
Minimizing Energy Functions on 4-connected Lattices using Elimination

Peter Carr Richard Hartley
Australian National University and NICTA

Canberra, Australia

Abstract

We describe an energy minimization algorithm for func-
tions defined on4-connected lattices, of the type usually en-
countered in problems involving images. Such functions are
often minimized using graph-cuts/max-flow, but this method
is only applicable to submodular problems. In this paper,
we describe an algorithm that will solve any binary prob-
lem, irrespective of whether it is submodular or not, and for
multilabel problems we use alpha-expansion. The method is
based on the elimination algorithm, which eliminates nodes
from the graph until the remaining function is submodular.
It can then be solved using max-flow. Values of eliminated
variables are recovered using back-substitution. We com-
pare the algorithm’s performance against alternative meth-
ods for solving non-submodular problems, with favourable
results.

1. Introduction

Most applications of energy minimization on Markov
Random Fields (MRFs) in Vision involve an MRF defined
on a4-connected lattice derived from an image, but few al-
gorithms use this structure specifically to find a minimum.
The most popular general method of solving these problems
is max-flow. However, this algorithm, which finds an opti-
mal partition of a graph, can only be used on submodular
problems [7]. We concentrate on binary (pseudo-boolean)
problems. Even with this restriction, minimization of non-
submodular functions is NP-hard, so we can not expect a
workable optimal algorithm. However, we present an algo-
rithm that defaults to max-flow for submodular problems,
but gracefully degrades from optimality when the problem
is not submodular. Since the most common source of non-
submodular problems in vision is from multilabel problems,
using alpha-expansion, we test the algorithm on multilabel
problems, and compare it with other available algorithms,
notably Fast PD [8, 9] and tree-reweighted message pass-
ing [5]. In most cases, our algorithm is either significantly
faster, or achieves better results, or both.

The basis for our method is the elimination algorithm,

a specialization of the Junction-tree algorithm. Although
this method is useful on “thin” graphs, such ask-trees [1],
it is not generally thought to be useful on graphs arising
from images, because of their very large complexity. We
show in this paper that along with a heuristic to limit the
growth of complexity through an approximation (the mean-
field approximation) the elimination algorithm is useful and
gives very good results in practice.

Previous work. Since the problem is inherently in-
tractable, all methods for solving non-submodular pseudo-
boolean problems are of necessity heuristic. The best ref-
erence for algorithms that address this problem is [1]. Of
particular note are the roof-dual methods, which have been
applied to Vision by [11]. However, the reader is referred to
[1] for a survey of many other methods, which it would be
superfluous to repeat here.

For multilabel problems, notable approaches include
alpha-expansion and alpha-beta swap [2] which reduce
the problem to a sequence of binary problems. Alpha-
expansion is better in practice, but is not always applicable.
In this paper, we show how it may be adapted to be gen-
erally applicable to all problems, at least those defined on a
4-connected MRF grid. Other methods, such as Fast PD [8],
and message-passing algorithms, such as tree-reweighted
message passing [5], work directly on multilabel problems.
We will compare their methods with ours.

As we will explain in the next section, our algorithm iter-
atively removes alternating vertices from a lattice. Szeliski
[12] employed a similar strategy for preconditioning con-
jugate gradient optimization of continuous quadratic cost
functions. Unlike our least squares approach, he modelled
the edge weights as spring stiffness coefficients and com-
puted new coefficients for the non-eliminated springs which
best approximated the dynamics of the original problem.

2. The Elimination Algorithm

The elimination algorithm (the “Basic Algorithm” of [1])
gives a closed form method of minimizing any pseudo-
boolean cost function without restriction. (In fact, it is
also applicable to any multilabel cost function, but we con-

centrate on pseudo-boolean functions.) Of course, since
this minimization problem is NP-hard, the elimination algo-
rithm will run in non-polynomial time in general cases, but
there are instances when it may be quite efficient. Neverthe-
less, for full 4-connected lattices, such as those associated
with images, the complexity of elimination grows rapidly
to a point where full elimination is not possible. In this pa-
per, we explore the idea of limiting the growth in complex-
ity during elimination, resulting in a linear-time algorithm,
which gives an approximation of the true cost functions en-
countered as elimination progresses.

The elimination algorithm. B denotes the set{0, 1} and
IR the real numbers. A functionf : Bn+1 → IR is called a
pseudo-boolean function. Our task is to find the minimum
of such anf . Writing f(x) = f(x0, x1, . . . , xn) we may
break up this minimization task as

min
x0,... ,xn

f(x0, . . . , xn) = min
x1,... ,xn

min
x0

f(x0, . . . , xn)

= min
x1,... ,xn

f(x∗0, x1, . . . , xn)

= min
x1,... ,xn

f1(x1, . . . , xn)

wherex∗0 represents the value ofx0 at the optimal solution.
To explain the last line, we observe that the optimal valuex∗0
depends on the values of the other variables. In short,x∗0 is
itself a function ofx1, . . . , xn. If we can specify this func-
tion, then we reduce our problem to minimizing the new
function f1(x1, . . . , xn). Continuing in this way, we ulti-
mately arrive at a function of just one variable, which we
may trivially minimize. This is the forward sweep of the
algorithm.

In the second (back-substitution) phase of the algorithm,
we compute the optimal values of each variable in reverse
order. Thus, in the final step, knowing the values of the opti-
mal choice of the variables(x∗1, . . . , x∗n), we may compute
x∗0. The process is very much analogous to the method of
solving a set of linear equations by Gaussian elimination.

We now become more specific. Any pseudo-boolean
function may be written as a polynomial in the variables
x0, . . . , xn [1]. For pseudo-boolean functions arising from
MRFs, the degree of this polynomial is equal to the max-
imum clique size. It is not difficult to show [1] that the
minimization of a pseudo-boolean function of any degree
may be reduced to the minimization of a quadratic func-
tion, though this involves introduction of auxiliary vari-
ables. Later, we will specifically consider quadratic pseudo-
boolean functions, but for now we continue to address the
general case.

Given a functionf(x0, . . . , xn), we may separate out
the terms involvingx0 and factor to write

f(x0, x1, . . . , xn) = g(x1, . . . , xn) + x0∆0(x1, . . . , xn) .

(Note that sincex2
i = xi for a boolean variable, there are

no higher order terms inx0.) The function∆0(x1, . . . , xn)
is called the derivative off with respect tox0. Suppose
the values of variablesx1, . . . , xn are known. Then to
minimize f(x0, . . . , xn) we need to choosex∗0 = 0 if
∆0(x1, . . . , xn) > 0 andx∗0 = 1 if ∆0(x1, . . . , xn) < 0.
If ∆0 = 0, then the choice ofx∗0 is arbitrary. We proceed as
follows.

1. Enumerate all possible assignments to the variables
x1, . . . , xn and for each one compute the numerical
value of∆0(x1, . . . , xn). In the worst case, this in-
volves the enumeration of2n different cases.

2. Let x∗0 = 1 if ∆0(x1, . . . , xn) < 0 andx∗0 = 0 other-
wise. Then, computex∗0∆0(x1, . . . , xn) as a function
of the variablesx1, . . . , xn. This function is conve-
niently expressed in tabular form. One may observe
at this point thatx∗0∆0(x1, . . . , xn) takes only non-
positive values. The importance of this observation
will become clearer later.

3. Replacex∗0∆0(x1, . . . , xn) in the original functionf
to obtain the new functionf1(x1, . . . , xn).

Elimination in MRFs. In the energy function arising
from an MRF with small neighbourhood structure, such as
a 4-connected lattice representing an image, the complexity
of the elimination process is greatly reduced, at least at the
initial stage. We restrict our attention to such a 4-connected
lattice. In this case, the energyf(x) may be written as a
quadratic polynomial of the form

f(x0, x1, . . . , xn) =
∑

i

aixi +
∑

i,j∈N
bijxixj (1)

whereN is a set of all unordered pairs of “neighbouring”
variables. A variablexi associated with a vertex in a4-
connected lattice appears in at most5 terms, and we may
write the terms involvingxi as

xi∆i(xu, xr, xd, x`) = xi(ai + biuxu + birxr + bidxd + bi`x`),

whereu, r, d and ` stand for “up”, “right”, “down” and
“left”. Hence ∆i involves only four variables. It is easy
to enumerate the16 values corresponding to the possible
values ofxu, . . . , x`. (With a little thought one may see
that this can be done with only15 addition operations.)

Unfortunately, the functionx∗i ∆i(xu, . . . , x`) may be a
complicated function of the four variables, and in general
it is not quadratic. We consider the “co-occurrence graph”
of a pseudo-boolean function which is defined to be a graph
with one vertex per variable, and an edge between vertices if

and only if the two variables occur together in some term of
the polynomial representation of the pseudo-boolean func-
tion. In the case we are considering, the co-occurrence
graph of the original functionf is a 4-connected lattice.
When we eliminate a variablexi in the interior of the lattice,
the resulting functionx∗i ∆i(xu, . . . , x`) may in general be-
come a complete graph on the four verticesxu, . . . , x`. By
eliminating the variablexi, we have introduced a4-clique in
the neighbouring four vertices. See Fig1. The function we
are trying to minimize thus has become more complicated.

Figure 1.Eliminating a node introduces a 4-clique into the co-
occurence lattice.

As we proceed with the elimination algorithm, we will
ultimately be required to eliminate highly connected ver-
tices in the co-occurrence graph. Elimination of a vertex
with k neighbours in the co-occurrence graph leads in the
worst case to the creation of a fully connected graph on the
k neighbours – ak-clique. As elimination proceeds, the size
of the cliques will increase to a point where it becomes im-
possible to enumerate the∆i functions associated with an
eliminated variablexi, since this requires the enumeration
of 2k possible values.

Fortunately, one may delay the evil day when the com-
plexity gets out of hand by eliminating alternating vertices
in the lattice. Considering the vertices as coloured black and
white like the squares of a chess-board, we eliminate all the
white vertices, thereby halving the number of vertices in the
graph. The result is to eliminate every alternate vertex and
join its neighbouring vertices in a 4-clique. It may be ob-
served that each elimination operation here is independent
of the others. The resulting co-occurrence graph is shown
in Fig 2 (left).

Figure 2.Co-occurrence graph after elimination of alternating
nodes from the lattice (left) and after approximation step (right).

The approximation step. It may be observed at this
stage that each vertex is now 8-connected. If we continue to

eliminate vertices in the graph replacing them with cliques
involving their neighbouring vertices, the complexity soon
gets out of hand, and we come to a grinding halt. There-
fore, to continue, drastic action is necessary. Our heuristic
is to replace each clique of four vertices by a simpler graph
obtained by eliminating the diagonal edges of the resulting
squares. In graphical terms, this is illustrated in Fig3. It is
known as theapproximation stepin our algorithm.

Figure 3.The approximation step simplifies node dependencies in
the lattice.

We now explain what this means algebraically. The
clique on four verticesxu, . . . , x` represents the function
x∗i ∆i(xu, . . . , x`) which we have said may be a compli-
cated function of the four variablesxu, . . . , x`. The ap-
proximation step is to replace this function by a quadratic
function of the form

c + auxu + arxr + adxd + a`x` (2)

+ burxuxr + brdxrxd + bd`xdx` + b`ux`xu

where constantc and coefficientsau, . . . , a`, bur, . . . , b`u

are to be chosen so as best to approximate the function
x∗i ∆i. This is a simple linear least-squares optimization
problem involving the best choice of the9 coefficients in
(2) to approximate the function values for the16 choices of
xu, . . . , x`. This involves a set of linear equations of the
form Aa = c, whereA is a 16 × 9 matrix independent of
the data. One may therefore calculate its pseudo-inverse up
front, so computingau, . . . , b`u involves only a single ma-
trix multiplication.

Recursion. The co-occurrence graph of the function re-
sulting from the approximation step is shown in Fig2 (right)
obtained from Fig2 (left) by eliminating the diagonals of
the squares. We now observe that this is again a 4-connected
lattice, rotated by45◦ from the original orientation. We may
now repeat a second round of elimination, deleting alternate
vertices (equivalent to removing every other row of vertices
in the original orientation) of the co-occurrence graph and
applying the approximation step again. This time we get
back to a4-connected lattice in the original orientation with
only one quarter of the original vertices remaining. By pro-
ceeding recursively in this way, we eventually arrive at a
single variablexn with coefficientan. This vertex can then
be labelled as0 or 1 depending on whetheran is positive or
negative.

Back substitution. We can now back up through the lev-
els of elimination. Suppose that a nodexi was eliminated at

some point in the forward sweep, and that the terms involv-
ing xi were of the form

xi∆i(xu, . . . , x`) = xi(c + auxu + . . . + a`x`

+burxuxr + . . . + b`ux`xu) .(3)

Note thatxu, . . . , x` are not the neighbouring variables in
the original lattice, but the neighbours in the reduced lat-
tice at the moment whenxi is due for elimination. Dur-
ing the back-substitution phase, we know the assignment
x∗u, . . . , x∗` to each of the variablesxu, . . . , x`. We may
now assign value0 or 1 to xi depending on whether
∆i(x∗u, . . . , x∗`) is positive or negative.

More about implementation. As became apparent in
the description of the algorithm given above, the algebraic
manipulation of the pseudo-boolean function is tightly con-
nected to actions on the co-occurrence graph. Since we will
at all times be dealing with quadratic functions, we may
define a closer connection between the function being min-
imized and a weighted version of the co-occurrence graph.
Weights are assigned both to the vertices and the edges of
the graph. The vertices are associated with variablesxi,
and a weightai on such a vertex corresponds to a termaixi

in the functionf(x0, . . . , xn). An edge between vertices
xi and xj with weight bij represents the termbijxixj in
the polynomial representation of the functionf . Note that
edges are undirected, and weights in general may be posi-
tive or negative.

Ignoring constant terms (which are irrelevant as far as
optimization is concerned), there is evidently a one-to-one
correspondence between quadratic pseudo-boolean func-
tions and weighted graphs constructed in this way. The
graphs we are interested in are 4-connected lattices. We
now examine the main elimination/approximation step of
the algorithm in terms of graphs.

When we eliminate a vertexxi in a graph, we com-
pute the functionx∗i ∆i(xu, . . . , x`), and approximate it by
a function of the form (2). This results in the introduc-
tion of new edges corresponding to termsxuxr, . . . , x`xu.
Weights are “passed down” from the vertexxi and its in-
cident edges to the four neighbouring verticesxu, . . . , x`

and the new edges. When this is done, the vertex and inci-
dent edges are removed from the graph. Weights generated
in this way are added to the weights on the vertices and
accumulated on the new edges. In general each new edge
will receive weight from two adjacent vertices. We say that
the vertices and edgesinherit weights from the nodes being
eliminated.

To push the analogy a little further, we say that the nodes
adjacent to a node being eliminated are itschildren. Thus,
the whole forward pass of the algorithm consists simply of
eliminating vertices and passing down weights to the chil-
dren and new edges created between the children.

Remarks. We will refer to the recursive elimina-
tion/approximation algorithm just described as Elimination
(with a capital E). An important observation may be made.
As the recursive elimination proceeds, there is a trend for
edges weights towards negative and ultimately zero values.
Usually, this occurs within two or three levels of elimina-
tion. We give a brief explanation of this phenomenon.

The vectorb = x∗i ∆i(xu, . . . , x`) contains only zero or
negative entries, sincex∗i = 0 if ∆i(xu, . . . , x`) > 0. In
the approximation step, we express this function in terms of
positive functions – the matrixA contains only positive val-
ues. Therefore, we expect most of the resulting coefficients
in (2) to be negative. This is not meant as a rigorous justifi-
cation, but an explanation of an empirical phenomenon.

Ultimately, edge weights become zero (exactly). This
may be explained as follows. The edge weights express the
interactions between the nodes. As we descend through lev-
els of elimination, the edges extend to increasingly distant
nodes, and the interactions become weak, ultimately van-
ishing. A more mathematical analysis is possible, but since
this is not essential to our further discussion, we omit de-
tails.

3. The LazyElimination Algorithm

In the Elimination algorithm, as described in section2,
nodes are eliminated from the lattice until only one remains.
When each node is eliminated, some approximation of the
function potentially takes place, resulting in a suboptimal
solution. Although we can not in general hope to be able to
find an absolute minimum, it is clear that it is best to avoid
eliminating nodes from the graph where it is not necessary.
This is the guiding principal of the LazyElimination algo-
rithm to be described in this section.

It is well known [3] that a function of the form (1) is sub-
modular, and hence can be solved using max-flow, if and
only if bij ≤ 0 for all i, j. Thus, positive values ofbij need
to be eliminated in order for the function (1) to be mini-
mized using graph-cuts. We have observed in section2 that
eliminating nodes from the lattice has the effect that edge
weights in the co-occurrence graph tend towards negative
or zero values. Therefore, we propose an algorithm (called
LazyElimination) based on the principle of eliminating only
as many nodes as is necessary. In broad outline, the algo-
rithm is as follows.

1. Eliminate nodes from the graph using elimina-
tion/approximation moves until there are no more
edges with positive edge weight. In doing this, only
remove those nodes that need to be removed and no
more.

2. Now, solve the problem using max-flow on the graph
representation of the function.

Since the amount of approximation is minimized, we ex-
pect this algorithm to work better than the full Elimination
algorithm, which eliminates all but one node. This expecta-
tion is borne out by experiment. The algorithm embodying
this principle will be called LazyElimination.

Details of LazyElimination. To describe the LazyEli-
mation algorithm accurately, it is necessary to clarify the
concept of levels of nodes in a 4-connected lattice, and their
parent-child relationship.

Given coordinates(i, j) for a node in a rectangular lat-
tice, the nodes for whichi + j is odd are said to be at level
0. These are the nodes that are eliminated in the first pass
of the Elimination algorithm. They have no parents. The
children of each such node are the four nodes adjacent hori-
zontally or vertically. During an elimination/approximation
step, these children, along with diagonal edges between
them, inherit weight from the parent node being eliminated.
Analogously, we say that nodes eliminated during then-th
pass of the Elimination algorithm are at leveln− 1. Levels
may be determined as follows.

• A node(i, j) is at level2k if i/2k andj/2k are both in-
tegers, one even, one odd. Its children are2k positions
away horizontally or vertically.

• The node is at level2k + 1 if i/2k andj/2k are both
odd integers. Its children are2k positions away diago-
nally in all directions.

• The node(0, 0) may be given a level higher than any
other node in the graph. It has no children.

Figure 4.Pointers (directed edges) from a node to its children.
Level-0 nodes are coloured dark grey, level-1 nodes and their ar-
rows in red. Edges originating at higher-level nodes (white) are
not shown, to avoid cluttering the diagram. Every node has edges
only to its four children. Edges emanating from nodes at level2 or
greater are not shown.

We consider a graph constructed in this way withdirected
and weighted edges from each node to its four children, as
shown in Fig4. Note that the four parents of a node at level
k > 0 are all at levelk − 1, whereas two of the children

of a node at levelk are at levelk + 1 and the other two
children are at a higher level. Observe (see Fig4 that the
edges starting at nodes at level0 account for all the edges of
the original4 connected lattice and are given the weight of
the corresponding quadratic termbijxixj in the cost func-
tion. All the other edge weights starting at nodes at level
greater than0 initially have weight zero. These are just
the edges that will be introduced into the graph by elimina-
tion/approximation moves. For instance, the edges attached
to nodes at level1 are those that are introduced during the
first phase of the elimination/approximation.

As an implementation detail, the only storage require-
ment is an array of records one for each node in the lattice.
For each node, we need to store the weight of the node itself,
the weight of the edges to its four children, a flag indicating
whether the node has been eliminated or not, and (implicitly
by its position in the array), the coordinates of the node. We
do not store pointers to the parents or children of a node,
since these are easily and efficiently calculated.

The LazyElimination algorithm works on the principle
of eliminating only nodes that are incident to edges with
positive weight, subject to the principle that the parents
of a node must be eliminated before the node itself, since
they may contribute to the child’s edge weights. The main
routine of the elimation is given by a recursive subroutine
called LazyEliminate. In this description, we ignore the is-
sue that some of the parents or children of a node may lie
outside the bounds of the lattice, and hence be non-existent.
This needs to be checked when parent and children nodes
are accessed.

Subroutine LazyEliminate (i, j)

1. If node(i, j) has already been eliminated, return.

2. If none of the edges from node(i, j) to its children has
positive weight, return.

3. For each of the parents(i′, j′) of node (i, j), call
LazyEliminate (i′, j′).

4. Check again: if none of the edges from node(i, j) to
its children has positive weight, return.

5. If we have got this far, then eliminate the node(i, j),
using an elimination/approximation step as follows:

(a) Mark node(i, j) as eliminated.

(b) Compute the inherited weights to be passed to
children and their incident edges, based on the
weight of the node(i, j) and its four edges.

(c) Pass down the inherited weights to the children
and incident edges.

(d) For each of the two children(i′, j′) at the next
level, callLazyEliminate (i′, j′).

The main eliminate routine consists now of calling the
routineLazyEliminate(i, j) for each level-0 node(i, j) in
the lattice. For efficiency, it is valuable to note that when in-
herited weights are passed down to child nodes and edges,
they may overwrite the existing values on those nodes. The
original values will not be needed any more, including in
the back-substitution phase of the algorithm. For back sub-
stitution at some node, only the weights of the node and
its incident edges are needed, and these are not changed by
eliminating that node.

This elimination phase terminates with a situation where
there are no remaining positive edges in the graph. The
remaining optimization problem can then be solved us-
ing a max-flow algorithm. The graph used for max-flow
contains only the remaining (non-eliminated) vertices in
the co-occurrence graph and non-zero edges between non-
eliminated vertices. After some of the node labels are com-
puted using max-flow, the others are computed using back-
substitution.

4. Experiments

We evaluated the performance of Elimination and
LazyElimination against implementations of: max-flow [2],
roof-dual [11], Fast PD [8], tree reweighted message pass-
ing [13], and max-product belief propagation [13]. All trials
involved non-submodular energy functions. For max-flow,
we truncated the non-submodular terms of the energy func-
tion [6].

Synthetic Non-Submodular Problems. A submodular
pseudo-boolean function defined on a 4-connected lattice
was generated by sampling values for the coefficientsai

andbij in (1) from uniform distributions[0, 1] and [−1, 0]
respectively. A random subset of the variablesx were re-
placed with their complements1 − x̄i. In this substitution,
the coefficientbij of any quadratic term where only one of
xi or xj was complemented became positive. The result-
ing function (achieved by interpreting complements as new
variables) was non-submodular, and was minimized using
roof-dual, max-flow, Elimination and LazyElimination.

Since roof-dual is invariant to complementing variables,
it will always recover an optimal labelling for the particu-
lar non-submodular problems just described. (Recall that it
is unable to produce an optimal assignment for every vari-
able in general). Therefore, we quantified the quality of the
remaining three methods by counting the number of assign-
mentsx?

i which were different from that of roof-dual (see
Figs5 and6).

Real Multilabel Problems. The binary algorithms max-
flow, roof-dual, Elimination and LazyElimination can be
extended to multilabel problems using alpha-expansion.
Our multilabel experiments (to be described shortly) all for-

Roof-Dual Max-Flow Elimination LazyElim.
Figure 5.Typical results for a synthetic non-submodular function
created by complementing a random subset of variables of a sub-
modular function. In this specific example, half the variables are
complemented. Roof-dual produces the optimal labelling. The ef-
fect of truncation is clearly visible in the max-flow result.

0

5

10

15

20

25

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Complemented Variables

P
er

ce
n

ta
g

e
o

f
In

co
rr

ec
t
A

ss
ig

n
m

en
ts Roof Dual

Max-Flow

Elimination

LazyElimination

Figure 6.The average number of incorrect variable assignments
for ten random pseudo-boolean functions is shown for each op-
timization algorithm. Roof-dual calculates the optimal labelling
and has no incorrect assignments. Max-flow produces a large
number of incorrect labels because of truncation. Elimination is
unable to produce an optimal labelling when the function is sub-
modular, but maintains a low error rate when non-submodular.
LazyElimination combines the benefits of both max-flow and Elim-
ination, and is always able to produce a solution for every variable
in a non-submodular problem.

mulate energy using data termsEi(xi), smoothness terms
Eij(xi, xj), and a regularization parameterλ:

E(x) =
∑

i

Ei(xi) + λ
∑
i,j

Eij(xi, xj) (4)

Every algorithm (including those that can deal directly
with multilabel variables, such as Fast PD) was run for three
iterations. In the case of alpha-expansion, this consisted
of solving 3` binary problems, wherè is the number of
labels. The initial configuration forα-expansion was de-
termined by optimizing the data functionsEi(xi) indepen-
dently. The label order used forα-expansion was the same
for all pseduo-boolean optimization algorithms.

Denoising. We quantized an 8-bit image into 64 grey
levels and added synthetic Gaussian noise (σ = 4 labels).
The data cost was the square difference between the noisy
input Ii and the hypothesized enhanced labelxi, limited to
a maximum difference of2σ: Ei(xi) = min(|Ii−xi|, 2σ)2.
The smoothness term was also a truncated convex function

Eij(xi, xj) = min(|xi − xj |, 2σ)2, with the regularization
parameterλ manually tuned to0.4. Results are summarized
in Table1. Since all algorithms produced similar answers,
only a subset of results are shown in Fig7.

Algorithm Energy (×105) Time (s) RMS Error
Max-Flow 8.0006 10.70 2.37
Roof-Dual 8.0002 17.81 2.37
Elimination 8.0103 10.05 2.39
LazyElimination 8.0836 14.43 2.40
Fast PD 8.4940 8.23 2.64
TRW-S 7.9761 176.13 2.36
MaxProd BP 8.5962 152.18 2.62

Table 1.Every algorithm was able to find a suitable enhancement
of the noisy image. The methods based on graph-cuts were quick
and used a minimal amount of memory. The implementation of
Fast PD has been optimized for speed and used approximately
100×more memory. Tree reweighted message passing was able to
find the lowest energy but took significantly longer. Although the
algorithm had a competitive solution after its first iteration, even
this took significantly longer (59.02s) than the other methods.

Figure 7.The corrupted input image was created by adding Gaus-
sian noise (σ = 4 labels) to a256 × 256 image quantized to 64
labels/grey levels. A truncated convex function was used for both
the data and smoothness terms. The enhancement of LazyElimi-
nation is shown on the right. All algorithms were run for three
iterations, and each produced a similar solution.

Number of eliminations. The number of nodes elim-
inated duringα-expansion with LazyElimination is quite
small (see Fig8). This observation also explains why max-
flow is able to do so well under the truncation assumption.

Corridor. Sometimes, only specific labellings are viable.
In [10], for instance, the set of labels{left, right, centre, top,
bottom} corresponds to the predominant planes in the view
of a corridor. The geometry of the scene induces asymmet-
ric spatial constraints between the labels. For example, a
pixel labelled ‘bottom’ (corresponding to the floor of the
corridor) can not occur above any other pixel not labelled
‘bottom’, as it is impossible to have the floor of the cor-
ridor physically above the walls or ceiling. Non-sensical
labellings (such as one which has a label ‘bottom’ exist-
ing above a label ‘top’) are avoided by assigning them high
costs. However, this restriction causes the binary functions
encountered inα-expansion to be non-submodular.

0

1

2

3

4

5

6

7

8

0 1 2 3
Iteration

P
er

ce
n
ta

g
e

o
f

V
ar

ia
b
le

s
E

li
m

in
at

ed Denoising

Corridor

Stereo

Figure 8.Number of nodes eliminated per run of LazyElimination
during α-expansion. Recall that the number of binary problems
per iteration depends on the size of the label set.

We generate a synthetic256 × 256 corridor labellingI,
and then randomly assign new labels (where the five labels
are equally probable) to three quarters of the pixels. Both
the data and smoothness terms are Potts models, and are
given equal weighting — i.e.,λ = 1.0. In both cases, the
cost associated to a pair of non-indentical labels is1.0. The
smoothness term also checks to see if the spatial layout of
the two labels is permissible; invalid orderings are assigned
a high cost. Results for the various algorithms are shown in
Fig 9.

Input Max-Flow Roof-Dual Elimination
- 4.02× 104 4.02× 104 8.54× 108

- 76.26s 85.02s 0.80s

LazyElim. Fast PD TRW-S MaxProd BP
4.02× 104 2.30× 107 5.62× 108 7.42× 108

40.45s 4.00s 1.17s 1.35s

Figure 9.The geometry of a corridor induces asymmetric spatial
constraints between labels. An initial labelling was produced by
randomly re-labelling three-quarters of the variables. Here, only
max-flow, roof-dual and LazyEliminaton are able to find a correct
labelling. Of these three, LazyElimination is roughly2× faster.

The high cost associated with invalid labellings distorts
the approximation step of the Elimination algorithm. As a
result, Elimination and LazyElimination move between in-
valid labellings before converging on a uniform labelling
(which max-flow and roof-dual do immediately). Elimina-
tion is unable to progress beyond this point, but maintains a
consistent time (compared to the denoising experiment) of

0.05s per256 × 256 binary problem. LazyElimination is
able to calculate moves from one valid labelling to another
faster than both max-flow and roof-dual. The other algo-
rithms are unable to converge to reasonable solutions even
when initialized with a valid uniform labelling.

Stereo. Given images of the leftL and rightR views of
the scene, the cost of assigning pixeli disparityxi is de-
termined by the difference in appearance between the two
pixels: Ei(xi) = ‖L(i) − R(i − xi)‖2. Like denois-
ing, we employed a truncated convex function to enforce
smoothness between disparity values, with truncation man-
ually tuned to a maximum difference of4: Eij(xi, xj) =
min(4, |xi − xj |)2. The regularization parameterλ was set
at 12. We use32 labels (allowing disparity estimations to
the nearest half pixel) and332× 277 scaled versions of the
Middlebury 2006 dataset.

LazyElim. Fast PD TRW-S
3.18× 106 3.19× 106 3.17× 106

12.32s 5.01s 73.58s

Figure 10.The ‘bowling2’ trial from the Middlebury 2006 dataset.
The data term is based on the appearance difference between a
pair of hypothesized corresponding pixels. The smoothness term
incorporates a truncated convex cost function.

5. Conclusions

The LazyElimination algorithm described here achieves
excellent results on minimizing arbitrary pseudo-boolean
energy functions defined on a4-connected lattice. When
combined with alpha-expansion, it is able to obtain qual-
ity solutions to multilabel problems. It is faster (or at least
on par) with all but Fast PD, which has been optimized for
speed at the expense of memory (such as pre-computing
and caching individual energy values). With optimizations
like dynamic graph-cuts [4], we expect at least to match the
speed of Fast PD.

Acknowledgements NICTA is funded by the Australian
Government as represented by the Department of Broad-
band, Communications and the Digital Economy and the
Australian Research Council through the ICT Centre of Ex-
cellence program.

We would like to thank Fangfang Lu for her assistance
with the Elimination algorithm.

References

[1] E. Boros and P. L. Hammer. Pseudo-boolean optimization.
Discrete Appl. Math., 123:155 – 225, 2002.1, 2

[2] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate en-
ergy minimization via graph cuts.IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 23(11):1222–1239,
2001.1, 6

[3] D. Freedman and P. Drineas. Energy minimization via graph
cuts: Settling what is possible. InCVPR ’05: Proceedings of
the 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05) - Volume 2, pages
939–946, Washington, DC, USA, 2005. IEEE Computer So-
ciety. 4

[4] P. Kohli and P. H. S. Torr. Dynamic graph cuts for effi-
cient inference in markov random fields.IEEE Transactions
on Pattern Analysis and Machine Intelligence, 29(12):2079–
2088, 2007.8

[5] V. Kolmogorov. Convergent tree-reweighted message pass-
ing for energy minimization.IEEE Transactions on Pattern
Analysis and Machine Intelligence, 28(10):1568 – 1583, Oc-
tober 2006.1

[6] V. Kolmogorov and C. Rother. Minimizing nonsubmodular
functions with graph cuts — a review.IEEE Transactions
on Pattern Analysis and Machine Intelligence, 29(7):1274–
1279, 2007.6

[7] V. Kolmogorov and R. Zabih. What energy functions can be
minimized via graph cuts?IEEE Transactions on Pattern
Analysis and Machine Intelligence, 26(2):147–159, 2004.1

[8] N. Komodakis and G. Tziritas. Approximate labeling via
graph cuts based on linear programming.IEEE Transactions
on Pattern Analysis and Machine Intelligence, 29(8):1436–
1453, 2007.1, 6

[9] N. Komodakis, G. Tziritas, and N. Paragios. Performance vs
computational efficiency for optimizing single and dynamic
MRFs: Setting the state of the art with primal-dual strategies.
Comput. Vis. Image Underst., 112(1):14–29, 2008.1

[10] X. Liu, O. Veksler, and J. Samarabandu. Graph cut with or-
dering constraints on labels and its applications. InProc.
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2008.7

[11] C. Rother, V. Kolmogorov, V. Lempitsky, and M. Szummer.
Optimizing binary mrfs via extended roof duality. InProc.
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 1 – 8, 2007.1, 6

[12] R. Szeliski. Locally adaptive hierarchical basis precondi-
tioning. Proceedings of the ACM SIGGRAPH Conference
on Computer Graphics, 25(3):1135–1143, 2006.1

[13] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kol-
mogorov, A. Agarwala, M. Tappen, and C. Rother. A
comparitive study of energy minimization methods for
markov random fields with smoothness-based priors.IEEE
Transactions on Pattern Analysis and Machine Intelligence,
30(6):1068–1080, 2008.6

