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Abstract

A learning account for the problem of object recog-
nition is developed within the PA C (Probably Approx-
imately Correct) model of learnability. The prop osed
appr oach makes no assumptions on the distribution of
the observe dobje cts, but quanti�es success relative to
its past experienc e. Most importantly, the success of
learning an obje ct repr esentation is naturally tied to
the ability to represent it as a function of some inter-
mediate repr esentations extracted from the image.

We evaluate this appr oach in a large scale exper-
imental study in which the SNoW learning architec-
ture is used to learn r epr esentations for the 100 objects
in the Columbia Object Image Database (COIL-100).
The SNoW-based method is shown to outperform other
methods in terms of recognition rates; its p erformance
degrades gracefully when the training data contains
fewer views and in the presence of occlusion noise.

1 Introduction
The role of learning in computer vision research

has become increasingly more signi�cant in recen t
years. Statistical learning theory has had an in
u-
ence on many applications ranging from classi�cation
and object recognition, grouping and segmentation,
illumination modeling, scenereconstruction and oth-
ers. The rising role of learningmethods, made possible
by signi�cant improvements in computing pow er and
storage, is largely motivated by the realization that
explicit modeling of complex phenomena in a messy
world cannot be done without a signi�cant role of
learning, both for model and knowledge acquisition,
and to support generalization and avoid brittleness.
Nevertheless, many statistical and probabilistic learn-
ing models require making explicit assumptions, e.g.,
on the distribution that governs the occurrences of in-
stances in the world. F or many visual inference prob-
lems such as recognition, categorization and detection,
making these assumptions seems unrealistic.

This work develops a distribution free learning the-
ory account to an archet ypical visual recognition prob-
lem: object recognition. The problem is viewed as

that of learning a representation of an object that,
giv en a new image, is used to recognize the target ob-
ject in it. The learning account is developed within
the PA C (Probably Approximately Correct) model of
learnability [16]. This framework allo ws us to (1)
quantify success relative to the distribution of the ob-
serv ed objects, without making assumptions on the
distribution. (That is, learnability guarantees that
objects sampled from the same distribution as the one
that governed the experience of the learner will be
recognized correctly.) (2) study the theoretical limits
of what can be learned from images in terms of the
expressivity of the in termediate representation used
by the learning process and (3) dev elop practical al-
gorithmic solutions to the problem and exhibit their
superiority over other methods.

Earlier works have discussed the possibility of iden-
tifying the theoretical limits of what can be learned
from images [14] and found that learning in terms of
the ra w representation of the images is computation-
ally in tractable.A ttempts to explain this focused the
dependence of learnability on the representation of the
object [4] but failed to pro videa satisfactory expla-
nation for it, or a practical solution. The approach
dev eloped here builds on suggestions made in [9] and
relies heavily on the development of a feature eÆcient
learning approach [10, 3]. That is, a learning process
capable of learning in domains in which there is a very
large number of potential features but any concept of
interest actually depends on a fairly small number of
those. A tthe heart of the learnability approach are
tw o assumptions that we abstract as follows:

Representation: There exists a (possibly in�nite)
collectionM of \explanations" such that an ob-
ject can be represented as a simple function of
polynomially many elements inM.

Procedural: There exists a process that, given an
image that is a positive example of the target ob-
ject O generates, in polynomial time, \explana-
tions" in M that are present in the image and
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suc h that, with high probability, at least one of
them is in the representation of O.

Under these assumptions w eprove that there exists
an eÆcient algorithm that can learn a good represen-
tation of the object in the sense that, with high prob-
abilit y,it w ouldmake correct predictions on future
images that contain (or do not con tain)the object.
F urthermore, w e show that under these conditions,
the learned representations are robust under realis-
tic noise conditions. A signi�cant non-assumption of
our approach is that it has no prior knowledge on the
distribution of images nor it is trying to estimate it.
Section 2 describes this framework in details.

The framework developed here is very general. The
explanations alluded to above can represent a variet y
of computational processes and information sources
that operate on the image. They can depend on lo-
cal properties of the image, the relativ e positionsof
primitives in the image, and even external informa-
tion sources or context v ariables. Thus, the theoreti-
cal support given here applies also to an intermediate
learning stage in a hierarchical process. The main as-
sumptions of the framework are discussed in Sec. 3.

F or this framework to contribute to a practical so-
lution, andgiv en our assumptions, there needs to be
a computational approach that is able to learn in
the presence of a large number of potential \expla-
nations". The evaluation we pro vide for this frame-
w ork relies on the SNoW learning architecture [3]
that is used here in a large scale object recognition
experiment. The SNoW system (available publicly
at http://L2R.cs.uiuc.e du/~c ogcom p. html) is de-
scribed in Sec. 4, and the experimental study in Sec. 5.

2 Learning F ramework

We study learnability within the standard P A C
model [16] and the mistake-bound model [10]. In the
learning scenario, w eare giv en a concept class C, a
class of f0; 1g-valued function over the instance space
X with an associated complexity parameter n, and
there is some unknown target c oncept fT 2 C that we
are trying to learn. In the mistake-bound model, at
eac h learning stage, an example x 2 X is presented;
the learning algorithm is asked to predict fT (x) and
is then told whether the prediction was correct. Each
time the learning algorithm makes an incorrect pre-
diction, w echarge it one mistake. We say that C is
mistake-bound learnable if there exists a polynomial-
time prediction algorithm A (possibly randomized)
that for all fT 2 C and any sequence of examples is
guaranteed to make at most polynomially many (in
n) mistakes. We say that C is exp ected mistake-bound

learnable if there exists A, as above, such that the ex-
pected number of mistakes it makes for all fT 2 C
and any sequence of examples is at most polynomi-
ally many (in n). Note that the expectation is taken
over the random choices made by A; there is no prob-
abilit y distribution associated with the sequences. In
learning an unknown target function fT 2 C in the
P A Cmodel, w eassume that there is a �xed but ar-
bitrary and unknown distribution D over the instance
space X . The learning algorithm sees examples drawn
independently according to D together with their la-
beling (positive/negative). Then it is required to pre-
dict the value of fT on another example drawn ac-
cording to D. Denote by h(x) the prediction of the
algorithm on the example x 2 X . The error of the
algorithm with respect to fT and D is measured by
error(h) = Prx2DffT (x) 6= h(x)g.

We say that C is PAC-learnable if there exists a
polynomial-time learning algorithm A and a polyno-
mial p(�; �; �) suc h that for all n � 1, all target con-
cepts fT 2 C, all distribution D overX , and all � > 0
and 0 < Æ � 1, such that if the algorithm A is given
p(n; 1=�; 1=Æ) examples, then with probability at least
1� Æ, A's hypothesis, h, is suc h thaterror(h) � �. It
can be shown that if a concept class C is learnable in
the expected mistake-bound model (and thus in the
mistake bound model) then it is PA C-learnable [6]. In
practice, learning is evaluated on a training set. The
hope that a classi�er learned from a training set will
perform well on previously unseen examples is based
on the basic theorem of learning theory [16, 17] which,
stated informally, guarantees that if the training data
and the test data are sampled from the same distri-
bution, good performance on large enough1 training
sample guarantees good performance on the test data
(i.e., good \true" error).

2.1 Learning Scenario

Let I be an input space of images. Our goal is to
learn a de�nition apple:I ! f0; 1g that, when evalu-
ated on a given image, outputs 1 when there is an ap-
ple in the image, and 0 otherwise. It is clear, though,
that this target function is very complex in terms of
the input space and, in particular, may depend on
relational information and even quanti�ed predicates.
Many years of research in learning theory, ho wever,
ha ve sho wn that eÆcient learnability of complex func-
tion is not feasible. In the learning scenario described
here, therefore, learning will not take e�ect directly in

1In this sense, the evaluation on a small training set done
here is not as optimal as, say, a face detection study [18]. Note,
how ever, that the theory implies that learning scales well with
the size of the training data, as we show in Sec. 5.
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terms of the raw input. Rather, we will learn the tar-
get de�nitions in terms of an intermediate representa-
tion that will be generated from the input image. This
will allow us to quantify learnability in terms of the
expressivity of the intermediate representation as well
as the function learned on top of it and, in particular,
it would make explicit the requirements from an inter-
mediate representation so that learning is possible.

Let I be the instance space (e.g., the space of all
images). A relation2 is a function � : I ! f0; 1g. �
can be viewed as an indicator function overI, de�ning
the subset of those elements which are mapped to 1
by�. A relation � is active in I 2 I if �(I) = 1.

De�nition 2.1 L etX be an enumerable collection of
relations on I. A relation-generation function (RGF)
is a mapping G : I ! 2X that maps I 2 I to a set of
all elements in X that satisfy �(I) = 1. If there is no
� 2 X for which �(I) = 1, G(I) = �.

R GFscan be thought as a w ayto de�ne \kinds" of
relations, or to parameterize over a large space of rela-
tions. Only when presented with an instance I 2 I, a
concrete relation(s) is generated. F or example,G may
be the RGF that corresponds to all vertical edges of
size 3 in an image. Given an image, a list of all these
edges that are present in the image is produced.

We no w present a mistake-bound algorithm for a
class of functions that can be represented asDNF for-
mulae over the spaceX of all relations. As indicated,
this implies a PA C learning algorithm, but the proof
is for the mistake-bound case is simpler. In Sec. 5 we
will learn a more general function { a linear thresh-
old function over conjunctions of relations in X ; the
theoretical results can be expended to this case.

De�nition 2.2 L etX be a set of relations that can
be generated by a set of RGFs. L etM be a collection
of monomials (conjunctions) over the elements of X ,
and p(n), q(n) and g(n) be polynomials. L et CM be
the class of all functions which are disjunctions of at
most p(n) monomials in M. F ollowing [9], we call
CM polynomially explainable if ther e exists an eÆ-
cient (p olynomial-time) algorithmB such that for ev-
ery function f 2 CM, and every positive example of
f as input, B outputs at most q(n) monomials (not
necessarily all of them are inM) such that with prob-
ability at least 1=g(n) at least one of them appears in
f (the probability is taken over the coin-
ips of the
(possibly probabilistic) algorithm B).

2In the machine learning literature a relation is sometimes
called a feature.

We note that, in principle, it is possible to abstract
the generation of the conjunctions in to the RGFs
(Def. 2.1). How ev er, we would like to emphasize the
generation of conjunction over simple relations and the
possibility of learning on top of it, given arguments in
the literature of its e�ectiveness and potential biolog-
ical plausibility [5, 15].

We emphasize that f itself is not given to the algo-
rithm B. Also note that a function f in the class CM
may have sev eral equivalen t representations overM.

Theorem 2.1 If CM is polynomially explainable then
CM is expected mistake-bound learnable. F urthermore,
if CM is polynomially explainable by an algorithm B
that always outputs at least one term of f (i.e., g(n) �
1) then CM is mistake-bound learnable.

Proof: [sketch] The algorithm is similar to an algo-
rithm presented in [1] which learns a disjunction of
terms in the in�nite attribute model. The algorithm
maintains an hypothesis h which is a disjunction of
monomials. Initially h con tainsno monomials (i.e.,
h � FALSE). Upon receiving an example e, the al-
gorithm predicts h(e); if the prediction is correct, h is
not updated. Otherwise, upon a mistaken prediction,
it proceeds as follows:

� If e is positive: execute B (the algorithm guaran-
teed by the assumption that CM is polynomially
explainable) on the example e and add the mono-
mials it outputs to h.

� If e is negative: remove from the hypothesis h all
the monomials that are satis�ed by e (there must
be at least one).

The analysis of the algorithm is straight forward for
the case g(n) � 1, and more subtle in general.

The algorithm used in practice, in SNoW, is concep-
tually similar. The main di�erence is that the hypoth-
esis h is a linear threshold function over elements in
M, and rather than dropping elements from it, their
weight is updated. The details of this process (Sec. 4)
are crucial for our approach to be computationally fea-
sible for large scale domains and for robustness.

2.2 Robustness

Any realistic learning framework needs to support
di�erent kinds of noise in its input. Sev eral kinds of
noise have been studied in the literature in the con-
text of PA C learning, and algorithms of thetype w e
consider here have been shown to be robust to them.
The most studied type of noise is that of classi�ca-
tion noise [7] in which the examples are assumed to
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be giv en to the learning algorithm with labels that
are 
ipped with some probability, smaller than 1=2.
Learning in our framework can be shown to be robust
to this kind of noise, as well as to a more realistic case
of attribute noise, in which the the description of the
input itself is corrupted to a certain degree. We believe
that this is the type of noise that is more relevant in
the current case. First, since learning is done in terms
of the output of the RGFs, which may introduce some
noise. Second, since attribute noise is related to oc-
clusion noise that is important in object recognition.
Speci�cally, attribute noise can be used to model the
type of noise that usually occurs when other objects
appear in the image, behind or in front of the target
object. This is formalized using the notion of domi-
nation: Let f1; f2 be tw o concepts.We say that f1 is
k-dominated byf2 if eac hf1 example can be obtained
from an f2 example by 
ipping at most k of the active
relations. In this case, f2 k-dominates f1. The labels
of the examples, how ev er, are generated according to
the original concept, before the noise is introduced.

Theorem 2.2 If a class CM is learnable by virtue of
being p olynomially explainable then it is learnable even
if examples of the target class are clutter edby a k-
domination attribute noise, for any constant k.

Proof: [Sketch] The proof is an extension of the
arguments in [11 ] regarding robustness to attribute
noise, to the case of the in�nite attribute model.

3 From Theory to Practice
Several issues need to be addressed in order to ex-

hibit the practicality of our learning framework. The
�rst is the availabili ty of a variet y of RGFs, capable
of extracting from data evidence for the existence of
primitive visual patterns under di�erent conditions.
In this w orkw e illustrate the approach by utilizing
simple edge detectors. The second issue is the compo-
sition of complex relations from primitive ones. This
is crucial since it allows the representation of complex
functions in terms of the relations by learning simple
functional descriptions over their compositions. A lan-
guage that supports composition of restricted families
of conjunctions and can encode structural relations in
images (e.g., above, to the left of...) is discussed in a
companion paper. This work uses only general con-
junctions and restricts only their size.

Finally, the issue of learnability which is the fo-
cus of this work. In learning situations in vision, the
number of potential relations (features) that may af-
fect each decision is very large but, typically, only a
small number of them is actually relevan t to a deci-
sion. Beyond correctness, a realistic learning approach

needs therefore to be relation-eÆcient [10] in that its
learning complexity (number of examples required for
con vergence)depends on the number of relev an tre-
lations and not the global number of relations in the
domain. This can be phrases as the dependence of
generalization quality on the number of examples ob-
serv ed. Also, since only a few of the many potential
relations are activ e in any instance, the complexity
of evaluating the learning hypothesis on an instance
should depend on the number of activ e relations in
the input rather than the total number in the domain.
And, a learning approach should allow variable input
size, since learning is in terms of relations that are gen-
erated from the image in a data-driven way, making it
impossible, or impractical, for a learning approach to
write explicitly, in advance, all possible \relations".

Given that, the learning approach used in this work
is the one dev elopedwithin the SNoW learning ar-
chitecture [13, 3]. SNoW is speci�cally tailored for
learning in domains in which the potential number of
features taking part in decisions is very large, but may
be unknown a priori, as in the in�nite attribute learn-
ing model [1]. Speci�cally, as input, the algorithm re-
ceives labeled instances < (x; l) >, where an instance
x 2 f0; 1g1 is presented as a list of all the active re-
lations in it and the label is a member of a discrete
set of values (e.g., objects identi�ers). Given a do-
main instance (an image) a set of pre-existing RGFs
are evaluated on it and generate a collection of rela-
tions that are active in this image; these, in turn, may
be composed to generate the elements of M. A list
of activ e elements in M is presented to the learning
procedure and learning is done at this level.

4 The SNoW Architecture

The SNoW (Sparse Netw ork of Winnows3) learning
architecture is a sparse netw ork of linear units over a
common pre-de�ned or incrementally learned feature
space. Nodes in the input layer of the netw ork repre-
sen t simple relations over the input instance and are
being used as the input features. A linear unit is used
for eac htarget no deand represents a relation or con-
cept of interest o ver the input; in the current applica-
tion, target nodes represent a de�nition of an object in
terms of the relations (features) extracted from the 2D
image input. An input instance is mapped into a set
of features which are active in it; this representation
is presented to the input layer of SNoW and propa-
gates to the target nodes. Target nodes are linked via
weighted edges to (some of) the input features.

Let At = fi1; : : : ; img be the set of features that are

3To winnow: to separate c ha� from grain.

1063-6919/00 $10.00 � 2000 IEEE 



activ e in an example and are linked to the target node
t. Then the linear unit corresponding to t is active i�

X

i2At

wt

i
> �t;

where wt

i
is the weigh t on the edge connecting theith

feature to the target node t, and �t is t's threshold.

Each SNoW unit includes a collection of subnet-
w orks, one for each target relations but all using the
same feature space. Here, we may have one unit with
target subnetw orks for all the target objects or we may
de�ne units to each have tw o competing target objects.
A given example is treated autonomously by eac h tar-
get subnetw ork; an example labeledt may be treated
as a positive example by the subnetw ork fort and as
a negative example by the rest of the target nodes.

The learning policy is on-line and mistake-driven;
sev eral update rules can be used within SNoW. The
most successful and the only one used in this work, is
a varian t of Littlestone's Winnow update rule [10], a
multiplicative update rule tailored to the situation in
which the set of input features is not known a priori, as
in [1]. This mechanism is implemented via the sparse
architecture of SNoW. That is, (1) input features are
allocated in a data driven way { an input node for the
relation i is allocated only if i w as active in any input
instance and (2) a link (i.e., a non-zero weigh t) exists
betw een a target nodet and i if and only if i was ac-
tive in an example labeled t. One of the important
properties of the sparse architecture is that the com-
plexit y of processing an example depends only on the
number of features active in it, na, and is independent
of the total number of features, nt, observed o ver the
life time of the system. This is important in domains
in which the total number of features is very large, but
only a small number of them is active in each example.

The Winnow update rule has, in addition to the
threshold �t at the target t, tw o update parameters: a
promotion parameter � > 1 and a demotion parame-
ter 0 < � < 1. These are being used to update the cur-
ren t representation of the target t (the set of weights
wt
i
) only when a mistake in prediction is made. Let

At = fi1; : : : ; img be the set of active features that are
link ed to the target nodet. If the algorithm predicts
0 (that is,

P
i2At

wt

i
� �t) and the received label is 1,

the active weigh ts in the current example are promoted
in a multiplicative fashion:

8i 2 At; w
t

i  � � wt

i :

If the algorithm predicts 1 (
P

i2At

wt

i
> �t) and the

receiv edlabel is 0, the activ ew eigh tsin the current

example are demoted:

8i 2 At; w
t

i
 � � wt

i
:

All other weights are unchanged.
The key feature of the Winnow update rule is that

the number of examples required to learn a linear func-
tion grows linearly with the number nr of relevant fea-
tures and only logarithmically with the total number
of features. This is crucial in domains in which the
number of potential features is vast, but a relatively
small number of them is relev an t. Moreover, in the
sparse model, the generalization actually scales with
a number of examples that scales with O(nr logna).
Winnow is known to learn eÆciently (as a function of
the margin in the data) any linear threshold function
and to be robust in the presence of various kinds of
noise and in cases where no linear-threshold function
can make perfect classi�cations, while still maintain-
ing its abovementioned dependence on the number of
total and relevant attributes [11, 8].

Once target subnetw orks have been learned and the
net w ork is being evaluated, a winner-take-all mecha-
nism is employed to select the dominant activ e target
node in the SNoW unit.

5 Experimental Evaluation
We use the Columbia Object Image Library (COIL-

100) database in all the experiments below. COIL is
available at http://www.cs.columbia.edu/CAVE. The
COIL-100 dataset consists of color images of 100 ob-
jects where the images of the objects that were taken
at pose intervals of 5Æ, i.e., 72 poses per object. The
images w erealso normalized such that the larger of
the t w o object dimensions (height and width) �ts the
image size of 128 � 128 pixels. Figure 1 shows the
images of the 100 objects tak en in frontal view, i.e.,
zero pose angle. The 32 highlighted objects in Figure
1 are considered more diÆcult to recognize in [12]; w e
use all 100 objects including these in our experiments.
Each color image is converted to a gray-scale image of
32� 32 pixels for our experiments.

5.1 Results Using Conjunction of Edges

Edge information con tains signi�cant visual cues
for human perception and has the potential to pro-
vide more information than the previous representa-
tion and guarantee robustness. Edge-based represen-
tations can be used, for example, to obtain a hier-
archical description of an object. While perceptual
grouping has been applied successfully to many vi-
sion problems including object and face recognition,
the grouping procedure is usually somewhat arbitrary.
This work can this be viewed as a systematic method
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Figure 1: Columbia Object Image Library (COIL-100) consists of 100 objects of varying poses (5Æ apart). The
objects are shown in row order where the highlighted ones are those considered more diÆcult to recognize in [12].

to learn representation of objects based on conjunc-
tions of edges. For each image, a Canny edge detec-
tor [2] is �rst applied to extract edges. Let I(x; y)
represent the (x; y) pixel in an image I . Let E(x; y)
be the Canny edge map in which E(x; y) = 1 indicates
the existence of an edge at I(x; y). T oprune extra-
neous small edge fragments and reduce the computa-
tion complexity we keep only edges with length above
some threshold (e.g., 3 pixels). Ê is the resulting edge
map after pruning. That is, the pixel I(x; y) is con-
sidered to contain signi�cant perceptual information
to describethe object, when Ê(x; y) = 1; otherwise,
Ê(x; y) = 0. F or consistency we index an edge using
its top left pixel. F or eac h pixel w emaintain up to
tw o possible edges in the resultingÊ map, a vertical
one and a horizontal one, denoted by

e =< (x; y); d >; d 2 fv; hg:

F eatures are generated to represent conjunctions of
size tw o of these edges.That is, features are elements
of the cross product

Ê � Ê = f(e; e0)je 6= e0g:

This representation thus constitutes a hierarchical rep-
resen tation of an object which encodes the spatial rela-
tionships of the edges in an object. Figure 2 illustrates
the bene�t of this encoding in object recognition. It
sho ws tw oobjects with very similar appearance for
which the edge maps (where the minimum length is 3)
are di�erent. This di�erence grows when conjunctions
of edges are used. Finally, w e notethat the number
of potential features when using this representation is
very large, but very few of them are activ e. For
each 32� 32 edge map, we �rst extract the horizontal
and vertical edges whose length is at least 3 pixels.
Therefore, w ehave tw o32 � 32 edge maps in which
the value of a pixel is 1 if it is on an edge. A vector
for an object consists of the raster scans of these tw o

maps, in which conjunctions of any two elements are
computed. Thus, a feature vector of each object con-
sists, in principle, of

�
2048

2

�
= 2096128 conjunctions,

of which only an average of 1822 are active (present)
in feature vectors of objects in the COIL-100 dataset.
T o reduce the computational complexity of the learn-
ing process, the feature vectors are further pruned so
that only the 512 most frequently occurring features
are retained in each instance representation. This cor-
responds to the process that produces elements inM,
alluded to in Def. 2.2. Note that the de�nition sup-
ports a randomized process, in this case, w e use one
based on frequency of feature occurrence.

Table 1 shows the performance of our method using
conjunctions of edges to represent objects. We vary
the number of views of an object (k) during training
and use the rest of the views (72 � k) of an object
for testing. The results indicate that conjunctions of
edges provide useful information for object recognition
and that SNoW is able to learn with it. The experi-
mental results also exhibit that the superiority of the
conjunctions based representation increases when the
number of views per object is limited.

5.2 Results Using Pixel-Based Represen-
tation

T oevaluate the SNoW approach with edge-based
representation, w ecompare the experimental results
of other classi�ers. The pixel-based representation is
used for the SNoW, Support Vector Machine (SVM)
and nearest neighbor classi�ers with each image is con-
verted to a raster scan vector of intensity values.

The pixel-based representation in the SNoW ap-
proach consists of a set of Boolean features that en-
code the positions and intensity values of pixels. Let
the (x; y) pixel of an image with width w and height
h ha vein tensit yvalue I(x; y) (0 � I(x; y) � 255).
This information is encoded as a feature whose in-
dex is 256 � (y � w + x) + I(x; y). This represen-
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(a) object 65 (b) edge map (c) hor. edge (d) vert. edge (e) object 13 (f) edge map (g) hor. edge (h) vert. edge

Figure 2: Two objects with similar appearance (in terms of shape and intensity values) but very di�erent edge
maps. Note that some of the edges are blurred or missing because of aggressive downsampling (from 128� 128
to 32� 32 pixels).

T able 1:Experimental results of three classi�ers using the 100 objects in the COIL-100 dataset

# of views/object
36 18 8 4
3600 5400 6400 6800
tests tests tests tests

SNoW w/ conjunction of edges 96.25% 94.13% 89.23% 88.28%
SNoW w/ intensity values 95.81% 92.31% 85.13% 81.46%
Linear Support Vector Machine 96.03% 91.30% 84.80% 78.50%
Nearest Neighbor 98.50% 87.54% 79.52% 74.63%

tation ensures that di�erent points in the fposition
� intensityg space are mapped to di�erent features.
(That is, the feature indexed 256�(y�w+x)+I(x; y)
is active if and only if thein tensit y in position (x; y)
is I(x; y).) In our experiments images are normal-
izes so that w = h = 32. Note that although the
number of potential features in our representation is
262; 144 (32 � 32 � 256), only 1024 of those are ac-
tive (present) in each example, and it is plausible that
many features will never be active. Indeed, in one of
the experiments, only 13,805 of these features w ere
ever activ e.Since the algorithm's complexity depends
on the number of active features in an example rather
than the total number of features, the sparseness also
con tributes to eÆciency. Also notice that although
this representation seems simplistic, the performance
levels reac hed are surprisingly good.

T able 1 shows the recognition rates of the SNoW-
based methods, the SVM-based method (using linear
dot product for the kernel function), and the nearest
neighbor classi�er using the COIL-100 dataset. The
important parameter here is that we vary the number
of views of an object (k) during training and use the
rest of the views (72� k) of an object for testing.

The experimental results show that the SNoW-
based method performs as well as the SVM-based
method when many views of the objects are present
during training and outperforms the SVM-based
method when the numbers of views is limited. Al-

though it is not surprising to see that the recognition
rate decreases as the number of views available dur-
ing training decreases, it is worth noticing that both
SNoW and SVM are capable of recognizing 3D ob-
jects in the COIL-100 dataset with satisfactory per-
formance if enough views (e.g., > 18) are provided
and seem to be fairly robust ev en if only a limited
number of views (e.g., 8 and 4) is used for training;
the performance of both methods degrades gracefully.
Overall, the SNoW-based method using conjunctions
of edges clearly outperforms other classi�ers.

5.3 Noise Model

T otest whether the proposed learning framework
is noise tolerant, w eselect a set of 10 objects4 from
the COIL-100 dataset and add in arti�cial occlusions
for experiments. In the data set, each object has 36
images (10Æ apart) for training and the remaining 36
images for tests. The object images are occluded by a
strip controlled by four parameters (�; p; l; g) where �
denote the angle of the strip, p denote the percentage
of occluded area, l denote the location of the center of
the strip, and g denote the intensity values of the strip.
Figure 3 shows some object images and the occluded
object images for f�; p; l; gg = f45Æ; 15%; (16; 16); 0g.
This SNoW classi�er is tested against this dataset us-

4More speci�cally, the objects are selected from the set of
objects on which the nearest neighbor classi�er makes most mis-
takes, objects 8, 13, 23, 27, 31, 42, 65, 78, 80, 91.

1063-6919/00 $10.00 � 2000 IEEE 



(a) (b)

Figure 3: Objects images with and without occlusion
as well their edge maps.

ing the edge-based representation. Table 2 shows the
experimental results with and without occlusions on
this set of 10 objects with 36 views. The recogni-
tion performance degrades only slightly from 92.03%
to 88.78%. Note that the objects are those on which
the nearest neighbor classi�er makes most mistakes.

T able2: Experimental results of SNoW classi�er on
occluded images with 36 views per object

Recognition rate Recognition rate
w/o occlusion w/ occlusion

SNoW 92.03% 88.78%

6 Summary and Conclusions

We proposed a learning framework for visual learn-
ing and evaluated it experimentally in the context of
learning for object recognition. In this approach learn-
ability can be rigorously studied without making as-
sumptions on the distribution of the observed objects
but, via the PA C model, the learned hypothesis' per-
formance naturally depends on its prior experience.

An important feature of the approach is that learn-
ing is not studied directly in terms of the raw data but
rather with respect to intermediate representations ex-
tracted from it and can thus be quanti�ed in terms of
the ability to generate expressive intermediate repre-
sen tations. It particular, it makes explicit the require-
ments from these representations to allow learnability.
We believe that research in vision should concentrate
on the study of these intermediate representations.

We ha veillustrated our approach in a large scale
experimental study in which we use the SNoW learn-
ing architecture to learn representations for the 100
objects in COIL-100. Although it is clear that object
recognition in isolation is not the ultimate goal, this
study sho ws the potential of this computational ap-
proach as a basis for studying and supporting more
realistic visual inferences.
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