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Abstract. This paper has three main contributions: (1) a “quasi-linear”
method for computing structure and motion for m ≥ 3 views of 6 points;
(2) a “quasi-linear” method for computing consistent estimates of the
multi-view tensors (fundamental matrix, trifocal tensor and quadrifocal
tensor) from n image points; (3) an m view n point robust reconstruc-
tion algorithm which uses the 6 point method as a search engine. A
minor point is that (1) enables a more concise algorithm, than any given
previously, for the reconstruction of 3 views of 6 points.
The new algorithms are evaluated on synthetic and real image sequences,
and compared to optimal estimation results (bundle adjustment).

1 Introduction

A large number of methods exist for obtaining 3D structure and motion
from correspondences tracked through image sequences. Their character-
istics vary from the so-called minimal methods [?,?,?] which work with
the least data necessary to compute structure and motion, through inter-
mediate methods [?,?] which may perform mis-match (outlier) rejection
as well, to the full-bore bundle adjustment.
The minimal solutions are used as search engines in robust estimation
algorithms which automatically compute correspondences and tensors
over multiple views. For example, the 2 view 7 point solution is used
in the RANSAC estimation of the fundamental matrix in [?], and the 3
view 6 point solution in the RANSAC estimation of the trifocal tensor
in [?]. It would seem natural then to use a minimal solution as a search
engine in 4 or more views. The problem is that in 4 or more views a
solution is forced to include a minimization to account for measurement
error (noise). In the ‘2 view 7 point’ and ‘3 view 6 point’ cases there are
the same number of measurement constraints as degrees of freedom in
the tensor. In both cases 1 or 3 real solutions result (and the duality ex-
planation for this equivalence was given by [?]). However, in four views
six points provide one more constraint than the number of degrees of
freedom in the four view geometry (the quadrifocal tensor). This means
than unlike in the two and three view cases where a tensor can be com-
puted which exactly relates the measured points (and also satisfies its
internal constraints), this is not possible in the four view case. Instead
it is necessary to minimize a measurement error whether algebraic or
geometric. The poor estimate which results by using an approach based
on minimizing algebraic distance and a standard projective basis for the
image is described and demonstrated in section 2.



Here we develop a novel quasi-linear solution for the 6 point m ≥ 3 case.
This solution involves only a SVD and the evaluation of a cubic polyno-
mial in a single variable. This is described in section 3. We also describe
a sub-optimal (compared to bundle-adjustment) which minimizes geo-
metric error at the cost of only a 3 parameter minimization.

1.1 Reconstruction for an image sequence

A second part of the paper describes yet another algorithm for computing
a reconstruction of cameras and 3D scene points from a sequence of
images. The objectives of such algorithms are now well established:

1. Minimize reprojection error. A common statistical noise model
assumes that measurement error is isotropic and Gaussian in the im-
age. The Maximum Likelihood Estimate in this case involves mini-
mizing the total squared reprojection error over the cameras and 3D
points. This is bundle-adjustment.

2. Cope with missing data. Structure-from-motion data often arises
from tracking features through image sequences and any one track
may persist only in few of the total frames.

3. Cope with mis-matches. Appearance-based tracking can produce
tracks of non-features. A common example is a T-junction which gen-
erates a strong corner, but whose pre-image moves slowly between
frames.

Bundle adjustment [?] is the most accurate and theoretically best jus-
tified technique. It can cope with missing data and, with suitable ro-
bust statistical cost function, can cope with mis-matches. However, it
is expensive to carry out and most significantly requires a good initial
estimate.

In the special case of affine cameras, factorization methods [?] minimize
reprojection error [?] and so give the optimal solution found by bundle
adjustment. However, factorization cannot cope with mis-matches, and
methods to overcome missing data [?] lose the optimality of the solution.

In the general case of perspective projection iterative factorization meth-
ods have been successfully developed and have recently proved to produce
excellent results [?,?]. The problems of missing data and mis-matches re-
main though.

Bundle-adjustment will almost always be the final step of a reconstruc-
tion algorithm. However, achieving good sub-optimal estimates prior to
bundle-adjustment is necessary for the latter to be effective (fewer iter-
ations, and less likely to converge to local minimum.) For practical (in
particular automated) applications, mismatches present a real problem.
There exist effective methods for estimating structure and motion from
data with mismatches for two [?] and three [?] views (based on RANSAC)
and [?] based on LMS. These have been put to effective use [?] to compute
structure and motion by starting from (very reliably) estimated three-
view structures and hierarchically coalescing these into sub-sequences of
the whole sequence. For four views there is the method in [?] for com-
puting the quadrifocal tensor.



Current methods of initializating a bundle-adjustment include factoriza-
tion [?], awf-segments [?], duality [?,?] and the Variable State Dimension
Filter (VSDF) [?].
In this paper we describe a novel algorithm for computing a reconstruc-
tion satisfying the 3 basic objectives above (optimal, missing data, mis-
matches). It is based on using the 6-pt algorithm as a robust search
engine, and is described in section 5.

1.2 Notation

The standard basis will refer to the five points in IP3 whose homogeneous
coordinates are :

E1 =



1
0
0
0


E2 =



0
1
0
0


E3 =



0
0
1
0


E4 =



0
0
0
1


E5 =



1
1
1
1




For a 3-vector v = (x, y, z)�, we use [v]× to denote the 3×3 skew matrix
such that [v]× u = v × u , where × denotes the vector cross product.
For three points in the plane, represented in homogeneous coordinates by
x,y, z, the incidence relation of collinearity is the vanishing of the bracket
[x,y, z] which denotes the determinant of the 3×3 matrix whose columns
are x,y, z. It equals x · (y × z) where · is the vector dot product.

2 Linear estimation using a duality solution

A method suggested by Carlsson and Weinshall for reconstruction from
three views involves a certain duality between points and cameras. In
particular, one chooses a projective basis in each image such that the
first four points are

e1 =

(
1
0
0

)
e2 =

(
0
1
0

)
e3 =

(
0
0
1

)
e4 =

(
1
1
1

)

If in addition one assumes that the corresponding 3D points are E1, . . . ,E4,
then the camera matrix may be seen to be of the form

P =

[
ai −di
bi −di
ci −di

]
(1)

Such a camera matrix is called a reduced camera matrix. Now, if X =
(x,y, z,t)� is a 3D point, then one verifies that

[
a −d
b −d
c −d

]
x

y

z

t


 =

[
x −t

y −t

z −t

]
a
b
c
d


 (2)



Note that the rôles of point and camera are swapped in this last equa-
tion. This observation allows us to apply the algorithm for projective
reconstruction from two views of many points to solve for six point in
many views. The general idea is as follows.
1. Apply a transformation to each image so that the first four points
are mapped to the points ei of a canonical image basis.

2. The two other points in each view are also transformed by these
mappings - a total of two points in each image. Swap the roles of
points and views to consider this as a set of two views of several
points.

3. Use a projective reconstruction algorithm (based on the fundamental
matrix) to solve the two-view reconstruction problem.

4. Swap back the points and camera coordinates as in (2).
5. Transform back to the original image coordinate frame.
The main difficulty with this method is the distortion of the image mea-
surement error distributions by the projective image mapping as illus-
trated in figure 1. A circular Gaussian distribution is transformed by

Andrew to draw

Fig. 1. Figure to illustrate this - az to draw - which shows that minimizing geometric
error (as algebraic error minimization tries to approximate this) in very projectively
transformed space pulls back to point away from ellipse centre.

a projective transformation to a distribution that is no longer circular,
and not even Gaussian. Common methods of two-view reconstruction
are not able to handle such error distributions effectively. One may work
very hard to find a solution with minimal residual error with respect to
the transformed image coordinates only to find that these errors become
very large when the image points are transformed back to the original
coordinate system. This is illustrated in figure 2. The method used for
reconstruction from the transformed data was a dualization of one of the
best methods available for two-view reconstruction ([?]) – an iterative
method that minimizes algebraic error.

3 Reconstruction from 6 points over m views

This section describes the main algebraic development of the 6 point
method. In essence it is quite similar to the development given by Hart-
ley [?] and Quan [?] for a reconstruction of 6 points from 3 views. The
difference is that Quan used a standard projective basis for both the



0

5

10

15

0 0.5 1 1.5 2 2.5 3 3.5 4
R

es
id

ua
l E

rr
or

Inserted Noise

Fig. 2. Residual error as a function of image noise using the duality-based reconstruc-
tion algorithm for six points. The results are the average of 100 runs at each error level
for randomly chosen synthetic scenes. As may be seen the residual error is extremely
high, even for quite low noise levels. It is evident that this method is unusable. In
fact the results prove to be unsatisfactory for initializing a bundle adjustment in the
original coordinate system.

image and world points, whereas here the image coordinates are not
transformed. As described in section 2 the use of a standard basis in
the image severely distorts the error that is minimized. The numerical
results that follow demonstrate that the method described here produces
a near optimal solution.
In the following it will be assumed that we have 6 image points xiin
correspondence over m views. The idea then is to compute cameras for
each view such that the scene points Xi project exactly to their image xi
for the first five points. Any error minimization required is then restricted
to the sixth point in the first instance.

3.1 Pencils of cameras

Each correspondence between a scene point X and its image x under a
perspective camera P gives three linear equations for P whose combined
rank is 2. These linear equations are obtained from

x× PX = 0 (3)

Given only five scene points, assumed to be in general position, it is
possible to recover the camera up to a 1-parameter ambiguity. More
precisely, the five points generate a linear system of equations for P which
may be written Mp = 0, where M is a 10× 12 matrix formed from two of
the linear equations (3) of each point correspondence, and p is P written
as a 12-vector. This system of equations has a 2-dimensional null-space
and thus results in a pencil of cameras.
Suppose that the five world points are the points of the standard projec-
tive frame E1, . . . ,E5, so that both Xi and xi (i = 1, 2, 3, 4, 5)are now



known. Then the null-space of M can immediately be computed, and will
be denoted from here on by the basis of 3 × 4 matrices [A, B]. Then for
any choice of the scalars (s : t) ∈ IP1 the camera in the pencil P = sA+ tB
exactly projects the standard projective basis to the first five points.

Each camera P in the pencil has its optical centre located as the null-
vector of P and thus a given pencil of camera gives rise to a 3D curve of
possible camera centres. In general (there are degenerate cases) the locus
of possible camera centres will be a twisted cubic passing through the
five points of the standard projective basis. The five points specify 10 of
the 12 degrees of freedom of the twisted cubic, the remaining 2 degrees
of freedom are specified by the 2 plane projective invariants of the five
image points.

3.2 The quadric constraints

We continue to consider a single camera Pmapping a set of pointX1, . . . ,X6

to image points x1, . . . ,x6. Let [A, B] be the pencil of cameras consistent
with the projections of the first five points. Since P lies in the pencil,
there are scalars (s : t) ∈ IP1 such that P = sA+ tB and so the projection
of the sixth world point X6 is x6 = sAX6 + tBX6. This means that the
three points x6, AX6, BX6 are collinear in the image, so

[x6, AX6, BX6] = 0 ,

which is a quadratic constraint on X6. Expressing the 3 × 3 determi-
nant as a triple product gives (AX6) · (x6 × (BX6)) = 0, or more neatly
X6
�A�[x]×BX6 = 0. To summarize :

Lemma 1. Let [A, B] be the pencil of cameras consistent with the pro-
jections of five known points Xi to image points xi. Let x6 be a sixth
image point. Then the 3D point X6 mapping to x6 must lie on a quadric
surface given by

Q = (A�[x6]×B)sym = (A
�[x6]×B) + (A

�[x6]×B)
� .

In addition, the known points X1, . . . ,X5 also lie on Q.

One may easily verify that this quadric is unchanged if one replaces either
of A or B by a linear combination, and hence depends on the pencil only,
and not its particular representatives A and B. It has not yet been shown
that the points X1, . . . ,X5 lie on Q. Note however that AXi = xi = BXi

for i = 1, . . . , 5, and so

Xi
�QXi = Xi

�A�[x6]×BXi = xi
�[x6]×xi = 0

as required. The last equality holds since x6 is skew-symmetric. In the
particular case where the five points Xi are the members Ei of a projec-
tive basis, the condition Xi

�QXi = 0 allows us to specify the form of
Q simply. From Ei

�QEi = 0 for i = 1, . . . , 4, we deduce that the four



diagonals elements of Q vanish. From E5
�QE5 it follows that the sum

of elements of Q is zero. Thus, we may write Q in the following form

Q =



0 w1 w2 −Σ
w1 0 w3 w4

w2 w3 0 w5

−Σ w4 w5 0


 (4)

where Σ = w1 + w2 + w3 + w4 + w5. Let X6 = (p, q, r, s)
� be a point

lying on Q. The equation X6
�QX6 may be written in a vector form as

(w1, w2, w3, w4, w5)



pq − ps
pr − ps
qr − qs
qs− ps
rs− ps


 = 0 (5)

or more briefly,W�A = 0, where A is the column vector in the above
equation.

Solving for the point X

Now consider m views of 6 points and suppose again that the first five
world points are in known positions X1, . . . ,X5. To compute projective
structure it suffices to find the sixth world point X6. In the manner de-
scribed above, each view provides a quadric on which X6 must lie. For
two views the two associated quadrics intersect in a curve, and conse-
quently there is a one parameter family of solutions for X6 in that case.
The curve will meet a third quadric in a finite number of points, so 3
views will determine a finite number (namely 2 × 2× 2 = 8 by Bézout’s
theorem) of solutions for X6. However, five of these points are the points
X1, . . . ,X5 which must lie on all three quadrics. Thus there are up to
three possible solutions for X6. With more than three views, a single
solution will exist, except for critical configurations ([?]).
The general strategy for finding X6 is as follows. We denote the j-th
image of the i-th point by xji and assume that the first five world points
are E1, . . . ,E5.

1. Compute Aj and Bj that generate the pencil of cameras that map
the basis points onto the first five points in image j.

2. Compute the quadric Qj = (Aj�[xj6]×B
j)sym and extract the vector

Wj = (wj1, . . . , w
j
5)
� of its independent entries.

3. For each j formulate the equationWj�A = 0 as in (5) and find the
least-squares solution to this set of equations. The solution vector

A = (a, b, c, d, e)� = (pq − ps, pr − ps, qr − ps, qs− ps, rs− ps)�

has entries that are quadratic in the entries (p, q, r, s) of the point
X6.

4. Solve for (p, q, r, s) from the now known entries (a, b, c, d, e) of A.
Details of this last step will be given later.



Note that solving a set of m quadratic equations in the entries of X6 has
been reduced to solving a set of five simple quadratic equations. In more
abstract terms there is a map ψ

ψ : X =



p
q
r
s


− →



a
b
c
d
e


 =



pq − ps
pr − ps
qr − ps
qs− ps
rs− ps




which is a (rational) transformation from IP3 to IP4, and maps the
quadric Q ⊂ IP3 into the hyperplane

w1a+ w2b+ w3c+ w4d+ w5e = 0 (6)

where the (known) coefficients wi are Q12, Q13, Q23, Q24, Q34.
The basic method now is to solve for A = (a, b, c, d, e)� ∈ IP4 by inter-
secting hyperplanes in IP4, rather than to solve directly for X ∈ IP3 by
intersecting quadrics in IP3.

Inverting ψ

Having solved for A = (a, b, c, d, e)� we wish to recover X = (p, q, r, s)�.
By considering ratios of a, b, c, d, e and their differences, various form of
solution can be obtained. In particular it can be shown that X is a right
nullvector of the following 6× 4 design matrix :



e− d 0 0 a− b
e− c 0 a 0
d− c b 0 0
0 e− b a− d 0
0 e 0 a− c
0 0 d b− c


 (7)

This will have nullity ≥ 1 in the ideal noise-free case where the point
A = (a, b, c, d, e)� really does lie in the range of ψ. When the point A
does not lie exactly in the image of ψ, the matrix may have nullity 0 and
more care has to be taken to recover a meaningful X.

A Cubic constraint

The fact that dim IP3 = 3 < 4 = dim IP4 implies that the image of ψ
is not all of IP4. In fact the image is the hypersurface S cut out by the
cubic equation

S(a, b, c, d, e) = abd− abe+ ace− ade− bcd+ bde =

∣∣∣∣∣
e e b
d c b
d a a

∣∣∣∣∣ = 0 (8)

This can be verified by direct substitution. It may alternatively be de-
rived by observing that all 4×4 subdeterminants of (7) must vanish, since



it is rank deficient. These subdeterminants will be quartic algebraic ex-
pressions in a, b, c, d, e which are all multiples of the cubic expression
S.
The fact that the image ψ(X) of X must lie on S introduces the problem
of enforcing this constraint (S = 0) numerically. This will be dealt with
below.

Solving for 3 views of six points

The linear constraints defined by the three hyperplanes (6) cut out a
line in IP4. The line intersects S in three points (generically) (see fig-
ure 3.2). Thus there are three solutions for X. This is a well-known [?]
minimal solution. Our treatment gives a simpler (than the Quan [?] or
Carlsson and Weinshall [?]) algorithm for computing a trifocal tensor
from six points (from a projective reconstruction) because it does not
involve changing basis in the images. To be specific, from three views
one proceeds as follows :
1. From three views one obtains three equations of the form (5) in the
five entries of A. Since this is a homogenous set of equations, the
scale in immaterial.

2. One may obtain a set of solutions of the form A = sA1 + tA2

where A1 and A2 are generators of the null space of the 3× 5 set of
equations.

3. By expanding out the constraint (8) one obtains a homogeneous
cubic equation in s and t. There will be either one or three real
solutions.

4. Once A is computed that satisfies the cubic constraint (8), one may
solve for X6 = (p, q, r, s)

� as the null-space of the matrix (7).

Missing figure

Fig. 3. The diagram shows a line in 3-space intersecting a surface of degree 3. In the
case of a a line in 4-space and a hyper-surface of degree 3, the number of intersections
is also 3.

Four or more views

In this case the linear constraints from the hyperplanes alone will (gener-
ally) determine a unique solution for A. In the presence of noise, though,
this solution will not satisfy the cubic constraint. That is, it does not lie
on S; its coordinates do not satisfy S = 0. We would like to coerce it
to do so. The problem is to perform a “manifold projection” in a non-
Euclidean space, with the usual associated problem that we don’t know
in which direction to project. We will now give a novel solution to this
problem.
An (over)determined linear system of equations is often solved using Sin-
gular Value Decomposition, by taking as null-vector the singular vector



with the smallest singular value. The justification for this is that the
SVD elicits the “directions” of space in which the solution is well deter-
mined (small singular values) and those in which it is poorly determined
(large singular values). Taking the singular vector with smallest singu-
lar value is the usual “linear” solution, but as pointed out, it does not
in general lie on S. However, there may still be some information left in
the second-smallest singular vector, and taking the space spanned by the
two smallest singular vectors gives a line in IP4, which passes through the
“linear” solution and must also intersect S in three points (S is cubic).
We use these three intersections as our candidates for A. Since they lie
exactly on S, recovering their preimages X under ψ is not a problem.
This, then, is our heuristic. We overcome our manifold projection prob-
lems by projecting in the direction of the singular vector with second-
smallest singular value. Note that in the case of 4 views, the smallest
singular value will actually be 0.

Degeneracies

It is worth noting that if the sixth point in 3-space lies on the twisted
cubic through the first five basis points then there is a one parameter
family of cameras for each view which will exactly project the six space
points to their images. This situation can be detected (in principle) be-
cause if the space point lies on the twisted cubic then all 6 image points
lie on a conic.

3.3 Minimizing reprojection error

The previous sub-section has described a quasi-linear method involving
the following two steps: first, a linear SVD decomposition of a matrix
composed of one hyperplane from each view; second, intersecting the line
in IP4 (computed from two of the singular vectors) with a cubic surface.
The best (most accurate) use of the given data is to minimize total
squared image reprojection error over all camera and structure parame-
ters, but that amounts to a full bundle adjustment.
In the current case, we have computed cameras which map the first five
points exactly to their measured image points, and rather than jump
directly to bundle adjustment, an intermediate case is to minimize total
squared reprojection error for the sixth point X over IP3. This fits in the
middle of a spectrum of possible estimates :
1. Algebraic fit. The quasi-linear solution minimizes an “algebraic”
error by a direct least squares fit on homogeneous coordinates in IP4.

2. Sub-optimal fit. Minimizes total squared reprojection error for the
sixth point over its position in IP3, mapping the first five points
exactly (3 degrees of freedom).

3. Optimal fit (bundle adjustment). Minimizes total squared repro-
jection error for all points, over all structure and camera parameters
(11m + 3 degrees of freedom).

The model fitted by the second item is clearly a reduced form of the
model fitted by the third item. The cost of executing minimization is



negligible (it has only 3 degrees of freedom), which can be seen as follows.
To fit a model with a non-linear Levenberg-Marquardt type minimizer,
we need to calculate at the current estimate, X, the fitting residuals and
the jacobian of these wrt the current estimate. The latter is obtained (if
tediously) from the former, so let us concentrate on the fitting residuals.
In each image, fitting error is the distance from the reprojected point
y = PX to the measured image point x = (u, v, 1)�. The reprojected
point will depend both on the position of the sixth world point and on
the choice of camera in the pencil for that image. But for a given world
point X, and choice of camera P = sA + tB in the pencil, the residual
is the 2D image vector from x to the point y = PX = sAX + tBX on
the line l joining AX and BX. The optimal choice of s, t for given X
is thus easy to deduce; it must be such as to make y the perpendicular
projection of x onto this line (figure 3.3). What this means is that explicit
minimization over camera parameters is unnecessary and so only the 3
degrees of freedom for X remain.

Missing figure

Fig. 4. Minimizing reprojection in the reduced model. For a given X, the best choice
P = sA+ tB of camera in the pencil corresponds to the point y = sAX+ tBX on the line
closest to the measured image point x. Hence the image residual is the vector joining
x and y.

3.4 Approximating geometric error

We now compare the first item with the second. We have already seen
that the components of the line l(X) = AX × BX are expressible as
quadrics in X, and moreover as linear functions of A = ψ(X) :

l(X) = AX× BX =

(
q0ψ(X)
q1ψ(X)
q2ψ(X)

)
=

( · · ·q0 · · ·
· · ·q1 · · ·
· · ·q2 · · ·

)
A

for some 3× 5 matrix with rows qi whose coefficients can be determined
from those of A and B. If the sixth image point is x = (u, v, 1)� then the
squared residual is

d(x, l(X))2 =
|uq0A+ vq1A+ q2A|2

|q0A|2 + |q1A|2

and this is the geometric error minimized in the sub-optimal scheme.
Note that this form of the error is amenable to reweighted least squares
because, given an initial estimate of X, we can adjust the scale so as
to make the denominator close to 1, while putting the numerator into
a least squares problem. This expression shows that the minimization
of image error over X ∈ IP3 can be carried out as a minimization over
A ∈ S instead.



The algebraic fitting algorithm which we propose consists of first forming
the linear least squares problem which minimizes the sum of squares of
q2A over the images. We intersect the 2D SVD nullspace with S to
impose constraints.

As we have presented the algorithm so far, there is an arbitrary choice
of scale for each quadric QA,B, corresponding to the arbitrariness in the
choice of representation [A, B] of the pencil of cameras (in terms of the
equation above the algebraic fitting scheme neglects the denominator
and just minimizes the residuals defined by the uq0 + vq1 + q2), the
scale of which depends on the scale of A, B. Which normalization is used
matters, and we addres that issue now.

Firstly, by translating coordinates, we may assume that the sixth point is
at the origin. This amounts to (pre)multiplying A, B by a 3×3 translation
homography and we assume this has been done (so u, v = 0 in the above
derivation). Thus the geometric error we want to approximate is

|q2A|2

|q0A|2 + |q1A|2

Making this assumption on the position of the sixth image point means
that the normalization is independent of (ie is invariant to) translations
of image coordinates. It is desirable that the normalization should be in-
variant to scaling and rotation as well since these are the transformations
which preserve our error model (isotropic Gaussian noise). This require-
ment rules out many obvious candidates, like normalizing the Frobenius
norms of A, B to 1 or normalizing q2 to unit norm.

To describe our choice of normalization, we introduce a dot product
which is similar to the Frobenius inner product (A, B)Frob = trace(A�B).
The Frobenius inner product can also be computed as the sum of AijBij
over all indices i, j. Our inner product is the same as the Frobenius inner
product, except that the last row is left out :

(A, B)Frob =
∑

i=0,1,2
j=0,1,2,3

AijBij

(A, B)∗ =
∑

i=0,1
j=0,1,2,3

AijBij

The normalization we use can now be described by saying that the choice
of basis of the pencil [A, B] must be an orthonormal basis wrt (·, ·)∗. To
achieve this, one could start with any basis of the pencil and use the
Gram-Schmidt algorithm [?] to orthonormalize them.

Scaling image coordinates corresponds to scaling the first two rows of
the basis element matrices, which just scales our dot product (but not
the Frobenius product). Rotating image coordinates corresponds to ap-
plying an orthogonal transformation to the first two rows of the basis
elements, and this preserves our dot product. Finally, choosing a differ-
ent orthonormal basis corresponds to a certain linear basis change in
the pencil and the effect on the qi is a scaling by the determinant of
that basis change. But that basis change must be orthogonal, so it has
determinant 1.



3.5 Summary and Results I

It has been demonstrated how to pass from m views of six points in the
world to a projective reconstruction in a few steps. The positions of the
six world points as well as the camera for each view have been computed.

The reconstruction obtained is not the MLE (assuming isotropic Gaus-
sian point localization noise), which optimally distributes measurement
error over all the points, but an approximation which puts all the errors
on the sixth point.

The steps of the algorithm are :

1. Compute, for each image, the pencil of cameras which map the five
standard basis points in the world to the first five image points,
using the recommended normalization to achieve invariance to image
coordinate changes.

2. Form, from each pencil [A, B] the quadric constraint on the sixth
world point X as described in section 3.2.

3. Using the transformation ψ : IP3− →IP4, convert the quadric inter-
section problem to a hyperplane intersection problem. Use the SVD
to compute a pencil of possible values for A = ψ(X).

4. Intersect that line with the cubic constraint S = 0 to get (up to)
three solutions for A = ψ(X) satisfying the constraint.

5. Use (7) to recover values for the sixth point X from A. Keep the
solution (if there are 3) with the lowest residual.

6. (optional) Minimize reprojection error over the 3 degrees of freedom
in the position of X.

In practice, for a given set of six points, the quality of reconstruction can
vary depending on which point is last in the basis. We try all six in turn
and choose the best one.

We will now give results on synthetic and real image sequences of 6
points in m views. The objective is to compare the performance of three
algorithms: quasi-linear; minimizing on the 6th point only; and, bun-
dle adjustment. The three performance measures used are reprojection
error, registration error to ground truth, and stability (the algorithm
converges). The claim is that the quasi-linear algorithm performs as well
as the more expensive variants and can safely be used in practice.

Synthetic data

We first show results of testing the algorithm on synthetic data with
varying amounts of pixel localisation noise added; our noise model is
isotropic Gaussian noise with standard deviation σ. For each value of σ,
the algorithm is run on 100 randomly generated data sets. Each data
set is produced by choosing six world points at random uniformly in the
cube [−1,+1]3 and six cameras with centres between 4 and 5 units from
the origin and principcal rays passing through the cube. After projecting
each point under each chosen camera, artificial noise is added. The images
are 512×512, with square pixels, and the principal point is at the centre
of the image.

Figure 5 summarizes the results.



σ failures rms max registration
(pixels) (pixels) (pixels) rms

0.5 1 0.312 1.271 0.007
1.0 8 0.487 1.936 0.011
1.5 11 0.827 3.314 0.013
2.0 12 1.028 4.228 0.024
2.5 21 1.083 4.362 0.023
3.0 20 1.216 4.867 0.028

Missing figure

σ failures rms max registration
(pixels) (pixels) (pixels) rms

0.5 1 0.215 0.902 0.005
1.0 2 0.463 1.926 0.006
1.5 1 0.672 2.686 0.016
2.0 3 0.813 3.434 0.019
2.5 6 0.968 4.040 0.026
3.0 8 1.114 4.640 0.037

Missing figure

σ failures rms max registration
(pixels) (pixels) (pixels) rms

0.5 1 0.127 0.350 0.003
1.0 3 0.266 0.788 0.010
1.5 7 0.382 1.108 0.013
2.0 6 0.478 1.354 0.020
2.5 4 0.605 1.812 0.022
3.0 12 0.730 2.150 0.024

Missing figure

Fig. 5. Summary of experiments on synthetic data. The tables show, for each estimator,
the rms and maximum fitting error, averaged over 100 randomly generated data sets
(6 views of 6 points). The last column is the average rms registration error (using
a homography minimizing sum of squares in the target space) into the ground truth
frame. The graphs display the same information graphically.



The “failures” column count the number of reconstructions for which
some reprojection error exceeded 10 pixels. A more plausible error model
would be isotropic Gaussian error clamped to a circle of radius, say, 2
pixels and indeed, if this modification is made all the failures disappear.
The quality of reconstruction degrades gracefully as the noise is turned
up from the slightly optimistic 0.5 to the somewhat pessimistic 3.0; the
rms and maximum reprojection error are highly correlated, with corre-
lation coefficient 0.999 in each case (which may also be an indicator of
graceful degradation).

Real data

The algorithm is tested on an image sequence consisting of 10 colour
images (JPEG, 768× 1024) of a turntable. The image sequence is shown
in 6. Points were entered and matched by hand using a mouse (estimated
accuracy is 2 pixels standard deviation). Ground truth is obtained by
measuring the turntable with vernier calipers, and is estimated to be ac-
curate to 0.25mm. There were 9 tracks, all seen in all views. Of course, in
principle any 6 tracks could be used to compute a projective reconstruc-
tion, but in practice some bases are much better than others. Examples
of poor bases include ones which are almost coplanar in the world or
which have points very close together.

Missing figure Missing figure Missing figure Missing figure Missing figure
Missing figure Missing figure Missing figure Missing figure Missing figure

Fig. 6. The nine images of the turntable used for the reconstruction.

The algorithms are compared on this sequence. The table in figure 7
compares the reconstructions.

basis residuals all residuals registration
(pixels) (pixels) error (mm)

6 points no optimization 0.363 /2.32 0.750/2.32 0.467/0.676
6 points with optimization 0.358 /2.33 0.744/2.33 0.424/0.596
6 points (and cameras) bundled 0.115 /0.476 0.693/2.68 0.405/0.558
All points (and cameras) bundled 0.334 /0.822 0.409/1.08 0.355/0.521

Fig. 7. Results for the turntable images. There are 9 tracks over 10 views. The re-
construction is compared for the three different algorithms. Residuals (reported as
rms/max) are shown for the 6 points which formed the basis (first column) and for all
reconstructed points taken as a whole (second column). The last row shows the corre-
sponding residuals when full bundle adjustment (optimize over all points and cameras)
is applied to the final reconstruction.



Bundle adjustment achieves the smallest reprojection error over all resid-
uals, because it has greater freedom in distributing the error. Our method
minimizes error on the sixth point of a six point basis. Thus it is no sur-
prise that the effect of applying bundle adjustment is to increase the error
in column 1 and to decrease the error in column 2. These figures support
our claim that the quasi-linear method gives a very good approximation
to the optimized method.
Figure 8 shows the reprojected reconstruction in the first and fourth
views of the sequence.

Missing figure Missing figure

Fig. 8. Reprojected reconstruction in views 0 and 3. The large white dots are the input
points, measured from the images alone. The smaller, dark points are the reprojected
points. Note that the reprojected points lie very close to the centre of each white
dot. The reconstruction is computed with the 6-point algorithm, optimizing over the
position of the sixth point.

4 Estimating multi-view tensors

For two views of 7 points there is a well-known method [?,?] for recovering
the fundamental matrix between the two views. Essentially, each point
correspondence x ↔ x′ between the two views imposes a single linear
constraint x′�Fx = 0 and so seven points define a pencil of candidates
for F. The requirement that F be singular imposes a cubic constraint on
this pencil and so there are up to three solutions. In geometric terms,
the (linear) space of 3 × 3 matrices can be identified with IP8 and the
fundamental matrices lie in a subset of this, namely the locus of singular
matrices. Singularity is characterized by the vanishing of the determinant
det(F) = 0, so that the locus of fundamental matrices lies on a cubic
hypersurface in IP8. This surface has three intersections with the line cut
out in IP8 by the 7 hyperplanes obtained from 7 correspondences.
Given many (nmore than 7) correspondences the linear constraints alone
will determine a solution, but as before, in the presence of noise, that
solution will not satisfy the constraint, i.e. it will not lie on the cubic
hypersurface defined by det(F) = 0). A method similar to that described
in section 3.2 can be used to project the linear solution onto the con-
straint manifold as follows: Use the linear 8-point algorithm as described
by Hartley [?] (with data normalization) to construct the n × 9 design
matrix A. The linear estimate of F is obtained from A as the singular vec-
tor corresponding to the least singular value. In the orginal algorithm [?]
Hartley then converts this matrix to one with rank 2 by using the SVD.
The alternative proposed here is to compute the pencil of matrix solu-
tions defined by the line joining the singular vectors corresponding to
the two least singular values, and intersect this pencil with the cubic
surface. The result is a rank 2 fundamental matrix “close to” the linear



solution. Note, that the cubic constraint in section 3.2 is on the position
of the sixth point, whereas here it is on the elements of the fundamental
matrix.

5 Robust Reconstruction Algorithm

In this section we describe a robust algorithm for reconstruction built on
the 6-point engine of section 3. The input to the algorithm is a set of point
tracks, some of which will contain mismatches. Robustness means that
the algorithm is capable of rejecting mismatches, using the RANSAC [?]
paradigm. It is a straightforward generalization of the corresponding al-
gorithm for 7 points in 2 views [?,?] and 6 points in 3 views [?,?].

5.1 Algorithm

The input is a set of measured image projections. A number of world
points (usually thousands) have been tracked through a number of im-
ages. Some tracks may last for many images, some for only a few (ie
there may be missing data). There may be mismatches.

1. From the set of tracks which appear in all images, select six at ran-
dom. This set of tracks will be called a basis.

2. Initialize a projective reconstruction using those six tracks. This will
provide the world coordinates (of the six points whose tracks we
chose) and cameras for all the views (either quasi-linear or with 3
degrees of freedom optimization on 6th point – see below).

3. For all remaining tracks, compute optimal world point positions us-
ing the computed cameras by minimizing the reprojection error over
all views in which the point appears. This involves a numerical min-
imization.

4. Reject tracks whose image reprojection errors exceed a threshold.
The number of tracks which pass this criterion is used to score the
reconstruction.

5. Repeat the above steps as required.

As we have already pointed out, the ordering of the six point basis can
sometimes make a difference to the quality of reconstruction, so we try
each of the sixth choices for the last point (the ordering of the first five
points makes no difference).
The justification for this algorithm is, as always with RANSAC, that
once a “good” basis is found it will (a) score highly and (b) provide a
reconstruction against which other points can be tested (to reject mis-
matches).

5.2 Results II

The second sequence is a turntable sequence (ie the camera motion is
a turntable motion) of a dinosaur model (figure 5.2). The image size is
720 × 576. Motion tracks were obtained using the fundamental matrix
based tracker described in [?]. We ran the algorithm with 100 samples



on the subsequence consisting of images 0 to 5. For these 6 views, there
were 740 tracks of which only 32 were seen in all views. 127 tracks were
seen in 4 or more views. The sequence contains both missing points and
mis-matched tracks ** does it ?? **.

For the six point RANSAC basis, linear reconstructions were rejected if
any reprojection error exceeded 10 pixels, and the subsequent 3 degrees
of freedom optimization was rejected if any reprojection error exceeded
a threshold of 5 pixels. These are very generous thresholds and are only
intended to avoid spending computation on very bad initializations. The
real criterion of quality is how much support an initialization has. When
backprojecting tracks to score the reconstruction, only tracks seen in 4
or more views were used and tracks were rejected as mismatches if any
residual exceed 1.25 pixels after backprojection.

To assess the performance of our algorithm, we tried three variations.
The first mode just uses our quasi-linear algorithm. The second applies
the optimization described in section 3.3. The third applies a full bundle
adjustment to the 6-point reconstructions. The errors are summarized in
figure 9. The last row shows errors after applying bundle adjustment to
the final reconstruction (many points, many cameras). Figure 10 shows
the tracks accepted by the algorithm, superimposed on the fourth (index
3) image in the sequence. Figure 11 shows the computed model. Remarks

basis residuals all residuals inlier
(pixels) (pixels) count

6 points no optimization 0.0443/0.183 0.401/1.24 95
6 points with optimization 0.0443/0.183 0.401/1.24 95
6 points (and cameras) bundled 0.0422/0.127 0.383/1.181 97
All points (and cameras) bundled 0.313 /0.718 0.234/0.925 95

Fig. 9. Dinosaur sequence results. Comparing the three different fitting algorithms
(algebraic, reduced, fulll). There were 6 views. For each mode of operation, the number
of points marked as inliers by the algorithm is shown in the third column. There were
127 tracks seen in four or more views.

entirely analogous to the ones made about the previous sequence apply
to this one, but note specifically that optimizing makes no difference to
the residuals at this level of precision (3 significant figures). Applying
bundle adjustment to each initial 6-point reconstruction improves the fit
somewhat, but the gain in accuracy and support is rather small compared
to the extra computational cost (in this example, there was a 7-fold
increase in computation time).

Missing figure Missing figure Missing figure Missing figure Missing figure Missing
figure

Fig. 10. Tracks used in reconstruction for the dinosaur sequence.
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Fig. 11. Dinosaur sequence reconstruction : snapshots of the computed structure with
and without cameras shown, from four different positions. The actual camera motion
is a turntable sequence with 36 images.

The results shown for view 0 to 5 are typical of results obtained for other
segments of 6 consecutive views from this sequence. Decreasing the num-
ber of views used has the disadvantage of narrowing the baseline, which
generally leads to both structure and cameras being less well determined.
The advantage of using only a small number of points (i.e. 6 instead of 7)
is that there is a higher probability that sufficient tracks will exist over
many views.

6 Conclusion

1. Have shown how to use our 6-point engine to perform robust recon-
struction for m views of n points. This reconstruction can now form
the basis of a hierarchical method for extended image sequencess.
The algorithm in [?] builds a hierarchical reconstruction from image
triplets. Now can proceed from extended sub-sequences over which
at least 6 points tracked.

2. Other minimal cases involving points and lines over m ≥ 4 views.
3. Multi-view tensor method for 3 and 4 views.


