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Abstract. This paper has three main contributions: (1) a \quasi-linear"

method for computing structure and motion for m � 3 views of 6 points;

(2) a \quasi-linear" method for computing consistent estimates of the

multi-view tensors (fundamental matrix, trifocal tensor and quadrifocal

tensor) from n image points; (3) anm view n point robust reconstruction

algorithm which uses the 6 point method as a search engine.

The new algorithms are evaluated on synthetic and real image sequences,

and compared to optimal estimation results (bundle adjustment).

1 Introduction

A large number of methods exist for obtaining 3D structure and motion

from correspondences tracked through image sequences. Their charac-

teristics vary from the so-called minimal methods [13, 14, 20] which work

with the least data necessary to compute structure and motion, through

intermediate methods [4, 16] which may perform mis-match (outlier) re-

jection as well, to the full-bore bundle adjustment.

The minimal solutions are used as search engines in robust estimation

algorithms which automatically compute correspondences and tensors

over multiple views. For example, the 2 view 7 point solution is used in

the RANSAC estimation of the fundamental matrix in [20], and the 3

view 6 point solution in the RANSAC estimation of the trifocal tensor

in [19]. It would seem natural then to use a minimal solution as a search

engine in 4 or more views. The problem is that in 4 or more views a

solution is forced to include a minimization to account for measurement

error (noise). In the `2 view 7 point' and `3 view 6 point' cases there are

the same number of measurement constraints as degrees of freedom in

the tensor. In both cases 1 or 3 real solutions result (and the duality ex-

planation for this equivalence was given by [2]). However, in four views

six points provide one more constraint than the number of degrees of

freedom in the four view geometry (the quadrifocal tensor). This means

than unlike in the two and three view cases where a tensor can be com-

puted which exactly relates the measured points (and also satis�es its

internal constraints), this is not possible in the four view case. Instead

it is neccesary to minimize a measurement error whether algebraic or

geometric. The poor estimate which results by using an approach based

on minimizing algebraic distance and a standard projective basis for the

image is described and demonstrated in section 2.



Here we develop a novel quasi-linear solution for the 6 point m � 3 case.

This solution involves only a SVD and the evaluation of a cubic poly-

nomial in a single variable. This is described in 2. We also describe a

sub-optimal (compared to bundle-adjustment) which minimizes geomet-

ric error at the cost of only a 3 parameter minimization.

1.1 Reconstruction for an image sequence

A second part of the paper describes yet another algorithm for computing

a reconstruction of cameras and 3D scene points from a sequence of

images. The objectives of such algorithms are now well established:

1. Minimize reprojection error. A common statistical noise model

assumes that measurement error is isotropic and Gaussian in the im-

age. The Maximum Likelihood Estimate in this case involves mini-

mizing the total squared reprojection error over the cameras and 3D

points. This is bundle-adjustment.

2. Cope with missing data. Structure-from-motion data often arises

from tracking features through image sequences and any one track

may persist only in few of the total frames.

3. Cope with mis-matches. Appearance-based tracking can produce

tracks of non-features. A common example is a T-junction which gen-

erates a strong corner, but whose pre-image moves slowly between

frames.

Bundle adjustment [7] is the most accurate and theoretically best jus-

ti�ed technique. It can cope with missing data and, with suitable ro-

bust statistical cost function, can cope with mis-matches. However, it

is expensive to carry out and most signi�cantly requires a good initial

estimate.

In the special case of a�ne cameras, factorization methods [17] minimize

reprojection error [15] and so give the optimal solution found by bundle

adjustment. However, factorization cannot cope with mis-matches, and

methods to overcome missing data [10] lose the optimality of the solution.

In the general case of perspective projection iterative factorization meth-

ods have been successfully developed and have recently proved to produce

excellent results [16, 9]. The problems of missing data and mis-matches

remain though.

Bundle-adjustment will almost always be the �nal step of a reconstruc-

tion algorithm. However, achieving good sub-optimal estimates prior to

bundle-adjustment is necessary for the latter to be e�ective (fewer it-

erations, and less likely to converge to local minimum.) For practical

(in particular automated) applications, mismatches present a real prob-

lem. There exist e�ective methods for estimating structure and motion

from data with mismatches for two [18] and three [19] views (based on

RANSAC) and [21] based on LMS. These have been put to e�ective

use [4] to compute structure and motion by starting from (very reliably)

estimated three-view structures and hierarchically coalescing these into

sub-sequences of the whole sequence. For four views there is the method

in [6] for computing the quadrifocal tensor.



Current methods of initializating a bundle-adjustment include factoriza-

tion [16], awf-segments [4], duality [1, 2] and the Variable State Dimen-

sion Filter (VSDF) [11].

In this paper we describe a novel algorithm for computing a recon-

struction satisfying the 3 basic goals above (optimal, missing data, mis-

matches). It is based on using the 6-pt algorithm as a robust search

engine, and is described in section 5.

1.2 Notation

The standard basis will refer to the �ve points in IP3 whose homogeneous

coordinates are :
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For a 3-vector v = (x; y; z)>, we use [v]
�
to denote the 3�3 skew matrix

such that [v]
�
u = v � u , where � denotes the vector cross product.

For three points in the plane, represented in homogeneous coordinates by

x;y; z, the incidence relation of collinearity is the vanishing of the bracket

[x;y; z] which denotes the determinant of the 3�3 matrix whose columns

are x;y; z. It equals x � (y� z) where � is the vector dot product.

2 Linear estimation using a duality solution

This section (about 1.5 pages) should cover:

1. Outline duality algorithm for 6 points in m � 4 views (from 8 point

algorithm).

2. Show using synthetic data that SVD solution in projectively trans-

formed image space is a very poor estimate when pulled back to

original image space.

3. Figure to illustrate this - az to draw - which shows that minimizing

geometric error (as algebraic error minimization tries to approximate

this) in very projectively transformed space pulls back to point away

from ellipse centre.

3 Reconstruction from 6 points over m views

This section describes the main algebraic development of the 6 point

method. In essence it is quite similar to the development given by Quan [13]

for a reconstruction of 6 points from 3 views. The di�erence is that Quan

used a standard projective basis for both the image and world points,

whereas here the image coordinates are not transformed. As described

in section 2 the use of a standard basis in the image severely distorts the

error that is minimized. The numerical results that follow demonstrate

that the method described here produces a near optimal solution.



In the following it will be assumed that we have 6 image points xiin

correspondence over m views. The idea then is to compute cameras for

each view such that the scene points Xi project exactly to their image xi

for the �rst �ve points. Any error minimization required is then restricted

to the sixth point in the �rst instance.

3.1 Pencils of cameras

Each correspondence between a scene point X and its image x under a

perspective camera P gives three linear equations for P whose combined

rank is 2. These linear equations are obtained from

x� PX = 0 (1)

Given only �ve scene points, assumed to be in general position, it is

possible to recover the camera up to a 1-parameter ambiguity. More

precisely, the �ve points generate a linear system of equations for P which

may be written Mp = 0, where M is a 10� 12 matrix formed from two of

the linear equations (1) of each point correspondence, and p is P written

as a 12-vector. This system of equations has a 2-dimensional null-space

and thus results in a pencil of cameras.

Suppose that the �ve world points are the points of the standard projec-

tive frame so that both Xi and xi (i = 1; 2; 3; 4; 5)are now known. Then

the null-space of M can immediately be computed, and will be noted from

here on by the basis of 3� 4 matrices [A;B]. Then for any choice of the

scalars (s : t) 2 IP1 the camera in the pencil P = sA+ tB exactly projects

the standard projective basis to the �rst �ve points.

Each camera P in the pencil has its optical centre located as the null-

vector of P and thus a given pencil of camera gives rise to a 3D curve

of possible camera centres. In general (there are degenerate cases) the

locus of possible camera centres will be a twisted cubic passing through

the �ve points of the standard projective basis.

3.2 The quadric constraints

Given m views of 6 points, suppose again that the �rst �ve world points

are in known positions X1; : : : ;X5. To compute projective structure it

su�ces to �nd the sixth world point X6.

Let [A;B] be the pencil of cameras consistent with the projections of the

�rst �ve points (into the jth view, say). Since P lies in the pencil, there

are scalars (s : t) 2 IP1 such that P = sA+ tB and so the projection of the

sixth world point X is x6 = sAX6 + tBX6. Eliminating s; t this means

that the three points x6; AX6; BX6 are collinear in the image :

Q(X6) = [x6; AX6; BX6] = 0

, which is a quadratic constraint on X6. Each view thus provides a

quadric on which X6 must lie. For two views the two associated quadrics

intersect in a curve, and consequently there is a one parameter family

of solutions for X6 in that case. The curve will meet a third quadric



in a �nite number of points, so 3 views will determine a �nite number

(namely 2� 2� 2 = 8 by B�ezout's theorem) of solutions for X6.

Continuing with the case of three views for the moment. Suppose Xi

is one of the �ve base points in the world. By de�nition of the pencil,

xi = AXi and xi = BXi will be multiples of the corresponding image

point (in homogeneous coordinates) and so AX� BX is 0 at such an X.

This means that each quadric contains each of the �ve base points so

when solving for the sixth point we have to discard these �ve spurious

solutions. We next develop a simple representation of the class of quadrics

which vanish at the �ve base points, and use this to express the constraint

arising from the sixth point in each view.

The class of all quadrics is a linear space of dimension 10 (regarding scale

as signi�cant for the moment). The subclass of quadrics which vanish at

a given point is a linear subspace of codimension 1 and the class of

quadrics which vanish at 5 could be expected to be a linear subspace of

dimension 10 � 5 = 5. While this is not always true (the dimension can

be greater than 5) it is true for 5 points in general position. If a quadric

is speci�ed by a symmetric 4�4 matrix Q, then the vanishing conditions

arising from world points at the standard projective basis positions are

that Qii = 0 for i = 1; 2; 3; 4 and
P

ij
Qij = 0, which manifestly impose

5 (linearly) independent constraints on Q.

For de�niteness, we choose the following basis for this 5D linear system

:
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Every quadric Q vanishing at the �ve base points must be a linear com-

bination of W1; : : : ;W5, say Q =
P

wiWi, and the Wi consist of terms

quadratic in the coordinates of X6. Explicitly, if X6 = (p; q; r; s)> then

W1 = pq � ps;W2 = pr� ps;W3 = qr� ps;W4 = qs� ps;W5 = rs� ps.

For each view the coe�cients wi are known since they are computed

from A; B and x6. This means that from Q =
P
wiWi = 0 for each view,

a system of linear equations can be assembled for the unknownsWi, and

from the solution for Wi the coordinates of X6 may then be extracted.

In more abstract terms there is a map  
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which is a (rational) transformation from IP3 to IP4, and maps the

quadric Q � IP3 into the hyperplane

w1a+ w2b+ w3c+ w4d+ w5e = 0 (2)

where the (known) coe�cients wi are Q12; Q13; Q23; Q24; Q34.
The basic method now is to solve for W = (a; b; c; d; e)> 2 IP4 by inter-

secting hyperplanes in IP4, rather than to solve directly for X 2 IP3 by

intersecting quadrics in IP3.

3.3 Cubic constraint

The fact that dimIP3 = 3 < 4 = dim IP4 implies that the image of  

is not all of IP4. In fact the image is the hypersurface S cut out by the

cubic equation

S(a; b; c; d; e) = abd� abe+ ace� ade� bcd+ bde =

�����
e e b

d c b

d a a

����� = 0

This can be veri�ed by substitution, and a derivation in terms of deter-

minants is sketched below.
The fact that the image  (X) of X must lie on S introduces the problem

of enforcing this constraint (S = 0) numerically. This will be dealt with

below.
Having solved forW = (a; b; c; d; e)> we wish to recoverX = (p; q; r; s)>.

By considering ratios of a; b; c; d; e and their di�erences, various form of

solution can be obtained. In particular it can be shown that X is a

nullvector of the following 6� 4 design matrix :0
BBBBB@
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This will have nullity � 1 if the point with coordinates a; b; c; d; e really

does lie on the 3-fold S. (In fact, imposing this degeneracy on 4 � 4

submatrices gives quartic algebraic expressions in a; b; c; d; e which are

all multiples of the cubic expression S). At certain exceptional points

the nullity will be greater than 1 (namely at the 10 singular points of the

surface where the nullity will be exactly 2). When the point W doesn't

lie exactly on S, the matrix may have nullity 0 and more care has to be

taken to recover a meaningful X.

3 views : The linear constraints de�ned by the three hyperplanes (2) cut

out a line in IP4. The line intersects S in three points (generically) (see

�gure **). Thus there are three solutions for X. This is a well-known [13]

minimal solution. Our treatment gives a simpler (than the Quan [13] or

Carlsson and Weinshall [2]) algorithm for computing a trifocal tensor

from six points (from a projective reconstruction) because it does not

involve changing basis in the images.



Four or more views : In this case the linear constraints from the hy-

perplanes alone will (generally) determine a unique solution for W. In

the presence of noise, though, this solution will not satisfy the cubic

constraint. That is, it does not lie on S; its coordinates do not satisfy

S = 0. We would like to coerce it to do so. The problem is to perform a

\manifold projection" in a non-Euclidean space, with the usual associ-

ated problem that we don't know in which direction to project. We will

now give a novel solution to this problem.

An (over)determined linear system of equations is often solved using Sin-

gular Value Decomposition, by taking as null-vector the singular vector

with the smallest singular value. The justi�cation for this is that the

SVD elicits the \directions" of space in which the solution is well deter-

mined (small singular values) and those in which it is poorly determined

(large singular values). Taking the singular vector with smallest singu-

lar value is the usual \linear" solution, but as pointed out, it does not

in general lie on S. However, there may still be some information left in

the second-smallest singular vector, and taking the space spanned by the

two smallest singular vectors gives a line in IP4, which passes through the

\linear" solution and must also intersect S in three points (S is cubic).

We use these three intersections as our candidates for W. Since they lie

exactly on S, recovering their preimages X under  is not a problem.

This, then, is our heuristic. We overcome our manifold projection prob-

lems by projecting in the direction of the singular vector with second-

smallest singular value. Note that in the case of 4 views, the smallest

singular value will actually be 0.

Degeneracies : it is worth noting that if the sixth point in 3-space lies

on the twisted cubic through the �rst �ve basis points then there is a

one parameter family of cameras for each view which will exactly project

the six space points to their images. This situation can be detected (in

principle) because if the space point lies on the twisted cubic then all

6 image points lie on a conic. (In practice the problem shows up when

intersecting the hyperplanes in IP4; they will intersect in a line, namely

the transform of the twisted cubic under  .)

3.4 Minimizing reprojection error

The previous sub-section has described a quasi-linear method involving

the following two steps: �rst, a linear SVD decomposition of a matrix

composed of one hyperplane from each view; second, intersecting the line

in IP4 (computed from two of the singular vectors) with a cubic surface.

The best (most accurate) use of the given data is to minimize total

squared image reprojection error over all camera and structure parame-

ters, but that amounts to a full bundle adjustment.

In the current case, we have computed cameras which map the �rst �ve

points exactly to their measured image points, and rather than jump

directly to bundle adjustment, an intermediate case is to minimize total

squared reprojection error for the sixth point X over IP3. This �ts in the

middle of a spectrum of possible estimates :



1. Algebraic �t. The quasi-linear solution minimizes an \algebraic"

error by a direct least squares �t on homogeneous coordinates in IP4.
2. Sub-optimal �t. Minimizes total squared reprojection error for the

sixth point over its position in IP3, mapping the �rst �ve points

exactly (3 dofs).
3. Optimal �t (bundle adjustment). Minimizes total squared repro-

jection error for all points, over all structure and camera parameters

(11m+ 3 dofs).
The model �tted by the second item is clearly a reduced form of the

model �tted by the third item. The cost of executing minimization is

negligible (it has only 3 degrees of freedom), which can be seen as follows.

To �t a model with a non-linear Levenberg-Marquardt type minimizer,

we need to calculate at the current estimate, X, the �tting residuals and

the jacobian of these wrt the current estimate. The latter is obtained (if

tediously) from the former, so let us concentrate on the �tting residuals.

In each image, �tting error is the distance from the reprojected point

y = PX to the measured image point x = (u; v; 1)>. The reprojected

point will depend both on the position of the sixth world point and on

the choice of camera in the pencil for that image. But for a given world

pointX, and choice of camera P = sA+tB in the pencil, the residual is the

2D image vector from x to the point y = PX = sAX+ tBX on the line l

joining AX and BX. The optimal choice of s; t for given X is thus easy to

deduce; it must be such as to make y the perpendicular projection of x

onto this line (�gure 3.4). What this means is that explicit minimization

over camera parameters is unnecessary and so only the 3 dofs for X

remain.

AX

BX

y
x

Fig. 1. Minimizing reprojection in the reduced model. For a given X, the best choice

P = sA+ tB of camera in the pencil corresponds to the point y = sAX+ tBX on the line

closest to the measured image point x. Hence the image residual is the vector joining

x and y.



3.5 Approximating geometric error

We now compare the �rst item with the second. We have already seen

that the components of the line l(X) = AX � BX are expressible as

quadrics in X, and moreover as linear functions of W =  (X) :

l(X) = AX� BX =

 
q0 (X)

q1 (X)

q2 (X)

!
=

 
� � �q0 � � �

� � �q1 � � �

� � �q2 � � �

!
W

for some 3� 5 matrix with rows qi whose coe�cients can be determined

from those of A and B. If the sixth image point is x = (u; v; 1)> then the

squared residual is

d(x; l(X))
2
=
juq0W + vq1W + q2W j

2

jq0W j
2
+ jq1W j

2

which we note is a rank 1 quadratic form in W divided by a rank 2

quadratic form in W . The conclusion we draw is that the minimization

of image error over X 2 IP3 can be carried out as a minimization over

W 2 S instead. (Note also that this form of the error is amenable to

reweighted least squares because, given an initial estimate of X, we can

adjust the scale so as to make the denominator close to 1, while putting

the numerator into a least squares problem.)

The algebraic �tting algorithm which we propose consists of �rst forming

the linear least squares problem which minimizes the sum of squares of

q2W over the images. We intersect the 2D SVD nullspace with S to

impose constraints.

This �tting scheme gives unit-norm vector estimates for W =  (X),

but since  is singular at the �ve basis points,  (X) is zero there and

what this amounts to is that these �ve points are singularities of the

�tting scheme in the sense of [12] as being points that the scheme cannot

�t. This is a good, not a bad, thing. (Actually, since  is regular on

any smooth curve through the base points, the method can �t points

\in�nitely near" the base points.)

As we have presented the algorithm so far, there is an arbitrary choice

of scale for each quadric QA;B, corresponding to the arbitrariness in the

choice of representation [A;B] of the pencil of cameras (in terms of the

equation above the algebraic �tting scheme neglects the denominator

and just minimizes the residuals de�ned by the uq0 + vq1 + q2), the

scale of which depends on the scale of A; B. Which normalization is used

matters, and we addres that issue now.

Firstly, by translating coordinates, we may assume that the sixth point is

at the origin. This amounts to (pre)multiplying A; B by a 3�3 translation

homography and we assume this has been done (so u; v = 0 in the above

derivation). Thus the geometric error we want to approximate is

jq2W j
2

jq0W j
2
+ jq1W j

2

Making this assumption on the position of the sixth image point means

that the normalization is independent of (ie is invariant to) translations



of image coordinates. It is desirable that the normalization should be in-

variant to scaling and rotation as well since these are the transformations

which preserve our error model (isotropic Gaussian noise). This require-

ment rules out many obvious candidates, like normalizing the Frobenius

norms of A; B to 1 or normalizing q2 to unit norm. To describe our choice

of normalization, we introduce a dot product (A; B)
�
on 3 � 4 matrices,

de�ned by :

(A; B)
�
=

X
i=0;1

j=0;1;2;3

AijBij

Our normalization can now be described by saying that the choice of

basis of the pencil [A;B] must be an orthonormal basis wrt (�; �)
�
. Scal-

ing image coordinates corresponds to scaling the �rst two rows of the

basis elements, which just scales our dot product. Rotating image co-

ordinates corresponds to applying an orthogonal transformation to the

�rst two rows of the basis elements, and this preserves our dot product.

Finally, choosing a di�erent orthonormal basis corresponds to a certain

linear basis change in the pencil and the e�ect on the qi is a scaling

by the determinant of that basis change. But that basis change must be

orthogonal, so it has determinant 1.

3.6 Summary and Results I

It has been demonstrated how to pass from m views of six points in the

world to a projective reconstruction in a few steps. The positions of the

six world points as well as the camera for each view have been computed.

The reconstruction obtained is not the MLE (assuming isotropic Gaus-

sian point localization noise), which optimally distributes measurement

error over all the points, but an approximation which puts all the errors

on the sixth point.

The steps of the algorithm are :

1. Compute, for each image, the pencil of cameras which map the �ve

standard basis points in the world to the �rst �ve image points,

using the recommended normalization to achieve invariance to image

coordinate changes.

2. Form, from each pencil [A;B] the quadric constraint on the sixth

world point X as described in section 3.2.

3. Using the transformation  : IP3� !IP4, convert the quadric inter-

section problem to a hyperplane intersection problem. Use the SVD

to compute a pencil of possible values for W =  (X).

4. Intersect that line with the cubic constraint S = 0 to get (up to)

three solutions for W =  (X) satisfying the constraint.

5. Use (3) to recover values for the sixth point X from W. Keep the

solution (if there are 3) with the lowest residual.

6. (optional) Minimize reprojection error over the 3 dofs in the position

of X.

We will now give results on synthetic and real image sequences of 6 points

in m views. The objective is to evaluate the performance of three algo-

rithms: quasi-linear; minimizing on 6th point only; bundle adjustment.

The performance measures are *** In practice, for a given set of six



Image Image

Fig. 2. The 6-point algorithm.



points, the quality of reconstruction can vary depending on which point

is chosen to minimize over. We try all six in turn.

We show results here for an image sequence consisting of 9 colour images

(JPEG, 768�1024) of a turntable (but the camera motion is not a single

axis rotation!) with 24 tracks entered manually (by eye). The visibility

matrix of the tracks is as follows, where each row corresponds to a tracked

point and each column to an image. A cross in position (i; j) means that

the ith point was seen in the jth image :

0 1 2 3 4 5 6 7 8

0 x x . x . . . . x

1 x x . x . . . . x

2 . x x x x x . . . -

3 . x x . x x . . . -

4 . . . . x x x x x

5 x x . . . . x x x

6 x x . . . . x . x

7 . . . . x x x x x

8 x x x x . . . x x -

9 x . . . . x x x x

10 x x x x x x x x x *

11 x x x x x x x x x *

12 x x x x x x . . . *

13 x x x x x x x . x -

14 . . . x x x x x .

15 . x x x x x x x . -

16 x x x x x x x x x *

17 x x x x x x x x x *

18 x x x x x x x x x *

19 x x x x x x x x x *

20 x . . . . x x x .

21 x x x x . . x x x -

22 x x x x x x . . . *

23 . . x x x x x x . -

We ran the algorithm described below on the subsequence consisting

of images 0 to 5. Tracks 18; 19; 10; 11; 12; 17 (in that order) were used

to compute a six-point reconstruction over these views. Any remaining

tracks seen in 4 or more views were then backprojected using the com-

puted cameras to get structure for 15 points (marked with dashes) and

6 cameras. To evaluate the accuracy of reconstruction, we consider both

image residuals and error of registration into a ground truth reconstruc-

tion obtained by means of calipers (estimated accuracy 0:5mm). The

following table compares our reconstruction with its bundle adjusted

version (residuals reported as rms/max) :

Bundle adjustment achieves the smallest reprojection error over all resid-

uals, because it has greater freedom in distributing the error. Our method

minimizes error on the sixth point of a six point basis. Thus it is no sur-

prise that the e�ect of applying bundle adjustment is to increase the



basis residuals all residuals registration error

(pixels) (pixels) (mm)

6 points no optimization 0.145 /0.569 1.18 /3.05 0.540/0.712

6 points with optimization 0.143 /0.526 1.27 /3.22 0.545/0.758

6 points bundled 0.0612/0.156 1.64 /6.94 0.574/0.881

All points bundled 0.609 /1.71 0.577/1.71 0.609/0.975

Fig. 3. Evaluating the reconstruction. Residuals are shown for the 6 points which

formed the basis (�rst column) and for all reconstructed points taken as a whole (second

column). There were 15 points and 6 views.

error in column 1 and to decrease the error in column 2. What is sur-

prising is the rise in registration error (column 3). These �gures support

our claim that the linear method gives a very good approximation to the

optimized method.

Figure 4 shows the reprojected reconstruction in the �rst and fourth

views of the sequence. The large white dots are the input (measured)

points and the smaller, darker dots are the reprojected points.

Fig. 4. Reprojected reconstruction in views 0 and 3. The smaller, dark points are the

reprojected points.

4 Estimating multi-view tensors

For two views of 7 points there is a well-known method [20, ?] for recov-

ering the fundamental matrix between the two views. Essentially, each

point correspondence x$ x0 between the two views imposes a single lin-

ear constraint x0>Fx = 0 and so seven points de�ne a pencil of candidates

for F. The requirement that F be singular imposes a cubic constraint on

this pencil and so there are up to three solutions. In geometric terms,

the (linear) space of 3 � 3 matrices can be identi�ed with IP8 and the

fundamental matrices lie in a subset of this, namely the locus of singular

matrices. Singularity is characterized by the vanishing of the determinant



det(F) = 0, so that the locus of fundamental matrices lies on a cubic hy-

persurface in IP8. This surface has three intersections with the line cut

out in IP8 by the 7 hyperplanes obtained from 7 correspondences.

Given many (nmore than 7) correspondences the linear constraints alone

will determine a solution, but as before, in the presence of noise, that

solution will not satisfy the constraint, i.e. it will not lie on the cubic

hypersurface de�ned by det(F) = 0). The method described in section 3.3

can be used to project the linear solution onto the constraint manifold as

follows: Use the linear 8-point algorithm as described by Hartley [8] (with

data normalization) to construct the n � 9 design matrix A. The linear

estimate of F is obtained from A as the singular vector corresponding

to the least singular value. In the orginal algorithm [8] Hartley then

converts this matrix to one with rank 2 by using the SVD. The alternative

proposed here is to compute the pencil of matrix solutions de�ned by the

line joining the singular vectors corresponding to the two least singular

values, and intersect this pencil with the cubic surface. The result is a

rank 2 fundamental matrix \close to" the linear solution.

5 Robust Reconstruction Algorithm

Using our basic 6-point engine, we have constructed a robust algorithm

for reconstruction from motion tracks. Robustness means that the algo-

rithm is capable of rejecting mismatches, using the RANSAC [3] paradigm.

It is a straightforward generalization of the corresponding algorithm for

7 points in 2 views [] and 6 points in 3 views [].

6-point basis

m-view, 6-point reconstruction

m-view, 6-point reconstruction

m-view, n-point reconstruction

Bundle adjustment (optional)

(Generalized) Hartley-Sturm
backprojection using cameras.

Quasi-linear method

Fig. 5. Schematic of the algorithm.



5.1 Algorithm

The input is a set of measured image projections. A number of world

points (usually thousands) have been tracked through a number of im-

ages. Some tracks may last for many images, some for only a few (ie

there may be missing data). There may be mismatches.

1. From the set of tracks which appear in all images, select six at ran-

dom. This set of tracks will be called a basis.
2. Initialize a projective reconstruction using those six tracks. This will

provide the world coordinates (of the six points whose tracks we

chose) and cameras for all the views.
3. For all remaining tracks, compute optimal world point positions us-

ing the computed cameras. This is a straightforward generalization

of the Hartley-Sturm [] algorithm for two views. Reject tracks whose

image reprojection errors exceed a threshold. The number of tracks

which pass this criterion is used to score the reconstruction.
4. Repeat the above steps as required.

As we have already pointed out, the ordering of the six point basis can

sometimes make a di�erence to the quality of reconstruction, so if at any

point a basis achieves a score of 90% or more of the best basis so far, we

try that basis again with the di�erent choices of sixth point (the ordering

of the �rst �ve points makes no di�erence).
The justi�cation for this algorithm is, as always with RANSAC, that

once a \good" basis is found it will (a) score highly and (b) provide a

reconstruction against which other points can be tested (to reject mis-

matches).

5.2 Results II

The second sequence is a turntable sequence (ie the camera motion is a

turntable motion) of a dinosaur model. The image size was 720 � 576.

Motion tracks were kindly provided by Andrew Fitzgibbon. We ran the

algorithm on the subsequence consisting of images 0 to 5. 100 samples

were used.
Linear reconstructions were rejected if any reprojection error exceeded

10 pixels, the 3 dof optimization applied and a threshold of 5 pixels ap-

plied. These are very generous thresholds and are only intended to avoid

spending computation on very bad initializations. The real criterion of

quality is how much support an initialization has.
When backprojecting tracks to score the reconstruction, only tracks seen

in 4 or more views were used and tracks were rejected as mismatches

if any residual exceed 1:25 pixels after backprojection. To assess the

performance of our algorithm, we tried three variations. The �rst mode

just uses our quasi-linear algorithm. The second applies the optimization

described in section 3.4. The third applies a full bundle adjustment to

the 6-point reconstructions. The errors are summarized in the following

table. The last row shows errors after applying bundle adjustment to

the �nal reconstruction (many points, many cameras). Remarks entirely

analogous to the ones made about the previous sequence apply to this

one, but note speci�cally that optimizing makes no di�erence to the

residuals at this level of precision (3 signi�cant �gures).



basis residuals all residuals inlier

(pixels) (pixels) count

6 points no optimization 0.0443/0.183 0.401/1.24 95

6 points with optimization 0.0443/0.183 0.401/1.24 95

6 points bundled 0.0422/0.127 0.383/1.181 97

All points bundled 0.313 /0.718 0.234/0.925 95

Fig. 6. There were 6 views. For each mode of operation, the number of points marked

as inliers by the algorithm is shown in the third column. There were 127 tracks seen

in four or more views.

6 Conclusion

1. Have shown how to use our 6-point engine to perform robust recon-

struction for m views of n points. This reconstruction can now form

the basis of a hierarchical method for extended image sequencess.

[4] built a hierarchical reconstruction from image triplets. Now can

proceed from extended sub-sequences over which at least 6 points

tracked.

2. Other minimal cases involving points and lines over m � 4 views.

References

1. S. Carlsson. Duality of reconstruction and positioning from projec-

tive views. In IEEE Workshop on Representation of Visual Scenes,

Boston, 1995.

2. S. Carlsson and D. Weinshall. Dual computation of projective shape

and camera positions from multiple images. IJCV, 1998. in Press.

3. M. A. Fischler and R. C. Bolles. Random sample consensus: A

paradigm for model �tting with applications to image analysis and

automated cartography. Comm. ACM, 24(6):381{395, 1981.

4. A. W. Fitzgibbon and A. Zisserman. Automatic camera recovery

for closed or open image sequences. In Proc. ECCV, pages 311{326.

Springer-Verlag, Jun 1998.

5. G.-M. Greuel, G. P�ster, and H. Sch�onemann. Singular

version 1.2 user manual. In Reports On Computer Alge-

bra, number 21 in Reports On Computer Algebra. Centre

for Computer Algebra, University of Kaiserslautern, June 1998.

http://www.mathematik.uni-kl.de/~zca/Singular

6. R. Hartley. Computation of the quadrifocal tensor. In Proc. ECCV,

LNCS 1406, pages 20{35. Springer-Verlag, 1998.

7. R. I. Hartley. Euclidean reconstruction from uncalibrated views.

In J.L. Mundy, A. Zisserman, and D. Forsyth, editors, Proc. 2nd

European-US Workshop on Invariance, Azores, pages 187{202, 1993.

8. R. I. Hartley. In defence of the 8-point algorithm. In Proc. ICCV,

pages 1064{1070, 1995.

9. A. Heyden. Projective structure and motion from image sequences

using subspace methods. In Scandinavian Conference on Image

Analysis, Lappenraanta, 1997, 1997.



10. D. Jacobs. Linear �tting with missing data: Applications to structure

from motion and to characterizing intensity images. In Proc. CVPR,

pages 206{212, 1997.

11. P. F. McLauchlan and D. W. Murray. A unifying framework for

structure from motion recovery from image sequences. In Proc.

ICCV, pages 314{320, 1995.

12. V. Pratt. Direct least-squares �tting of algebraic surfaces. Computer

Graphics, 21(4):145{151, 1987.

13. L. Quan. Invariants of 6 points from 3 uncalibrated images. In J. O.

Eckland, editor, Proc. ECCV, pages 459{469. Springer-Verlag, 1994.

14. L. Quan and F. K. A. Heyden. Minimal projective reconstruction

with missing data. In Proc. CVPR, 1999.

15. I. D. Reid and D. W. Murray. Active tracking of foveated feature

clusters using a�ne structure. IJCV, 18(1):41{60, 1996.

16. P. Sturm and W. Triggs. A factorization based algorithm for multi-

image projective structure and motion. In Proc. ECCV, pages 709{

720, 1996.

17. C. Tomasi and T. Kanade. Shape and motion from image streams

under orthography: A factorization approach. IJCV, 9(2):137{154,

Nov 1992.

18. P. H. S. Torr and D. W. Murray. The development and comparison

of robust methods for estimating the fundamental matrix. IJCV,

24(3):271{300, 1997.

19. P. H. S. Torr and A. Zisserman. Robust parameterization and com-

putation of the trifocal tensor. Image and Vision Computing, 15:591{

605, 1997.

20. P. H. S. Torr and A. Zisserman. Robust computation and parame-

terization of multiple view relations. In Proc. ICCV, pages 727{732,

Jan 1998.

21. Z. Zhang, R. Deriche, O. D. Faugeras, and Q. Luong. A robust tech-

nique for matching two uncalibrated images through the recovery of

the unknown epipolar geometry. Arti�cial Intelligence, 78:87{119,

1995.


