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Abstract One promising approach is to learn dynamic models
from a training corpus of observed state space trajectories.
The human figure exhibits complex and rich dynamic be- In cases where sufficient training data is available, the learn-
havior that is both nonlinear and time-varying. However, ing approach promises flexibility and generality. Many dif-
most work on tracking and analysis of figure motion has ferent modeling frameworks are possible. Previous work
employed either generic or highly specific hand-tailored by a number of authors have applied Hidden Markov Mod-
dynamic models superficially coupled with hidden Markov els (HMMs) to motion classification. In more recent work,
models (HMMs) of motion regimes. Recently, an alterna- switching linear dynamic system (SLDS) models have been
tive class of learned dynamic models known as switchingapplied to human motion modeling [6, 13, 15]. In SLDS
linear dynamic systems (SLDSs) has been cast in the framemodels, the Markov process controls an underlying linear
work of dynamic Bayesian networks (DBNs) and applied to dynamic system, rather than a fixed Gaussian measurement
analysis and tracking of the human figure. In this paper we model.
further study the impact of learned SLDS models on analy- By mapping discrete hidden states to piecewise linear
sis and tracking of human motion and contrast them to the measurement models, the SLDS framework has potentially
more common HMM models. We develop a novel approx-greater descriptive power than an HMM. Offsetting this ad-
imate structured variational inference algorithm for SLDS, vantage is the fact that inference in SLDS is considerably
a globally convergent DBN inference scheme, and comparemore complex than inference in HMM's, which in turn
it with standard SLDS inference techniques. Experimental complicates SLDS learning.
results on learning and analysis of figure dynamics from  Inthis paper we describe the results of an empirical com-
video data indicate the significant potential of the SLDS ap- parison between SLDS and HMM models on two common
proach. tasks: classification and one-step ahead prediction of mo-
tion sequences. We derive three different approximate in-
ference schemes for SLDS: Viterbi [16], variational, and
GPB2 [2]. We compare the performance of these schemes
to that of conventional HMM models.
i o i . We demonstrate that even on fairly simple motion se-
The human figure exhibits complex and rich dynamic be- yences, the SLDS model class consistently outperforms
havior. Dynamics are essential to the analysis of humangiangard HMMs on classification and continuous state esti-
motion (e.g. gesture recognition) as well as to the synthesisyation tasks. These preliminary results suggest that SLDS
of realistic figure motion in computer graphics. In visual models are a promising tool for figure motion analysis. In
tracking applications, dynamics can provide a powerful cue 4qgition to our experimental results, the derivations we pro-
in the presence of occlusions and measurement noise. ide for the three SLDS inference schemes should be use-
Although the use of kinematic models in figure tracking | to other researchers who are interested in these models.

is now commonpice,dynamic models havesceived rela-  \joreover, our variational inference algorithm is novel.
tively little attention. The kinematics of the figure specify

its degrees of freedom (e.g. joint angles and torso pose) and2 L . .

define a state space. dynamic model imposes additional 2 SWitching Linear Dynamic System Model
structure on the state space by specifying which state trajec-

tories are possible (or probable) and by specifying the speed A switching linear dynamic system (SLDS) model de-
at which a trajectory evolves. scribes the dynamics of a complex, nonlinear physical pro-

1. Introduction
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cess by switching among a set of linear dynamic models ()= (o)==

over time. The system can be described using the following ! $ $ $

set of state-space equations: '@ o) —=(o)—=()
= A

Tyl (st41)%s + Veg1(Se41),

ye = Cx¢+w, and
g = v . . .
0 o(%0) Figure 1. Bayesian network representation (dependency
for the physical system, and graph) of the SLDSs denote instances of the discrete val-
ued action states switching the physical system models with
Pr(sip1 =ilse = j) = TM(i,j), and continuous valued statesand observations.
Pr(sg =1i) = mo(d)

for the switching model. The meaning of the variables is

as follows: z; € RN denotes the hidden state of the LDS, Learning in Comp|ex DBNs can be formulated as the
andv, is the state noise process. Similagly,c #* isthe  problem of ML learning in general Bayesian networks.
observed measurement and is the measurement noise. Hence, a generalized EM algorithm [14] can be used to find
Parameters! and (' are the typical LDS parameters: the optimal values of DBN parameterSA, C, Q, R, 11, m}.
state transition matrix and the observation matrix, respec-The expectation (E) step of EM is the task of inference. In-
tively. We assumed that the LDS models a Gauss-Markovference, which is addressed in the next section, is the most

process. Hence, the noise processes are independently digifficult step in SLDS learning. Given the sufficient statis-

tributed Gaussian: tics from the inference phase, tharameter update equa-
- tionsin the maximization (M) step are obtained by maxi-
ve(s¢) N(0,Q(st)), t >0 mizing the expected log of Equation 1 with respect to the
voso)  ~ N(zo(st), Qolst)) LDS and MC parameters. Derivations can be found in [16].
Wy ~ N(O, R)

The switching model is assumed to be a discrete first order3 Inference in SLDS
Markov process. State variables of this model are writtenas
s¢. They belongto the set ¢f discrete symbol$0, ..., S—
1}. The switching model is defined with the state transition  The goal of inference in complex DBNS is to estimate
matrix [T whose elements atié(i, j) = Pr(siy1 = ils; = the posterior probability of the hidden states of the system
j), and an initial state distribution vectes. (s; andz;) given some known sequence of observatipins
Coupling between the LDS and the switching process g the known model parameters. Specifically, we need to
stems from the dependency of the LDS parameteend find thesufficient statisticef the posterio® (Xr, St |Vr).
@ on the switching process state Namely, Given the form ofP it is easy to show that these are the first
Alsy = i) = Ay and the second order statistics: mean and covariance among
Qls: = i) = Qs hidden states;, #;_1, s¢, s¢—1.
YT If there were no switching dynamics, the inference
In other words, switching state determines which of would be straightforward — we could inféfy from Y us-
possible plant models is used at time ing LDS inference (RTS smoothing [1]). However, the pres-
The complex state space representation is equivalentlyence of switching dynamics embedded in mattixnakes
depicted by the DBN dependency graph in Figure 1. The exact inference more complicated. To see that, assume that
dependency graph implies that floént distribution P over the initial distribution ofzy at¢ = 0 is Gaussian, at = 1

the variables of the SLDS can be written as the pdf of the physical system state becomes a mixture
T of S Gaussian pdfs since we need to marginalize aver
P(Yr, Xr, Sr) = Pr(so) [[;,=1 Pr(st|se-1) possible but unknown plant models. At tiave will have
Pr(zqlso) HtT:‘ll Pr(z|z_1, st) a mixture of S* Gaussians, which is clearly intractable for
T-1 Pr(w)e:) ) even moderate sequence lengths. It ig therefore necessary
t=0 LIt to explore approximate inference techniques that will result
whereYr, Xr, andSy denote the sequences (of length ~ in @ tractable learning method.
of observations and hidden state variables. For instance, An approximate Viterbi inference algorithm was pre-
Yr = {yo,...,yr—1}. From the Gauss-Markov assump- sented in [16] and evaluated experimentally. We briefly re-

tion on the LDS and the Markov switching model assump- view it in Section 3.1. We then describe two additional ap-
tion, we can expand Equation 1 into the parameterized jointproximation techniques: variational inference (Section 3.2)
pdf of the SLDS of duration T. and generalized Pseudo Bayesian inference (Section 3.3).
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3.1. Approximate Viterbi Inference

The task of Viterbi approximation approach is to find the
most likely sequence of switching statesfor a given ob-
servation sequenc®r. If the best sequence of switching
states is denoted;. we can then approximate the desired
posteriorP (Xr, Sr|Vr) as

P(Xr,S7|Yr) = Pr(Xr|S7, Y1) 0(S1 — 87),  (2)

i.e. the switching sequence posterir(Sr|Yr) was ap-
proximated by its mode. It is well known how to ap-
ply Viterbi inference to discrete state hidden Markov mod-
els [17] and continuous state Gauss-Markov models [1].
Here we review an algorithm for approximate Viterbi in-
ference in SLDSs presented in [16].

We would like to compute the switching sequengk
such thatS}. = argmaxs, Pr(Sr|Yr). Define first the
following probability up to time of the switching state se-
guence being in stateat timet given the measurement se-
quencey;:

Jei = max Pr(Si_1, 8 = i, V)

Sio1

3)

If this quantity is known at timé&" the probability of the
most likely switching sequenc®. is simply Pr (S| Vr) «
max; Jp_1 ;. In fact, a recursive procedure can be used to
obtain the desired quantity:

o~
~

i

)

m]ax{Pr (yt|5t =i, 501 = J,57_2()), Ve 1)
Pr(sy =ilsi—1 = j) Je-1,5} - (4)

We call the two terms next td;_, ; the “transition prob-
ability” from state; at timet — 1 to state: at time¢, and
denote itby/; ;1 ; ;. Also, S;_, (i) is the “best” switching
sequence up to time— 1 when SLDS is in staté at time
t—1: 5 (i) = argmaxg, , Ji—1,.

Hence, the switching sequence posterior at tingan
be recursevly computed from the same at time 1. The
two scaling components if;;_; ; ; are the likelihood as-
sociated with the transition— j from+¢ tot¢ — 1, and the
probability of discrete SLDS switching frogto :.

To find the likelihood term note that concurrently with
the recursion of Equation 4, for each pair of consecutive
switching state, j at timest, t—1 one can obtain the follow-
ing statistics using the Kalman filter [1};; ;, the “best”
filtered LDS state estimate atwhen the switch is in state
i at timet and a sequence ofmeasurementsy;, has been
processedi;|;_1 ; ; andz,; ; ;, the one-step predicted LDS
state and the “best” filtered state estimates at timespec-
tively, given that the switch is in statat timet and in state
j attimet —1 and onlyt — 1 measurements are known. Sim-
ilar definitions are used for filtered and predicted state vari-
ance estimates;;|; ; andX;;_, ; ; respectively. See [16]

1§(x) = 1 for = = @ and zero otherwise.
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for details. The likelihood term can then be easily com-
puted as the probability of innovatiop — Cz,— i
of j — i transition, Pr(yils,=is,_,=j s ()

N (yta C£t|t—1,z,]a Czﬂt—l,z,jc + R) .

Obviously, for every current switching statethere
are S possible previous switching states where the sys-
tem could have originated from. To maximize the over-
all probability at every time step and for every switch-
ing state: one “best” previous statgis selected;_, ; =
argmax; {Jys_1, jJi—1,; }. The index of this state is kept
in the state transition recong _, ;. Consequently, we now
obtain a set of5 best filtered LDS states and variances at
timet: it|t,i = £t|t7i7¢t—l,z andEﬂt’i = Eﬂt,i,lﬂt—l,z'

Once all'T" observationsyr_; have been fused to de-
code the “best” switching state sequence one uses the in-
dex of the best final staté}_, = argmax; Jr_1;, and
then traces back thugh the state transition record_ ;,
settingi; = Wlm' The switching model’'s sufficient
statistics are now simplyr(s; = i) = 1if ¢ = 4f and
Pr(s; =i,s;1 = j) = 1if i = if andj = ¢f_,. Given the
“best” switching state sequence the sufficient LDS statistics
can be easily obtained using Rauch-Tung-Streiber (RTS)
smoothing [1]. The Viterbi inference algorithm for com-
plex DBNs can now be summarized as

Initialize LDS state estimates z_; ; and Xg_1 ;;

Initialize Jo ;;
fort=1:7T-1
fori=1:5
forj=1:5

Predict and filter LDS state estimates
Ty and Xpp 5
Find j — 1 “transition probability” J;,_; ;
end
Find best transition ;_1 ; into state ¢;
Update sequence probabilities ./, ;
and LDS state estimates z;; ; and Xy, ;;

g

end
end
Find “best” final switching state %, _;
Backtrack to find “best” switching state sequence :;;
Find DBN's sufficient statistics;

3.2. Approximate Variational Inference

A general structured variational inference technique for
Bayesian networks is described in [10]. The basic idea is to
construct a parameterized distributi@mwhich is in some
sense close to the desired conditional distribu#yrbut is
easier to compute. One can then emplpyns an approxi-
mation of P,

P(Xr, Sr|Yr) ~ Q(Xr,Sr|Vr).
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Figure 2. Factorization of the original SLDS. Factoriza-
tion reduces the fully coupled model into a seemingly de-
coupled pair ofa HMM @.) and a LDS @..).

Namely, for a given set of observatio&, a distribu-
tion Q(Xr, Sr|n, Yr) with an additional set ofariational
parametersy is defined such that Kullback-Leibler di-
vergence betwee® (A7, Sr|n, Yr) andP (X7, S7|Vr) is
minimized with respect tg:

arg mm Z

(/YT, ST|yT)
Q(XT,ST|7],3}T). (5)

The dependency structure@fis chosen such that it closely
resembles the dependency structure of the original distri-
bution P. However, unlikeP the dependency structure of
@ is designed to allow computationally efficient inference.
In our case we defin€ by decoupling the switching and
LDS portions of SLDS as shown in Figure 2. The two sub-
graphs of the original network are a Hidden Markov Model
(HMM) Qs with variational parameter§qo,...,qr_1}
and a time-varying LDSY x with variational parameters
{&0, Ao, ..., Ap_1,Qo,...,Qr_1}. factorized, allowing
for independent inference inferenc@.(XT, Srln, Yr) =

Qx (Xr|n, Yr)Qs(Sr|n). This is also reflected in the suf-
ficient statistics of the posterior defined by the approximat-
ing network, e.g{zx:'s; = i) = {(xexy’) Pr(s: = i).

The optimal values of the variational parametgrare
obtained by setting the derivative of the KL-divergence
w.r.t. » to zero. For example, we can then arrive at the fol-
lowing optimal variational parameters:

s-1
Z Qi Pr(s; =
Z 4Q

Q. Z Q7 A Pr(s, = 1)
i=0

*

n

Q XTaST|77 yT)

log

Q7' i) +

1A Pr(sip1 =) —

/ A—1 A
t+1Qt+1At+1

(6)
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. 1 A
logq: (i) = —5 <(l‘t — A1) Qt (x4 — Ail‘t—1)>
1 .
—3 log |Qt,z’| (7)
To obtain the termsPr(s;) = Pr(si|qo,...,q97-1)

we use the inference in the HMM with output “probabil-
ities” ¢;, as described in [17]. Similarly, to obtai{m;) =
E[z:|Yr] we perform LDS inference in the decoupled time-
varying LDS via RTS smoothing. Sincé;, Q; in the de-
coupled LDSQ x depends orPr(s;) from the decoupled
HMM Qs andg; depends ofix:) , (@2, (xexe—1") from
the decoupled LDS, Equations 6 and 7 together with the
inference solutions in the decoupled models form a set of
fixed-point equations. Solution of this fixed-point set yields
a tractable approximation to the intractable inference of the
original fully coupled SLDS.

The variational inference algorithm for fully coupled
SLDSs can now be summarized as:

error = oo
Initialize Pr(s;);
while (error > maxError) {
Find Q;, A;, &, from Pr(s;) using Equations 6;
EStimate <l‘t> ; <l‘tl‘t/> and <l‘tl‘t_1/> from Y
using time-varying LDS inference;
Flnd q¢ from <l‘t> ; <l‘tl‘t/> and <l‘tl‘t_1/>
using Equations 7;
Estimate Pr(s;) from ¢, using HMM inference.
Update approximation error (KL divergence);

—

Interpretation of recursions for variational parameters in
Equatlons 6 and 7 is not immediately clear. LDS parame-
tersA, andQ; ! are, roughly, averages of the corresponding
switching system parameters weighted by the estimates of
the switching state$’(s;). HMM variational paremeters
log ¢: measure the agreement of each individual LDS with
the data. As an example, we considered variational infer-
ence in a simple three state SLDS. The SLDS parameters
were chosen to be:

Aoz[l '6] Qo=Q1=Qz:[ 08

1.25

1.25

0 1 25

o= C=[1 0]R=5000
1 1 098 0 0

Azz[_7 _'4] M= | .02 99 0
’ ’ 0 01 1

m=[10 0]

The SLDS was simulated over 140 time steps to produce
a sequence of switching states, continuous states and mea-
surements. Variational inference was then used to infer dis-
tributions of switching and continuous states from the sim-
ulated measurements. Figure 3.2 depicts state estimates and



variational parameters for the first and third iteration of vari-
ational inference.
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Figure 3. Iterations 1 and 3 of variational inference. The
graphs depict (top-down): continuous state estimates,
switching state estimate3r(s) and true state (thin lines),
HMM variational parametdbg ¢, and determinants of LDS
variational parametell€)., | and| A, |.

Initial uncertain switching state distributidty(s;) leads
to low variational state noise varian¢g (whose determi-
nant is indicated by, | in Figure 3.2) and low variational
state transition matrix ( whose determinant is indicated by
|A,| in Figure 3.2). Through further iterations the varia-
tional inference algorithm converges to the true switching
state sequence.

3.3. Approximate Generalized Pseudo Bayesian In-
ference

The Generalized Psuedo Bayesian [2, 11] (GPB) approx-
imation scheme is based on the general idea of “collapsing”, p,.

i.e. representing a mixture dff* Gaussians with a mixture
of M" Gaussians, where < t (see [13] for a detailed re-
view). While there are several variations on this idea, our
focus is the GPB2 algorithm, which maintains a mixture of

smoothing as well as filterirfg

20ther similar pseudo Bayesian algorithms of [2], GBP1 and IMM, do
not have an obvious smoothing reformulation.
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GPB2 is closely related to the Viterbi approximation of
Section 3.1. It differs in that instead of picking the most
likely previous switching statg at every time step and
switching staté, we collapse the M Gaussians (one for each
possible value of) down into a single Gaussian.

Consider the filtered and predicted meang ; ; and
Ty¢-1,,5, and their associated covariances, which were de-
fined in Section 3.1. Assume, in addition, that for each
switching state and pairs of state@, j) the following dis-
tributions are defined at each time step:

P?”(St = Z|yt)
P?”(St = i,St_l = j|yt)

It is easy to show (see [13]) that a regular Kalman filtering
update can be used to fuse the new measuremeand
obtain $? new SLDS states atfor each$ states at time

t — 1, in a similar fashion to the one in Section 3.1.

Unlike the Viterbi approximation which picks one best
switching transition foeach state at timet, GPB2 “aver-
ages” overS possible transitions from— 1. Namely, it is
easy to see that

Pr(St =i,5_1= j|yt) ~
Pr(yel@ei )2, j) Pr(si—1 = j|Vie-1).
From there it follows immediately that the current dis-
tribution over the switching states Br(s; = i|)V)
Zj Pr(s; = i,s:—1 = j|):) and that each previous stgte
now has the following posterior

Pr(St =1i,5_1 = j|yt)
P?”(St = Z|yt)

This posterior is important because it allows one to “col-
lapse” or “average” the& transitions into each stateinto
one average state, e.g.

i‘t|t,z’ = Zi‘ﬂt,i,jpr(st—l = j|5t = i,yt)~
J

P?”(St_l = j|8t = i,yt) =

Analogous expressions can be obtained for the variances
ipes and; ¢y i

Smoothing in GPB2 is unfortunately a more involved
process that includes several additional approximations.
Details of this can be found in [13]. We note at this
point that, effectively, an assumption is made that decou-
ples the MC model from the LDS when smoothing the
MC states. Smoothed MC states are obtained directly from
(s¢|Y:) estimates, namelyr(s; = i|si41 = k, V1)
Pr(s; = i|sty1 = k,Y:). Additionally, it is assumed that
Tog1|T,ik R Tyq)r,k- Armed with the two assumptions a
set of smoothing equations for each titios (¢, k) from

o~
~

- - : t + 1tot can be obtained that obey an RTS smoother, fol-
M? Gaussians over time and can be reformulated to include,

lowed by collapsing similar to the filtering step.
The GPB2 algorithm can now be summarized as the fol-
lowing pseudo code



Initialize LDS state estimates z_; ; and Xg_1 ;;
Initialize Pr(so = 4| — 1) = (i),
fort=1:T-1
fori=1:5
forj=1:5
Predict and filter LDS state estimates
Tije i g Dt i
Find switching state distributions
Pr(St = i|yt), Pr(st—l = jls¢ = i,yt);
Collapse |1, j» Ltfe,i,5 10 Teje,ir Litfe 45
end
Collapse z;; and X, ; to &4, and X,
end
end
Do GPB2 smoothing; Find sufficient statistics;

In this section we report some early progress in addressing
these questions.

We applied an HMM and three SLDS frameworks which
differed in the approximate inference technique (Viterbi,
GPB2, and variational) to the analysis of two categories
of fronto-parallel motion: walking and jogging. Fronto-
parallel motions exhibit interesting dynamics and are free
from the difficulties of 3-D reconstruction. Experiments
can be conducted easily using a single video source, while
self-occlusions and cluttered backgrounds make the track-
ing problem non-trivial.

We learned HMM and SLDS models from our data set,
and evaluated their classification performance. Classifica-
tion is an important task in its own right, and it is partic-
ularly useful in comparing SLDS and HMM models. The
LDS component of the SLDS model provides more flexibil-
ity in fitting the underlying measurements, in comparison to

The inference process of GPB2 is clearly more involved (y\vs. Classification accuracy is one way to measure the
than those of the Viterbi or the variational approximation. \,5),e of this additional modeling power.

Unlike Viterbi, GPB2 provides soft estimates of switching

We adopted the 2-D Scaled Prismatic Model proposed

states at each tinte Like Viterbi GPB2 is a local approxi- by Morris and Rehg [12] to describe the kinematics of the
mation scheme and as such does not guarantee global optig re and define the state space for learning. The kine-

mality inherent in the variational .approximation. Howeyer, matic model lies in the image plane, with each link having
some recent work (see [4]) on this type of local approxima- e degree of freedom (DOF) in rotation and another DOF
tionin general DBNs has emerged that provides conditions;, length. A chain of SPM transforms can model the image
for it to be globally optimal. displacement and foreshortening effectscarced by 3-D
rigid links. The appearance of each link in the image is de-
scribed by a template of pixels which is manually initialized
and deformed by the link’s DOF’s.

SLDS models and their equivalents have been studied In our experiments we have analyzed the motion of the
in statistics, time-series modeling, and target tracking sincelegs, torso, and head, and ignoring the arms. Our kinematic
early 1970’s. See [16, 13] for a review. Ghahramani [7] in- model had eight DOF’s, corresponding to rotations at the
troduced a DBN-framework for learning and approximate knees, hip, and neck. Our dataset consists of 18 sequences
inference in one class of SLDS models. His underlying of six individuals jogging (two examples of three people)
model differs from ours in assuming the presence af- and walking at a moderate pace (two examples of six peo-
dependent, white noise-driven LDSs whose measurementgle.) Each sequence was approximately 50 frames duration.
are selected by the Markov switching process. An alterna-We created the SPM measurements in each frame by hand,
tive input-switching LDS model was proposed by Pavlovic SO as to guarantee fidelity to the observed motion.
et al. [15] and utilized for mouse motion classification. A
switching model framework for particle filters is described 5.1. Learning
in [9] and applied to dynamics learning in [3]. Manifold
learning [8] is another approach to constraining the set of  The first task we addressed was learning an SLDS model
allowable trajectories within a high dimensional state space.for walking and running. Each of the two motion types were
An HMM-based approach is described in [5]. each modeled as rtti+staté HMM and SLDS models and
then combined into a single complex jog-walk model. In
addition, each SLDS motion model was assumed to be of
either the first or the second ordeHence, a total of three

There are two important empirical questions that should Models (HMM, first order SLDS, and second order SLDS)

be addressed for the class of SLDS models: were considered for each switching state order.
HMM models were initially assumed to be fully con-

» Which approximation inference scheme in SLDS re- nected. Their parameters were then learned using the
sults in the best learning performance? standard EM learning, initialized by k-means clustering
(see [17] for details.) HMM models were in turn used

4. Previous Work

5. Experimental Results

¢ How does the performance of learned SLDS models
compare to that of HMM models on tasks such as clas-  3we explored models with one, two, and four states.
sification, tracking, and synthesis? 4Second order SLDS modelsimply = A; (s¢)z,—1+ A2 (s¢)wi—2.

1063-6919/00 $10.00 ® 2000 IEEE



to initial switching state segmentations for more complex ence schemes indicates that Viterbi and variational schemes

SLDS models. For SLDS models, the measurement ma-do seem to yield appealing classifications. However, GPB2

trix in all cases was assumed to be identity,= /. The does not considerably lack behind the mentioned schemes

SLDS parameters of the model (Q, R, o, I1, mp) were and sometimes even outperforms the first two. Moreover,

then reestimated using the EM-learning framework. The GPB2 clearly provides “soft” state estimates, while the

E-step (inference) in SLDS learning was accomplished us-Viterbi scheme does not. Variational inference tends to pro-

ing the three approximated methods outlined in Section 3: duce somewhat soft decisions, but is more often similar to

Viterbi, GPB2, and variational inference. Viterbi. In terms of computational complexity, Viterbi does
Results of SLDS learning using either of the three ap- seem to be the clear winner among the SLDS schemes.

proximate inference methods did not produce significantly

different models. This can be explained by the fact that :

initial segmentations using the HMM and the initial SLDS 6. Conclusions

parameters were all very close to a locally optimal solu- ]

tion and all three inference schemes indeed converged to We have explored the impact of learned SLDS models

the same or similar posteriors. Therefore, only the models©On analysis of figure motion. We have compared the SLDS

learned using the Viterbi inference scheme were employedmodels using three different inference schemes (Viterbi,
in the analyses of the next two sections. GPB2, and variational) to the more common HMM mod-

els. One of the considered inference scheme, approximate
variational approximation, is novel in the SLDS domain.

Our comprehensive classification experiments have
. L , demonstrated promising results in the use of SLDS models

We considered classification of unknown motion Se- ¢, maqeling of the human figure motion. We demonstrated
quences as the first step in testing the impact of d'ﬁere,maccurate discrimination between walking angging mo-
dynamic models. Unknown motion sequences were consid-jqns - \we showed that SLDS models provide more robust
ered to be the ones ebmplexmotion, i.e., motion consist-  |assjfication performance than the more commonly used
ing of alternations of ‘jog” and “walk® Identification of  \M models. The fact that these models can be learned
different motion “regimes” was conducted using the HMM .01 qata may be an important advantage in figure track-

inference under the learned HMM model and the approx- g "\where accuratghysics-based dynamical models may
imate Viterbi, GPB2, and variational inference under the o prohibitively complex.

SLDS model. Estimates of “best” switching states(s;)

5.2. Classification

g~ . . We are currently conducting additional experiments that

indicated which of the two models can be considered to beyy;| shed more light on the predictive qualities of SLDS

dnvmg the c;orrespondmg motion segment. models. This evaluation is crucial step in studying the use of
Figure Figure 4 shows classification results for a COM- |ogrmed models in applications such as figure tracking. We

plex motion sequence of jog and walk motion using dif- 5154 pian to build SLDS models for wide variety of motions
ferent order HMM and SLDS models and different SLDS 4 performers and evaluate their performance.

inference schemes. For instance, Figure 4(a) depicts true
sequence of jog-walk motions in the top graph, followed
by Viterbi, GPB2, variational, and HMM classifications. In References
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(a) One switching state, second order SLDS. (b) Four switching state models, first order SLDS.
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(c) Two switching state models, second order SLDS.

(d) Four switching state models, second order SLDS.

Figure 4. Comparison of classification results on complex jog-walk sequence using SLDS (Viterbi, GPB2, and variational infer-
ence) and HMM models (exact inference). Figures (a) through (d) depict impact of different model orders on this classification. See
text for more details.
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