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Abstract. We present different approaches to reconstructing an inex-
tensible surfaces from point correspondences between an input image
and a template image representing a flat reference shape from a fronto-
parallel point of view. We first propose two ‘point-wise’ methods, i.e.
methods that only retrieve the 3D positions of the point correspondences.
These methods are formulated as second-order cone programs and they
handle inaccuracies in the point measurements. They relie on the fact
that the Euclidean distance between two 3D points must be shorter than
their geodesic distance (which can easily be computed from the template
image). We then present an approach that reconstructs a smooth 3D sur-
face based on Free-Form Deformations. The surface is represented as a
smooth map from the template image space to the 3D space. Our idea is
to say that the 2D-3D map must be everywhere locally isometric. This
induces conditions on the Jacobian matrix of the map which are included
in a least-squares minimization problem.

1 Introduction

Monocular surface reconstruction of deformable objects is a challenging problem
which has known renewed interest during the past few years. This problem is
fundamentally ill-posed because of the depth ambiguities; there are virtually
an infinite number of 3D surfaces that have exactly the same projection. It
is thus necessary to use additional constraints ensuring the consistency of the
reconstructed surface.

In this paper, we present three different algorithms for monocular recon-
struction of deformable and inextensible surfaces under some general assump-
tions. First, we consider the template-based case. Reconstruction is achieved from
point correspondences between an input image and a template image showing
a flat reference shape from a fronto-parallel point of view. Second, we suppose
the intrinsic parameters of the camera to be known. These are common assump-
tions [1–3].

Over the years, different types of constraints have been proposed to disam-
biguate the problem of monocular reconstruction of deformable surfaces. They
can be divided into two main categories: the image-driven and the physical con-
straints.

For instance, the methods relying on the low-rank factorization paradigm [4–
11] can be classified as image-driven approaches. Learning approaches such
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as [12–14, 1] also belong to the image-driven approaches. Work such as [1], where
the reconstructed surface is represented as a linear combination of inextensible
deformation modes, is also a image-driven approach. Physical constraints include
spatial and temporal priors on the surface to reconstruct [15, 16]. Statistical and
physical priors can be combined [5, 7]. A physical prior of particular interest is
the hypothesis of having an inextensible surface [17, 2, 1, 3]. In this paper, we
consider this type of surface. This hypothesis means that the geodesics on the
surface may not change their length across time. However, computing geodesics
is generally hard to achieve and it is even more difficult to incorporate such
constraints in a reconstruction algorithm. There exist several approaches to ap-
proximate this type of constraint. For instance, if the points are sufficiently close
together, the geodesic between two 3D points on the surface can be approximated
by the Euclidean distance [18]. An efficient approximation consists in saying that
the geodesic distance between two points is an upper bound to the Euclidean
distance [17, 3].

Algorithms for monocular reconstruction of deformable surfaces can also be
categorized according to the type of surface model (or representation) they use.
The point-wise methods utilize a sparse representation of the 3D surface, i.e. they
only retrieve the 3D positions of the data points [3]. Other methods use more
complex surface models such as triangular meshes [17, 1] or smooth surfaces such
as Thin-Plate Splines [3, 5]. In this latter case, the 3D surface is represented as
a parametric 2D-3D map between the template image space and the 3D space.
Smooth surfaces are generally obtained by fitting a parametric model to a sparse
set of reconstructed 3D points: the smooth surface is not actually used in the
3D reconstruction process. In this paper, we propose an algorithm that directly
estimate a smooth 3D surface based on Free-Form Deformations [19]. Having an
inextensible surface means that the surface must be everywhere locally isomet-
ric. This induces conditions on the Jacobian matrix of the 2D-3D map. We show
that these conditions can be integrated in a non-linear least-squares minimiza-
tion problem along with some other constraints that force the consistency be-
tween the reconstructed surface and the point correspondences. Such a problem
can be solved using an iterative optimization procedure [20] such as Levenberg-
Marquardt that we initialize using a point-wise reconstruction algorithm. Our
approach is highly effective in the sense that it outperforms previous approaches
in term of accuracy of the reconstructed surface and in terms of inextensibility.

Another important aspect in monocular reconstruction of deformable surfaces
is the way noise is handled. It can be accounted for in the template image [3] or
in the input image [1]. There exist different approaches for handling the noise.
For instance, one can minimize a reprojection error, i.e. the distance between the
data points of the input image and the projection of the reconstructed 3D points.
It is also possible to hypothesize maximal inaccuracies in the data points. We
propose two ‘point-wise’ approaches that account for noise in both the template
and the input images. These approaches are formulated as second-order cone
programs (SOCP) [21].
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Notation Description

P Matrix of the intrinsic parameters of the camera ( P ∈ R3×3)1

pT
k kth row of the matrix P

qi ith point in the template image
q′i ith point in the input image; i = 1, . . . , nc.
q̄i Point qi in homogeneous coordinates
ui Sightline corresponding to the point q′i (ui = (P−1q̄′i)/‖P−1q̄′i‖)
µi Depth of the point Qi

Qi Reconstructed 3D point i
dij Euclidean distance between points i and j (dij = ‖qi − qj‖)
x̂ True value of x (for x = q′i,qi,Qi,ui, µi, dij)

Table 1. Notation used in this paper.

2 Related Work on Inextensible Surface Reconstruction

A popular assumption made in deformable surface reconstruction is to consider
that the surface to reconstruct is inextensible [17, 2, 1, 3]. This assumption is
reasonable for many types of material such as paper and some types of fabrics.
Having an inextensible surface means that the surface is an isometric deformation
of the reference shape. Another way of putting it is to say that the length of the
geodesics between pairs of points remains unchanged when the surface deforms.
An exact transcription of this principle is difficult to integrate in a reconstruction
algorithm. Indeed, while it is trivial to compute the geodesic in a flat reference
shape, it is quite difficult to do it for a bent surface. Many approximations have
thus been proposed.

The first type of approximation consists in saying that if the surface does
not deform too much then the Euclidean distance is a good approximation to
the geodesic distance. Such an approach has been used for instance in [13, 17,
22, 2]. Note that these types of constraints are usually set in a soft way. For a
given set of point pairs on the surface, the Euclidean distance should not diverge
too much from the geodesic distances. This approximation is better when there
are a large number of points. Depending on the surface model it is not always
possible to vary the number of points.

Although the Euclidean approximation can work well in some cases, this
approximation gives poor results when creases appear in the 3D surface. In this
case, the Euclidean distance between two points on the surface can shrink, as
illustrated in figure 1. A now classical approach [1, 3] is to notice that even if
the Euclidean distance between two points can shrink it can never be greater
than the length of the corresponding geodesic. In other words, the inextensibility
constraint ‖Qi − Qj‖ ≤ dij must be satisfied for any pair of points (Qi,Qj)
lying on the surface. The second principle of such algorithms is to say that a 3D
point Qi must lie on the sightline ui, i.e.Qi = µiui. These two constraints are not
sufficient to reconstruct the surface. Indeed, nothing prevents the reconstructed
surface from shrinking towards the optical centre of the camera. This problem
is ‘solved’ using a heuristic that has been proven to be very effective in practice.
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Fig. 1. Inextensible object deformation. The Euclidean distance between two
points is necessarily less than or equal to the length of the geodesic that links
those two points (this length is easily computable if we have a template image
representing the flat reference surface from a fronto-parallel point of view).

It consists in considering a perspective camera and in maximizing the depth of
the reconstructed 3D points.

These ideas have been implemented in different manners. For instance, [3]
proposes a dedicated algorithm that enforces the inextensibility constraints. This
algorithm account for noise only in the template image (by simply increasing
a little bit the geodesic distances in the template, i.e. by replacing dij with
dij +εt where εt is the maximal inaccuracy of the points in the template image).
Another sort of implementation is given by [17, 1]. In these papers, a convex
cost function combining the depth of the reconstructed points and the negative
of the reprojection error is maximized while enforcing the inequality constraints
arising from the surface inextensibility. The resulting formulation can be easily
turned into an SOCP problem. A similar approach is explored in [2]. These last
two methods account for noise in the input image. The approach of [3] is a point-
wise method. The approaches of [17, 1, 2] use a triangular mesh as surface model,
and the inextensibility constraints are applied to the vertices of the mesh.

3 Convex Formulation of the Upper Bound Approach
with Noise in all Images

In this section, we propose two convex formulations of the principles sketched
in §2. Compared to the work of [3], our formulations account for noise not only
in the template but also in the input image. We can express this in terms of
image-plane measurements or direction vectors. As in [17, 1], our problems are
formulated as second-order cone programs. However, contrary to [17, 1], our ap-
proach is a point-wise method that does not require us to tune the relative
influence of minimizing the reprojection error and maximizing the depths.

3.1 Noise in the Template Only

Let us first remark that the basic principles explained in §2 can be formulated
as SOCP problems. In this first formulation, we only account for noise in the
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template image. The inextensibility constraint ‖Qi − Qj‖ ≤ dij + εt can be
written:

‖µiui − µjuj‖ ≤ dij + εt. (1)

Including the maximization of the depths, we obtain the following SOCP prob-
lem:

max
µ

n∑
i=1

µi

subject to ‖µiui − µjuj‖ ≤ dij + εt ∀(i, j) ∈ E

µi ≥ 0 i ∈ {1, . . . , nc}

(2)

where µT =
(
µ1 . . . µnc

)
, and E is a set of pairs of points to which the inexten-

sibility constraints are applied.

3.2 In terms of Image-plane Measurements

Let us now suppose that the inaccuracies are expressed in term of image-plane
measurements. Suppose that points are measured in the image with a maximum
error of ε, i.e.

‖q̂′i − q′i‖ ≤ ε, ∀i ∈ {1, . . . , nc}. (3)

Since we are searching for the true 3D position of the point Qi, we say that:

q̂′i =
1

pT
3Qi

(
pT
1Qi

pT
2Qi

)
. (4)

Equation (3) can thus be rewritten:∥∥∥∥ 1

pT
3Qi

(
pT
1Qi

pT
2Qi

)
− q′i

∥∥∥∥ ≤ ε. (5)

We finally add the inextensibility constraints and the maximization of the depths
(which are given by pT

3Qi) and we obtain the following SOCP problem:

max
Q

pT
3

n∑
i=1

Qi

subject to

∥∥∥∥[pT
1

pT
2

]
Qi − q′ip

T
3Qi

∥∥∥∥ ≤ εpT
3Qi ∀i ∈ {1, . . . , nc}

‖Qi −Qj‖ ≤ dij ∀(i, j) ∈ E

pT
3Qi ≥ 0 ∀i ∈ {1, . . . , nc}

(6)

where Q is the concatenation of the 3D points Qi, for i ∈ {1, . . . , nc}.
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4 Smooth and Inextensible Surface Reconstruction

Although the strategem of maximizing the sum of depths
∑n
i=1 µi described in

the previous section gives reasonable results, it is merely a heuristic, not based
on any valid principle related to surface properties. We therefore consider next
a new formulation based on the principle of surface inextensibility.

Let the surface be modelled as a function W : R2 → R3, mapping the planar
template to 3-dimensional space. The inextensibility constraint is equivalent to
saying that the map W must be everywhere a local isometry. This condition
may be expressed in terms of its Jacobian. Let J(q) ∈ R3×2 be the Jacobian
matrix ∂W/∂q evaluated at the point q. The map W is an isometry at q if the
columns of J(q) are orthonormal. This local isometry can be enforced for the
whole surface with the following least-squares constraint:∫∫ ∥∥J(q)TJ(q)− I2

∥∥2 dq = 0. (7)

In practice, we consider a discretization of the quantity in equation (7), namely

Ei(W) =

nj∑
j=1

∥∥J(gj)TJ(gj)− I2
∥∥2 , (8)

where {gj}
nj

j=1 is a set of 2D points in the template image space taken on a fine
and regular grid (for instance, a grid of size 30× 30). This term Ei(W) measures
the departure from inextensibility of the surface W.

Our minimization problem is then to minimize this quantity, over all possible
surfaces, subject to the projection constraints, namely that pointW(qi) projects
to (or near to) the image point q′i, for all i.

4.1 Parametric Surface Model

The problem just described involves a minimization over all possible surfaces.
Instead of considering this as a variational problem over all possible surfaces,
we consider instead a parametrized family of surfaces. For this purpose, we
chose Free-Form Deformations (FFD) [19] based on uniform cubic B-splines [23].
Let W` : R2 → R3 be the parametric FFD, parametrized by a family of 3D
points `jk; j = 1, . . . , nu, k = 1, . . . , nv, which act as ‘attractors’ for the surface.

For a point q = (u, v) in the template, the surface point is explicitly given as

W`(q) =

nu∑
j=1

nv∑
k=1

`jkNj(u)Nk(v) . (9)

The functions Nj are the B-spline basis functions [23] which are polynomials of
degree 3. If point qi = (ui, vi) is fixed and known then the surface point W`(qi)
is expressed as a linear combination of the points `jk, and hence can be written
in the formW`(qi) = Wi`, where Wi is a 3×nunv matrix depending only on the
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point qi, and ` is the vector obtained by concatenating all the points `jk. Thus,
the 3D point is a linear expression in terms of the parameter vector `. Since the
polynomials Nj and Nk depend only on a local set of the attractor points `jk,
the matrix Wi is sparse, which is important for computational efficiency.

4.2 Surface Reconstruction as a Least-Squares Problem

By replacing Qi by Wi` in (6) we may arrive at a constraint∥∥∥∥([pT
1

pT
2

]
− q′ip

T
3

)
Wi`

∥∥∥∥ ≤ εpT
3Wi` (10)

We may then formulate the optimization problem as minimizing the inexten-
sibility cost Ei(W`) given in (8) over all choices of parameters `, subject to
constraints (10). The constraints are SOCP constraints, but the cost function
(8) is of higher degree in the parameters. To avoid the difficulties of constrained
non-linear optimization, we choose a different course, by including the reprojec-
tion error into the cost function, leading to an unconstrained problem.

To simplify the formulation of the reprojection error, we introduce the depths
µi as subsidiary variables, for reasons that become evident below. This is not
strictly necessary, but reduces the degree of the reprojection-error term. The
minimization problem now takes the form

min
µ,`
Ed(µ, `) + αEi(`) + βEs(`). (11)

where Ed, Ei, Es are the data (reprojection error), inextensibilty, and smoothing
terms respectively. The data term ensures the consistency of the point correspon-
dences with the reconstructed surface. Ei forces the inextensibility of the surface.
Eb promotes smooth surface in order to cope with, for instance, lack of data. The
relative influence of these three terms are controlled with the weights α ∈ R+

and β ∈ R+. Note that the choice of α and β is generally not critical.
The inextensibility term has been described previously. We now describe the

two other terms in (11).

Data term. Replacing Qi by Wi` in (5) gives an expression for the reprojection
error associated with some point. However, the resulting expression is non-linear
with respect to the parameters `. We thus prefer a linear data term expressed
in terms of ‘3D errors’, which is the reason why we introduced the depths µ of
the data points in the optimization problem. The data term is then defined by:

Ed(µ, `) =

nc∑
i=1

∥∥W(qi)− µiP−1q̄′i
∥∥2 , (12)

which measures the distance between the pointW` on the surface and the point
at depth µi along the ray defined by q′i.
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Smoothing term. In some cases, the point correspondences and the hypothesis
of an inextensible surface are not sufficient. For instance, imagine that there is
no point correspondence in a corner of the surface. In this case, there is nothing
that indicates how the surface should behave. The corners of the surface can
bend freely as long as they do not extend or shrink (like the corners of a piece
of paper). To overcome this difficulty, we can add a third term (the smoothing
term) in our cost function that favours non-bending surfaces. Note that usually,
such terms are used to compensate for the undesirable effects of under-fitting and
over-fitting. Doing so is usually a problem because it requires one to determine
a correct value for the weight associated to the smoothing term (value β in
equation (11)). This is a sensible and critical way of balancing the effective
complexity of the surface against the complexity of the data. Here, we do not
have to care too much. Indeed, the complexity of the surface is limited by the
fact that it is inextensible. Any small value (but big enough to be not negligible,
for instance β = 10−4) is thus suitable for the weight of the smoothing term. We
define our smoothing term using the bending energy:

Es(µ, `) =

3∑
i=1

∫∫ ∥∥∥∥∥∂
2Wi
`(q)

∂q2

∥∥∥∥∥
2

F

dq. (13)

whereWi
`(q) is the i-th coordinate of the point, and ‖·‖F is the Frobenius norm

of the Hessian matrix. With FFD, there exists a simple and linear closed-form
expression for the bending energy:

Es(`) = ‖B1/2`‖2 = `TB` (14)

where B ∈ R3p×3p is a symmetric, positive, and semi-definite matrix which can
be easily computed from the second derivatives of the B-spline basis functions.

Initial solution. The problem of equation (11) is a non-linear least-squares min-
imization problem typically solved using an iterative scheme such as Levenberg-
Marquardt. Such an algorithm requires a correct initial solution. We used an
FFD surface fitted to the 3D points reconstructed with one of the point-wise
methods presented in §3. Subsequently, since we use a surface model which is
linear with respect to its parameters, the initial parameters ` can be found by
solving the least-squares problem:

min
`

nc∑
i=1

∥∥W`(qi)−Qi

∥∥2 =

nc∑
i=1

‖Wi`−Qi‖2 . (15)

An alternative is to modify the problem (6), expressing Qi in terms of the
required parameters `, according to Qi = Wi`. Then one may solve for ` directly
using SOCP. If necessary, the linear smoothing term of equation (13) can be
included in equation (15).
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5 Experimental Results on Synthetic Data

– Random piece of papers generated with [24, 25]
– No occlusion nor auto-occlusion
– Focal length: 36mm
– Piece of paper: 200mm × 200mm
– Average distance between camera centre and piece of paper: 1000mm
– TODO: show a few examples of generated surfaces

The average 3D error is computed as follows:

1

n

n∑
i=1

‖Qi − Q̂i‖, (16)

where Qi is the reconstructed 3D point and Q̂i is the ground truth position of Qi

(which is perfectly known because we use synthetic surfaces).

5.1 Hyperparameters

Salzmann’s Method

– Figure 2
– Gaussian noise with standard deviation σ = 1 pixel
– α = 2

3 , as said in [1] does not seem to work very well
– Besides, it depends on the number of point correspondences (although we

could probably normalize something somewhere to make it independent of
that number)

Fig. 2. Trade-off between reprojection error and depth maximization

Our SOCP Methods

– Figure 3 for the noise accounted for in the image in terms of image measure-
ment
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– Almost identical results when considering the error in terms of vectors
– Gaussian noise with standard deviation σ = 1 pixel
– Apparently, a good choice is ε = εt = 1

2σ (although any value on the minimal
line seems to be good)

– A bit better to consider more noise in the input image than in the template

Fig. 3. (in terms of image-plane measurement)

5.2 Number of Point Correspondences

– Figure 4
– Same type of data than previously
– Hyperparameters tuned according to the results obtained previously
– Gaussian noise with standard deviation σ = 1 pixel

Fig. 4. Influence of the number of point correspondences on the 3D error.
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5.3 Reconstruction Errors

– Randomly generated piece of papers
– 150 point correspondences
– Gaussian noise with standard deviation 1mm added to the point correspon-

dences
– Reconstruction errors
• Figure 5(a): reconstruction error with respect to the ground truth 3D

points
• Figure 5(b): reconstruction error with respect to the ground surface (only

for the methods that produce a surface)

(a) Point-wise reconstruction error (b) Surface reconstruction error

Fig. 5.

5.4 Length of Geodesics

– Figure 6(a-c)
– Figure 7(a,b)
– Table 2
– Same data than in the previous experiment
– Principle:
• Choose randomly two point in the template
• Compute their euclidean distance
• Compute the length of the path transformed with the reconstructed 2D-

3D map (approximation with 200 intermediate points)
• Compare the two values
• Note the transformed path is not necessarily the geodesic on the surface

between the two 3D points (tha would be true only if we were sure
that the reconstructed surface is inextensible). However, the fact that
the length of the transformed path is (almost) identical to the euclidean
distance tend to prove that the transformed path is actually the geodesic.
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(a) Initial FFD (b) Refined FFD (c) Zoom of (b)

Fig. 6.

(a) Initial FFD (b) Refined FFD

Fig. 7.

5.5 Gaussian curvature

The Gaussian curvature is the product of the two principal curvature (which are
the reciprocal of the radius of the osculating circle). For an inextensible surface,
the Gaussian is null. In this experiment, we check if this property is verified by
the reconstructed smooth surfaces. We used the following formula for computing
the Gaussian curvature:

κ =
det(II)

det(I)
, (17)

where I and II are the first and the second fundamental form of the parametric
surface.

– [26, 27]

– Same data as before

– Table 3
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Mean Std. dev. Median Min Max

Initial FFD 0.0119 0.0417 0.0036 -1.9689 0.8931
Refined FFD 2.0084e-005 7.1965e-004 5.8083e-006 -0.0505 0.3396

Ratio -318.4569 3.8039e+006 8.7991 -1.0253e+010 4.7216e+009
Table 2. Relative error between the length of the transformed path and the length it
should have (which is the Euclidean distance in the template image).

Mean Std. dev. Median Min Max

Initial FFD 4.9458e-004 0.0875 9.7302e-005 7.5122e-014 258.2379
Refined FFD 5.0046e-006 7.1320e-004 1.7333e-006 2.2325e-014 1.5199

Ratio 2.3277e+003 1.2406e+006 57.6480 1.0870e-007 3.5212e+009
Table 3.

6 Experimental Results on Real Data

7 Conclusion
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