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Abstract 
Current computer vision systems whose baszc 

methodology is open-loop or filter type typically use 
imuge segmentation followed by object recognition al- 
gorithms. These systems are not robust for most real- 
world applications. In cont,rust, the system presented 
here achie,ues robust performance by using ,reinfo,rce- 
ment leurning to induce a mapping from znput zm- 
ages to corresponding segmentation parameters. This 
is acco~mplished by using the confidence level of model 
matching as a reinforcement signal for a team of learn- 
ing automata to search for segmentation parametel:s 
during kaining. The use of the recognition algorithm 
as part of the evaluation function for image segmenta- 
tion gives rise to significant improvement of the sys- 
tem performance by automatic generation of recognz- 
tion strategies. The system is verified through exper- 
iments on sequences of color images wzth ~~uryzng ea- 
ternal conditions. 

1 Introduction 
Image segmentation, feature ext,raction and model 

matching are the key building blocks of a computer vi- 
sion system for model-based object recognition [5, IO]. 
The tasks performed by these building blocks are char- 
acterized as the low (segmentation), intermediate (fea- 
ture extraction) and high (model matching) levels of 
computer vision. While the goal of image segmenta- 
tion is to ext,ract meaningful objects from an image, 
model matching uses a representation such as shape 
features obtained at the intermediate level for recog- 
nition. It requires explicit shape models of the object 
t,o be recognized. There is an abstraction of image 
information as we move from low to high levels and 
the processing becomes more knowledge based or goal 
directed. 

Although there is an abundance of proposed com- 
puter vision algorithms for object recognition, there 
have been hardly any systems that achieve good per- 
formance for practical applications, since most such 
systems do not adapt to changing environments [I]. 
The main difficulties, typically associated with sys- 
tems that are mostly open-loop or filter type, can be 
chara.cterized as follows. First, the fixed set of param- 
eters used in various vision algorithms often leads to 
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ungraceful degradation in performance. Second, the 
image segmentation, feature extraction and selection 
are general!? carried out as preprocessing steps to ob- 
ject recogmtlon algorithms for model matching. These 
steps totally ignore the effects of the earlier results 
such as image segmentation on the future performance 
of the recognition algorithm. Third, generally the cri- 
teria used for segmentation and feature extraction re- 
quire elaborate huma.n designs. When the conditions 
for which they are designed are changed slightly, t,hese 
algorithms fail. Finally, object recognition is a process 
of making sequences of decisions, i.e., applying various 
image analysis algorithms. Often the usefulness of a 
decision or the results of an individual al orithm can 
only be determined by the final outcome e.g. match- I! 
ing confidence) of the recognition process. This is also 
known as a “vision-complete” problem [4], i.e., one 
cannot really assign labels t,o the image without the 
knowledge of which parts of the image correspond to 
what objects. 

This paper presents a learning based vision frame- 
work in which these problems can be adequately ad- 
dressed. The underlying theory is that any recog- 
nition system whose decision criteria for image seg- 
mentation and feature extraction, etc. are developed 
autonomously from the outcome of the final recog- 
nition might transcend all these problems. Our sys- 
tem accomplishes this by incorporating a reinforce- 
ment, learning mechanism that takes the output of the 
recognition algorithm and uses it as a feedback to in- 
fluence the performance of the segmentation process. 
As a result, the recognition performance can be sig- 
nificantly improved over time with this method. 

This work is most closely related to the work by 
Bhanu et al. [a], in which they describe a system 
that uses genetic and hybrid algorithms for learning 
segmentation parameters. However, the recognition 
algorithm is not part of the evaluation function for 
segmentation in their system. The genetic or hybrid 
algorithms simply search for a set of parameters that 
optimize a prespecified evaluation function that may 
not best serve the overall goal of robust object recog- 
nition. Furthermore, the papers assume that the lo- 
cation of the object in the image is known for their 
surveillance application. In our work, we do not make 
such an assumption. We use an explicit geometric 
model of an object, represented by its polygonal ap- 
proximation, to recognize it in the image. 
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2 Learning System for Segmentation 
Parameter Estimation 

Consider the problem of recognizing an object in 
an input image, assuming that the model of the ob- 
ject is given and that the precise location of the object 
*in the image is unknown. The conventional method 
for the recognition problem is to first segment the in- 
put image, then extract and select appropriate fea- 
tures from the segmented image, and finally perform 
model matching using these features. If we assume 
that the matching algorithm produces a real-valued 
out,put indicating tfhe degree of success upon its con- 
pletion, then it is natural to use this real-valued out- 
put as feedback to influence the performance of seg- 
mentation and feature extraction to bring about the 
system’s ea.rlier decisions favorable for more accurate 
model matching. The rest of this paper describes a 
reinforcement learning-based vision system to achieve 
just that. 

2.1 Learning to Segment images 
OW current investigation into reinforcement 

learning-based vision systems is focused on the prob- 
lem of learning to segment images. An important, char- 
acteristic of our approach is that the segmentation 
process takes into account the biases of the recogni- 
tion algorithm to develop its own decision strategies. 
A consequence of this is that the effective search space 
of segmentation parameters can be dramatically re- 
duced. As a result, more accurate and efEicient seg- 
mentation, and thus recognition performance, can be 
expected. 

2.2 Image Segmentation 
We begin with image segmentation [6] because it 

is an extremely important and difficult low-level task. 
All subsequent interpretation tasks including object 
detection, feature estrxtion, object recogmtlon and 
classification rely heavily on the quality of the seg- 
mentat,ion process. The difficulty arises for image seg- 
mentation when only local image properties are used 
to define the region-of-interest for each individual ob- 
ject. It is known [I, 31 that correct localization may 
not always be possible. Thus, a good image segmen- 
tation cannot, be clone by grouping parts with simi- 
lar image properties in a purely bottom-up fashion. 
Difficulties also arise when segmentation performance 
needs to be adapted to the changes in image quality, 
which is affected by variations in environmental COP 
ditions, imaging devices, lighting, etc. 

2.3 Our Approach 
Each combination of segmentation parameters pro- 

duces, for a siven input, an unique segmeiltation im- 
age from which a confidence level of model matching 
can be computed. The simplest way to amcquire high 
pay-off parameter combinations is through t,rial and 
error. That is, generate a combination of parameters, 
compute the matching confidence, generate another 
combination of parameters, and so on, until the confi- 
dence level has exceeded a given threshold. Better yet,; 
if a well-defined evaluation function over the segmen- 
tation space is available, then local gradient methods, 
such as hill-climbers, suffice. While the trial-and-error 

Confidence Level for Matching 

Figure 1: Reinforcement learning-based 
level system for object recognition. 

multi- 

methods suffer from excessive demand for computa- 
tional resources, such as time and space; the gradi- 
ent methods suffer from the unrealistic requirement 
for an evaluation function. In contrast, reinforcements 
learning performs trials and errors, yet does not de- 
mand excessive computational resources; it performs 
hill-climbing in a statistical sense, yet does not require 
an evaluat,ion function. In addition, it cm generalize 
over unseen images as we shall see later. It thus fits 
our goal nicely here. 

Figure 1 depict*s the conceptual diagram of our re- 
inforcement learning-based object recognition system 
that addresses the parameter selection problem en- 
countered in the image segmentation task by using the 
recognition algorithm itself as part of the evaluat8ion 
function for image segmentation. 

3 Reinforcement Learning 
Reinforcement learning is an important machine 

learning paradigm. It is a framework for learning to 
make sequences of decisions in an environ rnent. In this 
framework, a learning system is given, at each time 
step, inputs describing its environment. The system 
t~hen makes a decision based on these inputs, thereby 
causing the environment to deliver to the system a 
reinforcement. The value of this reinforcement de- 
pends on the environmental state, the system’s de- 
cision, and possibly random disturbances. In general, 
reinforcement measuring the consequences of a deci- 
sion can emerge at a multitude of times after a de- 
cision is made. A distinction can be made between 
associa.tive and non-associative reinforcement learn- 
ing. In the non-associative paradigm, reinforcement is 
the only information the system receives from its en- 
vironment. Whereas, in the associative paradigm, the 
syst,em receives input information that indicates the 
state of its environment as well as reinforcement. In 
such learning systems, a %tat,e” is a uni’que represen- 
tation of all previous inputs to a system. In computer 
vision, this state information corresponds to current 
input image. Our object recognition applications re- 
quire us to take into account the changes appearing 
in the input images. The objective of the system is to 
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select sequences of decisions to maximize the sum of 
future reinforcement (possibly discounted) over time. 
It is interesting to note that for a given state an as- 
sociative reinforcement learning problem becomes a 
non-associative learning problem. 
3.1 Connectionist Reinforcement Learn- 

ing 
The particular class of reinforcement learning algo- 

rithms employed in our object recognition system is 
t,he connectionist REINFORCE algorithm [ ll]! where 
units in such a network (depicted by the picture on 
the left in Figure 2) are Berno,ull,i yuaszlinear unrts. in 
that the output of such a unit is either 0 or 1: deter- 
mined stochastically usinK the Bernoulli distribution 
with parameter p 4’ f(s), where f is the logistic func- 
tion, f(s) = l/(1 + exp(-s)) and s = xi UJ;X~ is the 
usual weighted summation of input values to that unit. 
For such “a unit, p represents i& probability of choos- 
ing 1 as its output value. The picture on the right in 
Figure 2 depicts the ith unit. 

Figure 2: Left: Connectionist reinforcement 
learning system. Right: Bernoulli quasilinear 

In the general reinforcement learning paradigm, the 
network generates an out,put pattern and the environ- 
ment responds by providing the reinforcement T as its 
evaluation of that output pattern, which is then used 
to drive the weight changes according to the particu- 
lar reinforcement learning a!gorithm being used by the 
network. For t,he Bernoulh quasilinear units used in 
this research, the REINFORCE algorithm prescribes 
weight increments equal to 

Aw,~ = cy(r - b)(yli -p&j (1) 

where a is a positive learning rate, b serves as a rein- 
forcement baseline, xj is the input to ea.ch Bernoulli 
unit, yi is the output of the l.th Bernoulli unit, and pi 
is an internal parameter to a Bernoulli random num- 
ber generator. Note that i takes values from 1 to n, 
and j from 1 to m, where n and m are the number 
of the units in the network and the number of input 
features, respectively. 

It can be shown [ll] that, regardless of how b is 
computed, whenever it does not depend on the imme- 
diately received reinforcement value T, and when r is 

sent to all the units in the network, such an algorithm 
satisfies 

E{AW/W} = cvVWE{rIW} (2) 

where E denotes the expectation operator, W repre- 
sents the weight matrix of the network, and AW is the 
change of the weight matrix. A reinforcement learning 
algorithm satisfying (2) has the convergence property 
that the algorithm statistically climbs the gradient of 
expected reinforcement in wei,ght space. For adapting 
parameters of the segmentation algorithm, it means 
that the segmentation parameters change in the di- 
rection along which the expected matching confidence 
increases. The next two subsections describe the par- 
ticular network and the algorithm used in this paper. 

3.2 The Team Architecture 
JVe use a very simple form of a trial generating net- 

work in which all of the units are output, units and 
there are no interconnections between them. This de- 
generate class of network corresponds to what is called 
a teum of automata in the literature on stochastic 
learning automata. We, therefore, call these networks 
as tealns of Bernoulli qua&linear units. Each segmen- 
tation parameter is represented by a set of Bernoulli 
quasilinear units and the output of each unit is binary 
as we have described earlier. 

The weights wi. are adjusted according to the par- 
ticular learning a gorlthm used. We note that when 11 
si = 0: and hence pi = 0.5! the unit is equally likely to 
pick yz either 0 or 1, while increasing si makes a 1 more 
likely. Adjusting the weights in a team of Bernoulli 
qua&near units is thus tantamount to adjusting the 
probabilities (pi’s) for individual units. 

3.3 The Team Algorithm 
The specific algorithm we used with the team ar- 

chitecture has the following form: At the tih time 
step, after generating output y(t) and receiving re- 
inforcement 7’(t), i.e., the confidence level indicating 
the matching result, increment each weight wij by 

L.wq(t) = cY(~(t)-~(t-l))(y~(t)-yi(t-l))zj-6w;j(t) 

where cy, the learning rate, and 6, the weight de- 
cay rate, are parameters of the algorithm. The term 
[r(t) - ?[t - 1)) is called the reinforcement factor and 
(y:(i) - ii(t -‘i)) the eligibility o?' the weiglit wij [lI]. 
Note that this algorithm is a variant of the one de- 
scribed in equatioi (I), where b is replaced by I- and 

F(t) is t,he exponentially weighted average, or trace, 
of Drier reinforcement values r(t) = rF(t - 1) + (1 - 

I \  

y);(t) with ~(0) = 0. The track ‘parameter y’wa; set 
equal to 0.9 for all the experiments reported here. Sim- 
ilarly, yi (t) is an average of past values of yi computed 
by the same exponential weighting scheme used for P. 
That is, vi(t) = rvi(t - 1) + (1 - -/)yi (t). The use of 
weight decay is chosen as a simple heuristic method to 
force sustained exploration of the weight space since 
it was found that REINFORCE algorithms without 
weight decay always seemed to converge prematurely. 
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l LOOP: 

1. For each image i in the training set do 
(a) Compute matching confidence for image i: COiVFIDi 
(b) ni = MAXCONFID - CONFIDi 
(c) If xi 71i is 0, then terminate. 
(cl) proportioni = * 

2. T’I’ = 0 (TT: average Gatching confidence) 
3. Fork= ltondo 

(a) Sample image i according to proportioni 

(b) Segment image i using current segmentat.ion parameters 
(c) Perform noise clean up 
(d) Get segmented regions (also called blobs or connected components) 
(e) Perform feature extraction for each blob to obtain token sets 
(f) Compute matching of each token set against model, return the highest confidence T 
(g) Obtain new parameters for t,he segmentation algorithm using T as reinforcement 
(h) ~7’ = TT + T 

l UNTIL number of iterations is equal to N or v/n, 2 l&h (Threshold) 

Figure 3: Main Steps of the Proportional Training Algorit:hm. 

3.4 Implementation of the Algorithm 
We use a proportional training algorithm where, 

instead of looping through every image in the train- 
ing set, we samples images proportional to the level 
of matching confidence the current system achieves. 
That is, the lower the matching confidence the system 
gets on an image, the more likely the image ~111 be 
sampled. In this way training is focused on those im- 
ages having the lowest matching confidence, and thus 
faster performance improvement can be achieved. Fig- 
ure 3 shows the main steps of the proportional train- 
ing algorithm, where MAXCONFID (=l in this pa- 
per) is the maximum confidence level the system can 
achieve, i.e., when a perfect matching occurs, n is the, 
number of images in the training set, and N and &h 
are input parameters to the algorithm. 

4 Experimental Demonstration 
We have tested our algorithm on a variety of color 

images. 
The Phoenix algorithm [S] was chosen as the image 

segmentation component in our system because it is a 
well-known method for the segmentation of color im- 
ages with a number of adjustable parameters. Phoenix 
works by splitting regions using a histogram for color 
features. Note that any segmentation algorithm with 
acljustable parameters can be used in our approach. 

The Phoenix algorithm has a total of fourteen ad- 
justable parameters. The four most critical ones that 
affect the overall results of the segmentation process 
are used in learning. These parameters are Hsm,ooth, 
Maxmin , J’plitmin, and Height. The Itearn algorithm 
searches for a combination of these parameters that 
will give rise to a segmentation from which the best 
recognition can be achieved. The ranges for each of 

these parameters are the same as those used in [a]. 
The resulting search space is about one million sam- 
ple points. 

Each of the Phoenix parameters is repre,sented us- 
ing 5 bit Gray code that has the advantage over simple 
binary code in that only one bit changes beltween rep- 
resentations of two consecutive numbers. Since there 
are 4 parameters, we have a total of 20 Bernoulli quasi- 
linear units and each parameter corresponds to the 
outputs of 5 units. 

The feature extraction consists of findin.g polygon 
approximation tokens for each of the regions obtained 
after image segmentation. The polygon approxima- 
tion is obtained using a split and merge technique [3] 
t,hat has a fixed set of parameters. 

Object recognition employs a cluster-structure 
matching algorithm [3] tha.t is based on the cluster- 
ing of translational and rotational transformations be- 
tween the object and the model for recognizing 2-D 
and :3-D objects. It outputs a real numb’er indicat- 
ing the confidence level of the matching process. This 
confidence level is then used as a reinforcement signal 
to drive the team algorithm. 

The initial parameter values for the Phoenix algo- 
rithm are chosen at random. We expect, however, that 
t,he good starting values of the segmentation parame- 
ters a.ffect the convergence rate. 

4.1 Results 
The segmentation task whose experimental results 

we report here is a sequence of indoor color images 
(160 by 120 pixels) having simple geometric objects 
with varying lighting and motion conditions. These 
images are shown in Figure 4, where, from left to right, 
images are moving away from the camera, and within 
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each column, lighting conclit,ions det,eriorabe from top 
to bottom. The training set, consist,s of the images 
4(c), (h), (k), and (1) (. 1 lane omly selected) ~ whereas 
the testing data come from the rest) of the images (8 
images). The objective of the task is to find a set of 
Phoenzz's parameters that, give rise to a segmentation 
of the input image that, after appropriate feature ex- 
traction, will result in the recognition of the t,riangular 
object,. The model of the triangular object is repre- 
sented by a polygonal a.pproximation of its shape. ‘The 
threshold for matching confidence in this case was set 
to 0.8. The learning rate parameter (1 was set to 0.008 
in all the experiments. Not,e t,hat, unlike previous work 
on image segmentation, the criteria measuring image 
segmentation quality here are completely determined 
by the matching algorithm itself. 

jetted onto the subspace spanned by the eight eigen- 
vectors corresponding to eight largest eigen values of 
the original (luminance) image vector space (120 by 
160 pixels). These input, q are normalized to lie be- 
tween -1 and 1. Our goal is to see which method can 
offer better performance. It turns out that the second 
met,hod performed slightly better than the first one, 
as can be seen below (Figures 5 and 6). Note that, 
unless stated ot,herwise, a.11 the figures below are ob- 
tained under the condition that the system takes input 
from the subspace spanned by the first, 8 major axes 
corresponding t,o the eight largest eigenvalues. 

Figure .5 shows the segmentation performance (both 
training and testing) of the Phoenix algorithm with 
learned parameters on the images shown in Figure 4. 
The training results in Figure 5 are obta.ined aft,er a 
mean value (over 5 runs) of 250 passes through the 
t,raininLg data. Figure 6 shows the average confidence 
(over a runs) received by the two methods over time 
during training. Each run consists of a sequence of tri- 
als until the average confidence level has exceeded 0.8. 
The threshold (0.8) serves our purpose well here since 
it is sufficient to demonstrate the effect of learning for 
object recognition. 

6) 

(j) (1) 

Figure 4: Twelve color images having simple ge- 
ometric objects. 

Each unit in the team network has a total of 8 in- 
put weights. In the first experiment each of the input 
weights takes an average grey value of input on a 60 by 
40 neighborhood on the input image plane of 120 by 
160 pixels. This input image is the luminance image 
of the corresponding color image. Note that in t,his 
experiment the average is normalized to lie between - 
1 and 1. For weights that are adjacent in a unit, their 
receptive fields are at least 40 pixels apart in the input 
image. Thus, the input image is undersampled, which 
in turn greatly reduces the number of weights in the 
network. 

In the second experiment each input image is pro- 

(a) (b) 

(d) 

(h) 6) 

(.i) (k) (1) 

Figure 5: Segmentation performance of the 
Phoenix algorithm with learned parameters. 

When the segmentation parameters obtained aft,er 
training were applied to the images in the testing set, 
recognition results for all the images except 4(f) are 
acceptable. However, if we include image 4(f) in the 
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training set and allow learning to continue, experi- 
ments have been performed that show that successful 
recognition can be achieved for all testing images in 
much less time (less than 50%) compared to the time 
taken for training on the original training data. 

Figure 6: Average confidence received 
two methods over time during training. 

by the 

In comparison, the Phoenix algorithm with a de- 
fault parameter setting was also run on the same im- 
ages. Figure 7 illustrates the samples of the Phoenix 
performance. This default parameter setting resulted 
in a total matching failure. 

We have also performed a variety of experiments on 
outdoor images. 

(4 (b) (cl 

Figure 7: Samples of segmentation performance 
of the Phoenix algorithm with default parame- 
ters on the images (Figures, 4(a), 4(b) and 4(c), 
respectively). 

5 Conclusions 
The key contribution of the paper is the general 

framework for the usage of reinforcement learning in 
a model-based object recognition system. Our investi- 
gation into reinforcement learning-based object recog- 
nition shows conclusively that a robust and adaptive 
system can be developed that automatically deter- 
mines the criteria for segmentation of the input images 
and selects useful features that result in a system with 
high recognition accuracy when applied to new unseen 
images. Note that the performance of any learning- 
based computer vision system depends on the vision 
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We are also exploring other reinforcement learning 
based techniques for segmentation, feature extraction 
and model-matching for robust object recognition in 
real-world environments [9]. 
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