumption that all pixels
are at the same depth is certainly not true in the majority of
images.

Tan [2] developed a system for estimating depth from a
single weather degraded input image. Motivated by the fact
that contrast is reduced in a foggy image, Tan divided the
image I into a series of small patches and postulated that the
corresponding patch in J should have a higher contrast (where
contrast was quantified as the sum of local image gradients).
He employed a Markov Random Field to incorporate the
prior that neighbouring pixels should have similar transmission
values ti. The method tends to produce over enhanced images
in practice.

Fattal [3] assumed every patch has uniform reflectance, and
that the appearance of the pixels within the patch can be
expressed in terms of shading and transmission. He considered
the shading and transmission signals to be unrelated and used
independent component analysis to estimate the appearance
of each patch. The method works quite well for haze, but has
difficulty with scenes involving fog, as the magnitude of the
surface reflectance is much smaller than that of the airlight
when the fog is suitably thick.

Recently, He et al. [4] employed a model which assumed
every local patch in the enhanced image should have at least
one colour component near zero. In other words, the work
assumed most scenes are made up of either dark or colourful
objects. The transmission ti of each patch was estimated as
the minimum colour component within that patch. Instead of
using an MRF, the work employed a soft matting algorithm
to ensure that neighbouring pixels had similar transmission
values.

He et al.’s strategy assigns either the minimum or maximum
transmission to each pixel. Rearranging (1) and (2), we find



the following expression for the transmission of each pixel:

ti =
A− Ii

A− Ji
(3)

For a given foggy input image I, both A and Ii are fixed.
Assuming Ji ≤ Ii < A, the transmission ti of a pixel will
increase as its estimated scene radiance Ji increases. The
lowest possible transmission occurs when Ji = 0, which
corresponds to a black (or a highly saturated colour in a
multichannel image when analysing the “dark channel”) object
a certain distance away — the observed intensity of the pixel
is only due to the airlight component. In the rare case when
Ji ≥ Ii > A, the transmission of a pixel will decrease as the
scene radiance Ji increases. In this situation, the minimum
possible transmission occurs when Ji = 1, which corresponds
to a white object. The object appears darker because of the
attenuation effects. As Ji tends towards Ii, the transmission
of the pixel reaches its maximum value of 1.

B. Regularization
The single image dehazing methods cited above use a

variety of regularization and optimization methods. Here, we
limit our investigation to the graph-cut based α-expansion
method employed by [2], as it is able to handle the statistical
models of [3], [4] as well and has a good track record with
vision-specific energy functions [10].

In this approach, each element ti of the transmission
map is associated with a label xi, where the set of la-
bels L = {0, 1, 2, . . . , #} represents the transmission values
{0, 1

" , 2
" , . . . , 1}. The most probable labelling x# minimizes

the associated energy function [11]:

E(x) =
∑

i∈P
Ei(xi) +

∑

(i,j)∈N

Eij(xi, xj) (4)

Here, P is the set of pixels in the unknown transmission
map t and N is the set of pairs of pixels defined over the
standard four-connect neighbourhood. The unary functions
Ei(xi) represent the probability of pixel i having transmission
ti associated with label xi, and can be any one (or a combi-
nation of) the methods of [2], [3], [4]. The smoothness term
Eij(xi, xj) encodes the probability that neighbouring pixels
should have similar depths. For simplicity, we consider the
linear cost function, which is solvable by α-expansion:

Eij(xi, xj) = λ |xi − xj | (5)

Details of the data cost function Ei(xi) and the value of λ
will be discussed in Section V.

III. OUTDOOR GEOMETRY

In outdoor surveillance, cameras are typically placed high
in the air and tilted towards the ground (see Figure 3). The
depth of any scene point (such as Q, R, S or T in Figure 3) is
the distance between it and the camera’s centre of projection
C. The depth can also be expressed in the components of
distance along the ground and height above the ground. If
the camera calibration parameters are known, only one of
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Fig. 3. The depth of any scene point — i.e., the distance from the centre
of projection C — can be split into distance and height components. If the
scene does not contain any cave-like surfaces, the distance of scene points
will increase monotonically from the bottom of the image to the top.

these two measurements needs to be specified. As long as
the scene does not contain any cave-like surfaces, such as the
space underneath a bridge, the distance along the ground to
the visible scene point is a monotonically increasing function
of image plane height (from the bottom of the image to the
top).

If we consider two pixels i and j, such that j is directly
above i, our geometry implies that dj ≥ di. As a result, the
transmission tj of pixel j, determined by (2), must be less than
or equal to the transmission ti of pixel i (assuming that β is
constant over the image). To encourage the pattern xj ≤ xi, we
can assign a cost τ > 0 to any pair of labels which violates
this trend. The condition can be strictly enforced by setting
τ = ∞. The smoothness function (5) now becomes:

Eij(xi, xj) =

{
τ if xi < xj ,

λ |xi − xj | otherwise.
(6)

A. Related Work
Liu et al. [12] examined the problem of estimating coarse

3D scene structure using ordering constraints. The set of labels
was limited to L = {‘left’, ‘right’, ‘top’, ‘bottom’, ‘centre’},
as the underlying scene model assumed five orthogonal planes.
The pairwise energy term Eij(xi, xj) was an asymmetric
Potts model. Infinite penalty terms prevented nonsensical
orderings (such as a pixel labelled ‘right’ being to the left of



a pixel labelled ‘left’). The authors were unable to solve the
problem using α-expansion, and instead employed alternating
horizontal and vertical moves which considered three labels
simultaneously.

Ramalingam et al. [13] also examined the problem of
estimating coarse 3D scene geometry. They, however, used
a smaller set of labels L = {‘ground’,‘scene’,‘sky’}. Unlike
Liu et al., Ramalingam et al. employed soft constraints, since
it is possible (although generally unlikely) to have ‘sky’ below
a pixel labelled ‘scene’. Their solution used machine learning
techniques to establish the likelihood of each triplet of labels.
The resulting cost function was a third-order multilabel prob-
lem, which was transformed and truncated into a submodular
second-order pseudo boolean function and solved using binary
graph cuts [10].

IV. SOLVABILITY

Each cycle of α-expansion reduces to a binary labelling
problem: should the pixel i keep its existing label xi, or
take the label α. The cut of the binary graph determines
which vertices should switch to the label α to produce a new
configuration x′ having a lower energy. The submodularity
condition [14] now involves three labels: the expansion label
α, as well as the labels xi and xj [15]:

Eij(α,α) + Eij(xi, xj) ≤ Ei,j(xi, α) + Ei,j(α, xj) (7)
for all i, j ∈ P and xi, xj , α ∈ L

By inspection, one can see that the linear distance model (5)
adheres to necessary condition for α-expansion. However, the
fact that our more complex geometry model (6) also satisfies
the above condition is not so straightforward.

We begin by considering the case when τ = ∞. The
two variable projection of E(x) will be submodular in every
iteration of α-expansion if the current move x does not have
infinite energy [16] — i.e., it does not violate the constraint.
However, hard constraints are not useful in practice. In fact,
we have already identified that our monotonic trend is violated
by several common outdoor scene structures, such as bridges.
Furthermore, the likelihood of a violation occurring increases
as the camera gets lower to the ground, or if one applies the
restriction to depth and not distance (which is necessary for
the case of uncalibrated cameras).

Many models for vision applications are determined by the
difference between a pair of labels, and not necessarily the
labels themselves — i.e., Eij(xi, xj) = fij(xi − xj). In this
situation, the requirement for α-expansion (7) becomes:

fij(0) + fij(xi − xj) ≤ fij(xi − α) + fij(α− xj) (8)

We will now show how a pair of increasing functions
which obey the triangle inequality will adhere to the above
requirement.

Theorem 1 Let f+(x) and f−(x) be two functions defined
for values x ≥ 0, satisfying the following conditions:

1) Monotonicity. If y ≥ x ≥ 0, then f±(y) ≥ f±(x).

2) Triangle inequality. If q ≤ α ≤ p, then

f±(0) + f±(p− q) ≤ f±(p− α) + f±(α− q).

3) Compatibility. f+(0) = f−(0).

Here f±(x) represents either f+(x) or f−(x). An energy
function:

Eij(p, q) =

{
f+(p− q) if p− q ≥ 0
f−(q − p) if p− q < 0,

(9)

satisfies (7), and is solvable α-expansion.

Proof: We consider the six possible orderings of p, q and
α and indicate which of f+(x) or f−(x) is to be applied to
each term in (8), based on the positivity (or negativity) of the
function argument (9).

0 p− q p− α α− q
q ≤ α ≤ p f+ f+ ≤ f+ f+

p ≤ α ≤ q f− f− ≤ f− f−

p ≤ q ≤ α f+ f− ≤ f− f+

q ≤ p ≤ α f− f+ ≤ f− f+

α ≤ p ≤ q f+ f− ≤ f+ f−

α ≤ q ≤ p f− f+ ≤ f+ f−

In the second column (the function applied to argument 0),
we may, and do, choose f+(x) or f−(x) according to our
needs, since f+(0) = f−(0) by definition. For the first two
lines of the table, the inequality holds because both f+(x)
or f−(x) adhere to the triangle inequality. For the remaining
lines, the inequality holds because both f+(x) and f−(x) are
monotonic functions.

Within the context of Theorem 1, the smoothness function
which encourages pixels to get further away (6) as a function
of image plane height can be expressed as:

f−(xi − xj) =

{
0 if xi − xj = 0,

τ otherwise.

f+(xi − xj) = λ |xi − xj |

Both of these functions satisfy the conditions of Theorem 1,
and hence our model, which identifies that neighbouring pixels
should take similar values and that the value should not
normally increase (although this is permissible) when scanning
the transmission map from bottom to top, is solvable by α-
expansion.

V. EXPERIMENTS

The enhancement equation (1) is expressed in terms of
radiance incident on the camera, so one must first gamma
correct the input foggy image I. Since the horizon radiance is
assumed to be constant, we estimate A before attempting to
determine the transmission map t.



A. Airlight Estimate
Like [2], we assume that a portion of the image contains

pixels which are infinitely far away — i.e., the horizon. If
the horizon is not visible, this assumption may still be valid
if the fog is suitably thick (as distance here refers to optic
distance and not geometric distance). However, our assumption
that the camera is positioned right side up, above the ground,
and oriented downwards, means that if a region of the image
contains sky, it will most likely occur towards the top of the
image. Therefore, we only consider the pixels in the upper
fifth of the image when estimating A.

If the input is a colour image, we first calculate the
corresponding intensity image. The top 1% brightest pixels
are identified within the upper fifth of the intensity image.
The horizon radiance A is calculated as the average value of
the pixels in the corresponding foggy input image I.

B. Contrast Data Function
Following [2] we quantify contrast using the sum of image

gradients within a patch of the enhanced image J(xi) for the
hypothesized transmission ti(xi). The summation is normal-
ized to the size of the patch (5× 5 in our experiments):

Ei(xi) =
1
25

i+2∑

i−2

‖∇Ji(xi)‖ (10)

C. Dark Channel Data Function
Similar to [4] we compute x̂i as the minimum value of

each pixel RGB triplet in the gamma corrected input image I.
However, we use a window size of 5×5 and not 15×15. The
smoothing process is controlled by the change in appearance
of the enhanced pixel, relative to its hypothesized appearance
from the dark channel assumption:

Ei(xi) = ‖Ji(x̂i)− Ji(xi)‖2 (11)
D. Reliability

If the “dark channel” of a pixel is higher than 0.9, it has an
appearance which is very similar to the fog. In these situations,
the values of Ei(xi) are scaled by a factor of 0.25× for both
the contrast and dark channel models, as the measurements
are unreliable in both cases.

E. Smoothness Function
Ideally, the two parameters λ and τ should be tuned for

each specific application. However, from our experiments we
have found that a value of λ = 0.005 for 32 labels produced
adequate results in all trials. The value of τ was either 100λ
or 200λ depending on whether the camera was deemed to
be close to ground level or suitably high in the air. In future
work, we will investigate methods for estimating both of these
parameters automatically.

If two neighbouring pixels in the input foggy image I are
quite similar in appearance (defined as a difference of less
than 10 intensity units in each channel), the probability of
them having the same depth is quite high. Therefore, when
this occurs, we increase the cost of the labelling by 10×.

Input

Contrast Unconstrained

Contrast Monotonic

Dark Channel Unconstrained

Dark Channel Monotonic

Fig. 4. A foggy input image is enhanced using the contrast and dark channel
data models. Both unconstrained depth maps (which assume that neighbouring
pixels should have similar values) contain a significant number of errors. The
resulting artifacts in the enhanced images are more severe with the contrast
method. The monotonic preference greatly improves the results of the contrast
method; less so for the dark channel approach. Since the camera is high above
the ground, τ = 200λ was used.

This formulation minimizes the halo artifacts which arise at
significant depth discontinuities in the contrast method [2].

Finally, the assumed ground plane geometry implies depths
should change in the vertical direction, but not significantly
horizontally. Therefore, we increase the cost by 2× for any
label changes in the horizontal direction.



Input

Unconstrained

Monotonic
Fig. 5. The foggy input image (top) is enhanced using the contrast data measure. In the unconstrained depth map (middle row), the swans are assigned
an incorrect depth in an effort to maximize the contrast in their relatively textureless appearance. The monotonic preference (bottom row) is able to correct
this mistake. Moreover, no significant errors have been introduced into the image either — i.e., the tree branches at the top of the image are assigned depths
which violate the monotonic trend.



(a) (b)
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Fig. 6. Video frames (c) and (f) are enhanced using depth maps (a) and (b) which were estimated without and with monotonicity respectively. Both depth
maps were estimated using the contrast data model applied to video frame (c), as the dark channel prior has difficulty with roads. The unconstrained depth
map (a) has outliers (due to the appearance of foreground objects and an inherent difficulty with the textureless road), but these do not induce significant
artifacts in the enhancement (d). Since the artifacts are not significant, the improvement in the enhancement (e) from using a monotonic depth map (b) is
not substantial. However, when the depth map is applied to a video frame (f) captured later, the outliers in (a) over-enhanced the middle vehicle beyond the
dynamic range of the image (g). This does not happen in the monotonic correction (h). Although these artifacts may be subtle in a still image, they are quite
apparent in a video.

F. Video

The transportation industry would benefit from automatic
fog enhancement technology. For this application, the primary
interest is enhancing video — not single images. Fortunately,
the image processing routines needed for the enhancement
operation (1) are straightforward, and are readily available
in most hardware accelerated graphics libraries. As a result,
given a depth map, our implementation is able to enhance
full-resolution video in real-time using a graphics processing
unit.

Since the depth estimation problem is quite involved, our
approach applies a single depth map to a series of video
frames. During this time, a new estimate of depth is conducted

in the background. If the camera is positioned high in the
air, the difference in depth between a foreground object and
the background behind it is usually small. Therefore, one can
typically estimate the depth of a background image and apply
this to any video frame without creating significant errors in
the enhanced image.

Typically, errors in a depth map do not induce significant
artifacts into the enhanced image (see Figures 4 and 5), since
the solution is applied to the data used during estimation.
Here, the depth map is estimated using one video frame, but
applied to another. As a result, the estimation errors caused
by various foreground appearances become quite apparent in
the enhanced images (see Figure 6).



Fig. 7. The foggy input image (top) is enhanced using the contrast data measure. The estimated depth of the parked car is wrong (since the appearance of
the car is too similar to that of the fog to provide reliable information). The monotonic preference (bottom row) improves the enhancement.

VI. CONCLUSIONS

Previous work on fog enhancement has focused on statistical
models for estimating the depth of each pixel. Here, we have
explored how the a priori camera geometry can be exploited
to improve the results of any statistical estimation technique.
The expected monotonic trend can be implemented as a soft
constraint within an energy minimization framework, which
leads to a preference (and not an absolute requirement) that
pixels should get further away as one scans the image from
bottom to top. Moreover, this preference is fully compatible
with the α-expansion algorithm. Finally, our geometric model
is not limited just to fog enhancement. One could easily
incorporate into other depth estimation techniques, such as
stereo disparity estimation.
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