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Abstract

The human figure exhibits complex and rich dynamic be-
havior that is both nonlinear and time-varying. However,
most work on tracking and analysis of figure motion has
employed either generic or highly specific hand-tailored
dynamic models superficially coupled with hidden Markov
models (HMMs) of motion regimes. Recently, an alterna-
tive class of learned dynamic models known as switching
linear dynamic systems (SLDSs) has been cast in the frame-
work of dynamic Bayesian networks (DBNs) and applied to
analysis and tracking of the human figure. In this paper we
further study the impact of learned SLDS models on analy-
sis and tracking of human motion and contrast them to the
more common HMM models. We develop a novel approx-
imate structured variational inference algorithm for SLDS,
a globally convergent DBN inference scheme, and compare
it with standard SLDS inference techniques. Experimental
results on learning and analysis of figure dynamics from
video data indicate the significant potential of the SLDS ap-
proach.

1. Introduction

The human figure exhibits complex and rich dynamic be-
havior. Dynamics are essential to the analysis of human
motion (e.g. gesture recognition) as well as to the synthesis
of realistic figure motion in computer graphics. In visual
tracking applications, dynamics can provide a powerful cue
in the presence of occlusions and measurement noise.

Although the use of kinematic models in figure tracking
is now commonplace,dynamic models have received rela-
tively little attention. The kinematics of the figure specify
its degrees of freedom (e.g. joint angles and torso pose) and
define a state space. Adynamic model imposes additional
structure on the state space by specifying which state trajec-
tories are possible (or probable) and by specifying the speed
at which a trajectory evolves.

One promising approach is to learn dynamic models
from a training corpus of observed state space trajectories.
In cases where sufficient training data is available, the learn-
ing approach promises flexibility and generality. Many dif-
ferent modeling frameworks are possible. Previous work
by a number of authors have applied Hidden Markov Mod-
els (HMMs) to motion classification. In more recent work,
switching linear dynamic system (SLDS) models have been
applied to human motion modeling [6, 13, 15]. In SLDS
models, the Markov process controls an underlying linear
dynamic system, rather than a fixed Gaussian measurement
model.

By mapping discrete hidden states to piecewise linear
measurement models, the SLDS framework has potentially
greater descriptive power than an HMM. Offsetting this ad-
vantage is the fact that inference in SLDS is considerably
more complex than inference in HMM’s, which in turn
complicates SLDS learning.

In this paper we describe the results of an empirical com-
parison between SLDS and HMM models on two common
tasks: classification and one-step ahead prediction of mo-
tion sequences. We derive three different approximate in-
ference schemes for SLDS: Viterbi [16], variational, and
GPB2 [2]. We compare the performance of these schemes
to that of conventional HMM models.

We demonstrate that even on fairly simple motion se-
quences, the SLDS model class consistently outperforms
standard HMMs on classification and continuous state esti-
mation tasks. These preliminary results suggest that SLDS
models are a promising tool for figure motion analysis. In
addition to our experimental results, the derivations we pro-
vide for the three SLDS inference schemes should be use-
ful to other researchers who are interested in these models.
Moreover, our variational inference algorithm is novel.

2. Switching Linear Dynamic System Model

A switching linear dynamic system (SLDS) model de-
scribes the dynamics of a complex, nonlinear physical pro-
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cess by switching among a set of linear dynamic models
over time. The system can be described using the following
set of state-space equations:

xt+1 = A(st+1)xt + vt+1(st+1);

yt = Cxt +wt; and

x0 = v0(s0)

for the physical system, and

Pr(st+1 = ijst = j) = �(i; j); and

Pr(s0 = i) = �0(i)

for the switching model. The meaning of the variables is
as follows:xt 2 <N denotes the hidden state of the LDS,
andvt is the state noise process. Similarly,yt 2 <M is the
observed measurement andwt is the measurement noise.
ParametersA andC are the typical LDS parameters: the
state transition matrix and the observation matrix, respec-
tively. We assumed that the LDS models a Gauss-Markov
process. Hence, the noise processes are independently dis-
tributed Gaussian:

vt(st) � N (0; Q(st)); t > 0

v0(s0) � N (x0(st); Q0(st))

wt � N (0; R):

The switching model is assumed to be a discrete first order
Markov process. State variables of this model are written as
st. They belong to the set ofS discrete symbolsf0; : : : ; S�
1g. The switching model is defined with the state transition
matrix� whose elements are�(i; j) = Pr(st+1 = ijst =
j), and an initial state distribution vector�0.

Coupling between the LDS and the switching process
stems from the dependency of the LDS parametersA and
Q on the switching process statest. Namely,

A(st = i) = Ai

Q(st = i) = Qi

In other words, switching statest determines which ofS
possible plant models is used at timet.

The complex state space representation is equivalently
depicted by the DBN dependency graph in Figure 1. The
dependency graph implies that thejoint distributionP over
the variables of the SLDS can be written as

P (YT ;XT ;ST ) = Pr(s0)
QT�1
t=1 Pr(stjst�1)

Pr(x0js0)
QT�1
t=1 Pr(xtjxt�1; st)QT�1

t=0 Pr(ytjxt); (1)

whereYT ;XT , andST denote the sequences (of lengthT )
of observations and hidden state variables. For instance,
YT = fy0; : : : ; yT�1g. From the Gauss-Markov assump-
tion on the LDS and the Markov switching model assump-
tion, we can expand Equation 1 into the parameterized joint
pdf of the SLDS of duration T.
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Figure 1. Bayesian network representation (dependency
graph) of the SLDS.s denote instances of the discrete val-
ued action states switching the physical system models with
continuous valued statesx and observationsy.

Learning in complex DBNs can be formulated as the
problem of ML learning in general Bayesian networks.
Hence, a generalized EM algorithm [14] can be used to find
optimal values of DBN parametersfA;C;Q;R;�; �0g.
The expectation (E) step of EM is the task of inference. In-
ference, which is addressed in the next section, is the most
difficult step in SLDS learning. Given the sufficient statis-
tics from the inference phase, theparameter update equa-
tions in the maximization (M) step are obtained by maxi-
mizing the expected log of Equation 1 with respect to the
LDS and MC parameters. Derivations can be found in [16].

3. Inference in SLDS

The goal of inference in complex DBNs is to estimate
the posterior probability of the hidden states of the system
(st andxt) given some known sequence of observationsYT
and the known model parameters. Specifically, we need to
find thesufficient statisticsof the posteriorP (XT ;ST jYT ).
Given the form ofP it is easy to show that these are the first
and the second order statistics: mean and covariance among
hidden statesxt; xt�1; st; st�1.

If there were no switching dynamics, the inference
would be straightforward – we could inferXT fromYT us-
ing LDS inference (RTS smoothing [1]). However, the pres-
ence of switching dynamics embedded in matrix� makes
exact inference more complicated. To see that, assume that
the initial distribution ofx0 at t = 0 is Gaussian, att = 1
the pdf of the physical system statex1 becomes a mixture
of S Gaussian pdfs since we need to marginalize overS
possible but unknown plant models. At timet we will have
a mixture ofSt Gaussians, which is clearly intractable for
even moderate sequence lengths. It is therefore necessary
to explore approximate inference techniques that will result
in a tractable learning method.

An approximate Viterbi inference algorithm was pre-
sented in [16] and evaluated experimentally. We briefly re-
view it in Section 3.1. We then describe two additional ap-
proximation techniques: variational inference (Section 3.2)
and generalized Pseudo Bayesian inference (Section 3.3).
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3.1. Approximate Viterbi Inference

The task of Viterbi approximation approach is to find the
most likely sequence of switching statesst for a given ob-
servation sequenceYT . If the best sequence of switching
states is denotedS�T we can then approximate the desired
posteriorP (XT ;ST jYT ) as1

P (XT ;ST jYT ) � Pr(XT jST ;YT ) �(ST � S�T ); (2)

i.e. the switching sequence posteriorPr(ST jYT ) was ap-
proximated by its mode. It is well known how to ap-
ply Viterbi inference to discrete state hidden Markov mod-
els [17] and continuous state Gauss-Markov models [1].
Here we review an algorithm for approximate Viterbi in-
ference in SLDSs presented in [16].

We would like to compute the switching sequenceS�T
such thatS�T = argmaxST Pr(ST jYT ). Define first the
following probability up to timet of the switching state se-
quence being in statei at timet given the measurement se-
quenceYt:

Jt;i = max
St�1

Pr (St�1; st = i;Yt) (3)

If this quantity is known at timeT the probability of the
most likely switching sequenceS�T is simplyPr(S�T jYT ) /
maxi JT�1;i. In fact, a recursive procedure can be used to
obtain the desired quantity:

Jt;i � max
j

�
Pr

�
ytjst = i; st�1 = j; S�t�2(j);Yt�1

�
Pr (st = ijst�1 = j) Jt�1;jg : (4)

We call the two terms next toJt�1;j the “transition prob-
ability” from statej at timet � 1 to statei at timet, and
denote it byJtjt�1;i;j. Also,S�t�2(i) is the “best” switching
sequence up to timet � 1 when SLDS is in statei at time
t� 1: S�t�2(i) = argmaxSt�2 Jt�1;i.

Hence, the switching sequence posterior at timet can
be recursevly computed from the same at timet � 1. The
two scaling components inJtjt�1;i;j are the likelihood as-
sociated with the transitioni ! j from t to t � 1, and the
probability of discrete SLDS switching fromj to i.

To find the likelihood term note that concurrently with
the recursion of Equation 4, for each pair of consecutive
switching statei; j at timest; t�1 one can obtain the follow-
ing statistics using the Kalman filter [1]:̂xtjt;i, the “best”
filtered LDS state estimate att when the switch is in state
i at timet and a sequence oft measurements,Yt, has been
processed;̂xtjt�1;i;j andx̂tjt;i;j, the one-step predicted LDS
state and the “best” filtered state estimates at timet, respec-
tively, given that the switch is in statei at timet and in state
j at timet�1 and onlyt�1measurements are known. Sim-
ilar definitions are used for filtered and predicted state vari-
ance estimates,�tjt;i and�tjt�1;i;j respectively. See [16]

1�(x) = 1 for x = ; and zero otherwise.

for details. The likelihood term can then be easily com-
puted as the probability of innovationyt � Cx̂tjt�1;i;j
of j ! i transition, Pr(ytjst=i;st�1=j;S�t�2(j)) =

N
�
yt;Cx̂tjt�1;i;j; C�tjt�1;i;jC

0 + R
�
.

Obviously, for every current switching statei there
are S possible previous switching states where the sys-
tem could have originated from. To maximize the over-
all probability at every time stept and for every switch-
ing statei one “best” previous statej is selected: t�1;i =
argmaxj

�
Jtjt�1;i;jJt�1;j

	
. The index of this state is kept

in the state transition record t�1;i. Consequently, we now
obtain a set ofS best filtered LDS states and variances at
time t: x̂tjt;i = x̂tjt;i; t�1;i

and�tjt;i = �tjt;i; t�1;i
.

Once allT observationsYT�1 have been fused to de-
code the “best” switching state sequence one uses the in-
dex of the best final state,i�T�1 = argmaxi JT�1;i, and
then traces back through the state transition record t�1;i,
setting i�t =  t;i�

t+1
. The switching model’s sufficient

statistics are now simplyPr(st = i) = 1 if i = i�t and
Pr(st = i; st�1 = j) = 1 if i = i�t andj = i�t�1. Given the
“best” switching state sequence the sufficient LDS statistics
can be easily obtained using Rauch-Tung-Streiber (RTS)
smoothing [1]. The Viterbi inference algorithm for com-
plex DBNs can now be summarized as

Initialize LDS state estimates x̂0j�1;i and �0j�1;i;
Initialize J0;i;
for t = 1 : T � 1

for i = 1 : S
for j = 1 : S

Predict and filter LDS state estimates
x̂tjt;i;j and �tjt;i;j;

Find j ! i “transition probability“ Jtjt�1;i;j;
end
Find best transition  t�1;i into state i;
Update sequence probabilities Jt;i

and LDS state estimates x̂tjt;i and �tjt;i;
end

end
Find “best” final switching state i�T�1;
Backtrack to find “best” switching state sequence i�t ;
Find DBN’s sufficient statistics;

3.2. Approximate Variational Inference

A general structured variational inference technique for
Bayesian networks is described in [10]. The basic idea is to
construct a parameterized distributionQ which is in some
sense close to the desired conditional distributionP , but is
easier to compute. One can then employQ as an approxi-
mation ofP ,

P (XT ;ST jYT ) � Q(XT ;ST jYT ):
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Figure 2. Factorization of the original SLDS. Factoriza-
tion reduces the fully coupled model into a seemingly de-
coupled pair of a HMM (Qs) and a LDS (Qx).

Namely, for a given set of observationsYT , a distribu-
tionQ(XT ;ST j�;YT ) with an additional set ofvariational
parameters� is defined such that Kullback–Leibler di-
vergence betweenQ(XT ;ST j�;YT ) andP (XT ;ST jYT ) is
minimized with respect to�:

�� = argmin
�

X
ST

Z
XT

Q(XT ;ST j�;YT )�

log
P (XT ;ST jYT )

Q(XT ;ST j�;YT )
: (5)

The dependency structure ofQ is chosen such that it closely
resembles the dependency structure of the original distri-
butionP . However, unlikeP the dependency structure of
Q is designed to allow computationally efficient inference.
In our case we defineQ by decoupling the switching and
LDS portions of SLDS as shown in Figure 2. The two sub-
graphs of the original network are a Hidden Markov Model
(HMM) QS with variational parametersfq0; : : : ; qT�1g
and a time-varying LDSQX with variational parameters
fx̂0; Â0; : : : ; ÂT�1; Q̂0; : : : ; Q̂T�1g. factorized, allowing
for independent inference inference:Q(XT ;ST j�;YT ) =
QX(XT j�;YT )QS(ST j�). This is also reflected in the suf-
ficient statistics of the posterior defined by the approximat-
ing network, e.g.hxtxt0st = ii = hxtxt0iPr(st = i).

The optimal values of the variational parameters� are
obtained by setting the derivative of the KL-divergence
w.r.t. � to zero. For example, we can then arrive at the fol-
lowing optimal variational parameters:

Q̂�1
t =

S�1X
i=0

Q�1
i Pr(st = i) +

S�1X
i=0

A0
iQ

�1
i AiPr(st+1 = i)� Â0

t+1Q̂
�1
t+1Ât+1

Ât = Q̂t

S�1X
i=0

Q�1
i AiPr(st = i) (6)

log qt(i) = �
1

2

D
(xt �Aixt�1)

0
Q̂�1
i (xt �Aixt�1)

E

�
1

2
log jQ̂t;ij (7)

To obtain the termsPr(st) = Pr(stjq0; : : : ; qT�1)
we use the inference in the HMM with output “probabil-
ities” qt, as described in [17]. Similarly, to obtainhxti =
E[xtjYT ]we perform LDS inference in the decoupled time-
varying LDS via RTS smoothing. SincêAt; Q̂t in the de-
coupled LDSQX depends onPr(st) from the decoupled
HMM QS andqt depends onhxti ; hxtxt0i ; hxtxt�10i from
the decoupled LDS, Equations 6 and 7 together with the
inference solutions in the decoupled models form a set of
fixed-point equations. Solution of this fixed-point set yields
a tractable approximation to the intractable inference of the
original fully coupled SLDS.

The variational inference algorithm for fully coupled
SLDSs can now be summarized as:

error = 1;
Initialize Pr(st);
while (error > maxError) f

Find Q̂t; Ât; x̂0 from Pr(st) using Equations 6;
Estimate hxti ; hxtxt0i and hxtxt�10i from yt

using time-varying LDS inference;
Find qt from hxti ; hxtxt0i and hxtxt�10i

using Equations 7;
Estimate Pr(st) from qt using HMM inference.
Update approximation error (KL divergence);

g

Interpretation of recursions for variational parameters in
Equations 6 and 7 is not immediately clear. LDS parame-
tersÂt andQ̂�1

t are, roughly, averages of the corresponding
switching system parameters weighted by the estimates of
the switching statesP (st). HMM variational paremeters
log qt measure the agreement of each individual LDS with
the data. As an example, we considered variational infer-
ence in a simple three state SLDS. The SLDS parameters
were chosen to be:

A0 =

�
1 :6
0 1

�
Q0 = Q1 = Q2 =

�
:08 1:25
1:25 25

�

A1 =

�
1 �:6
0 :4

�
C =

�
1 0

�
R = 5000

A2 =

�
1 :1
�:7 �:4

�
� =

2
4 0:98 0 0

:02 :99 0
0 :01 1

3
5

�0 =
�
1 0 0

�
The SLDS was simulated over 140 time steps to produce
a sequence of switching states, continuous states and mea-
surements. Variational inference was then used to infer dis-
tributions of switching and continuous states from the sim-
ulated measurements. Figure 3.2 depicts state estimates and
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variational parameters for the first and third iteration of vari-
ational inference.
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Figure 3. Iterations 1 and 3 of variational inference. The
graphs depict (top-down): continuous state estimatesE[x],
switching state estimatesPr(s) and true state (thin lines),
HMM variational parameterlog q, and determinants of LDS
variational parametersjQvj andjAvj.

Initial uncertain switching state distributionPr(st) leads
to low variational state noise variancêQ (whose determi-
nant is indicated byjQvj in Figure 3.2) and low variational
state transition matrix ( whose determinant is indicated by
jAvj in Figure 3.2). Through further iterations the varia-
tional inference algorithm converges to the true switching
state sequence.

3.3. Approximate Generalized Pseudo Bayesian In-
ference

The Generalized Psuedo Bayesian [2, 11] (GPB) approx-
imation scheme is based on the general idea of “collapsing”,
i.e. representing a mixture ofM t Gaussians with a mixture
of M r Gaussians, wherer < t (see [13] for a detailed re-
view). While there are several variations on this idea, our
focus is the GPB2 algorithm, which maintains a mixture of
M2 Gaussians over time and can be reformulated to include
smoothing as well as filtering2.

2Other similar pseudo Bayesian algorithms of [2], GBP1 and IMM, do
not have an obvious smoothing reformulation.

GPB2 is closely related to the Viterbi approximation of
Section 3.1. It differs in that instead of picking the most
likely previous switching statej at every time stept and
switching statei, we collapse the M Gaussians (one for each
possible value ofj) down into a single Gaussian.

Consider the filtered and predicted meansx̂tjt;i;j and
x̂tjt�1;i;j, and their associated covariances, which were de-
fined in Section 3.1. Assume, in addition, that for each
switching statei and pairs of states(i; j) the following dis-
tributions are defined at each time step:

Pr(st = ijYt)

Pr(st = i; st�1 = jjYt):

It is easy to show (see [13]) that a regular Kalman filtering
update can be used to fuse the new measurementyt and
obtainS2 new SLDS states att for eachS states at time
t� 1, in a similar fashion to the one in Section 3.1.

Unlike the Viterbi approximation which picks one best
switching transition foreach statei at timet, GPB2 “aver-
ages” overS possible transitions fromt � 1. Namely, it is
easy to see that

Pr(st = i; st�1 = jjYt) �

Pr(ytjx̂t;i;j)�(i; j)Pr(st�1 = jjYt�1):

From there it follows immediately that the current dis-
tribution over the switching states isPr(st = ijYt) =P
j Pr(st = i; st�1 = jjYt) and that each previous statej

now has the following posterior

Pr(st�1 = jjst = i;Yt) =
Pr(st = i; st�1 = jjYt)

Pr(st = ijYt)
:

This posterior is important because it allows one to “col-
lapse” or “average” theS transitions into each statei into
one average state, e.g.

x̂tjt;i =
X
j

x̂tjt;i;jPr(st�1 = jjst = i;Yt):

Analogous expressions can be obtained for the variances
�tjt;i and�t;t�1jt;i.

Smoothing in GPB2 is unfortunately a more involved
process that includes several additional approximations.
Details of this can be found in [13]. We note at this
point that, effectively, an assumption is made that decou-
ples the MC model from the LDS when smoothing the
MC states. Smoothed MC states are obtained directly from
Pr(stjYt) estimates, namelyPr(st = ijst+1 = k;YT ) �
Pr(st = ijst+1 = k;Yt). Additionally, it is assumed that
x̂t+1jT;i;k � x̂t+1jT;k. Armed with the two assumptions a
set of smoothing equations for each transition (i; k) from
t + 1 to t can be obtained that obey an RTS smoother, fol-
lowed by collapsing similar to the filtering step.

The GPB2 algorithm can now be summarized as the fol-
lowing pseudo code
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Initialize LDS state estimates x̂0j�1;i and �0j�1;i;
Initialize Pr(s0 = ij � 1) = �(i);
for t = 1 : T � 1

for i = 1 : S
for j = 1 : S

Predict and filter LDS state estimates
x̂tjt;i;j, �tjt;i;j;

Find switching state distributions
Pr(st = ijYt), Pr(st�1 = jjst = i;Yt);

Collapse x̂tjt;i;j, �tjt;i;j to x̂tjt;i, �tjt;i;
end
Collapse x̂tjt;i and �tjt;i to x̂tjt and �tjt;

end
end
Do GPB2 smoothing; Find sufficient statistics;

The inference process of GPB2 is clearly more involved
than those of the Viterbi or the variational approximation.
Unlike Viterbi, GPB2 provides soft estimates of switching
states at each timet. Like Viterbi GPB2 is a local approxi-
mation scheme and as such does not guarantee global opti-
mality inherent in the variational approximation. However,
some recent work (see [4]) on this type of local approxima-
tion in general DBNs has emerged that provides conditions
for it to be globally optimal.

4. Previous Work

SLDS models and their equivalents have been studied
in statistics, time-series modeling, and target tracking since
early 1970’s. See [16, 13] for a review. Ghahramani [7] in-
troduced a DBN-framework for learning and approximate
inference in one class of SLDS models. His underlying
model differs from ours in assuming the presence ofS in-
dependent, white noise-driven LDSs whose measurements
are selected by the Markov switching process. An alterna-
tive input-switching LDS model was proposed by Pavlovic
et al. [15] and utilized for mouse motion classification. A
switching model framework for particle filters is described
in [9] and applied to dynamics learning in [3]. Manifold
learning [8] is another approach to constraining the set of
allowable trajectories within a high dimensional state space.
An HMM-based approach is described in [5].

5. Experimental Results

There are two important empirical questions that should
be addressed for the class of SLDS models:

� Which approximation inference scheme in SLDS re-
sults in the best learning performance?

� How does the performance of learned SLDS models
compare to that of HMM models on tasks such as clas-
sification, tracking, and synthesis?

In this section we report some early progress in addressing
these questions.

We applied an HMM and three SLDS frameworks which
differed in the approximate inference technique (Viterbi,
GPB2, and variational) to the analysis of two categories
of fronto-parallel motion: walking and jogging. Fronto-
parallel motions exhibit interesting dynamics and are free
from the difficulties of 3-D reconstruction. Experiments
can be conducted easily using a single video source, while
self-occlusions and cluttered backgrounds make the track-
ing problem non-trivial.

We learned HMM and SLDS models from our data set,
and evaluated their classification performance. Classifica-
tion is an important task in its own right, and it is partic-
ularly useful in comparing SLDS and HMM models. The
LDS component of the SLDS model provides more flexibil-
ity in fitting the underlying measurements, in comparison to
HMMs. Classification accuracy is one way to measure the
value of this additional modeling power.

We adopted the 2-D Scaled Prismatic Model proposed
by Morris and Rehg [12] to describe the kinematics of the
figure and define the state space for learning. The kine-
matic model lies in the image plane, with each link having
one degree of freedom (DOF) in rotation and another DOF
in length. A chain of SPM transforms can model the image
displacement and foreshortening effects produced by 3-D
rigid links. The appearance of each link in the image is de-
scribed by a template of pixels which is manually initialized
and deformed by the link’s DOF’s.

In our experiments we have analyzed the motion of the
legs, torso, and head, and ignoring the arms. Our kinematic
model had eight DOF’s, corresponding to rotations at the
knees, hip, and neck. Our dataset consists of 18 sequences
of six individuals jogging (two examples of three people)
and walking at a moderate pace (two examples of six peo-
ple.) Each sequence was approximately 50 frames duration.
We created the SPM measurements in each frame by hand,
so as to guarantee fidelity to the observed motion.

5.1. Learning

The first task we addressed was learning an SLDS model
for walking and running. Each of the two motion types were
each modeled as multi–state3 HMM and SLDS models and
then combined into a single complex jog-walk model. In
addition, each SLDS motion model was assumed to be of
either the first or the second order4. Hence, a total of three
models (HMM, first order SLDS, and second order SLDS)
were considered for each switching state order.

HMM models were initially assumed to be fully con-
nected. Their parameters were then learned using the
standard EM learning, initialized by k-means clustering
(see [17] for details.) HMM models were in turn used

3We explored models with one, two, and four states.
4Second order SLDS models implyxt = A1(st)xt�1+A2(st)xt�2.
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to initial switching state segmentations for more complex
SLDS models. For SLDS models, the measurement ma-
trix in all cases was assumed to be identity,C = I. The
SLDS parameters of the model (A;Q;R; x0;�; �0) were
then reestimated using the EM-learning framework. The
E-step (inference) in SLDS learning was accomplished us-
ing the three approximated methods outlined in Section 3:
Viterbi, GPB2, and variational inference.

Results of SLDS learning using either of the three ap-
proximate inference methods did not produce significantly
different models. This can be explained by the fact that
initial segmentations using the HMM and the initial SLDS
parameters were all very close to a locally optimal solu-
tion and all three inference schemes indeed converged to
the same or similar posteriors. Therefore, only the models
learned using the Viterbi inference scheme were employed
in the analyses of the next two sections.

5.2. Classification

We considered classification of unknown motion se-
quences as the first step in testing the impact of different
dynamic models. Unknown motion sequences were consid-
ered to be the ones ofcomplexmotion, i.e., motion consist-
ing of alternations of “jog” and “walk.”5 Identification of
different motion “regimes” was conducted using the HMM
inference under the learned HMM model and the approx-
imate Viterbi, GPB2, and variational inference under the
SLDS model. Estimates of “best” switching statesPr(st)
indicated which of the two models can be considered to be
driving the corresponding motion segment.

Figure Figure 4 shows classification results for a com-
plex motion sequence of jog and walk motion using dif-
ferent order HMM and SLDS models and different SLDS
inference schemes. For instance, Figure 4(a) depicts true
sequence of jog-walk motions in the top graph, followed
by Viterbi, GPB2, variational, and HMM classifications. In
this case each motion type (jog and walk) is modeled using
one switching state SLDS (HMM). Furthermore, the LDS
part of the SLDS model is of the second order. Figure 4(d)
shows jog-walk classification using jog and walk models
who contain four switching states each, and where SLDS
models contain second order LDS.

The accuracy of classification increases as the order of
the switching states and the SLDS model order increase.
More interesting, however, is that the HMM model consis-
tently yields lower segmentation accuracy then the SLDS
model using any inference scheme. This is of course to be
expected because the HMM model does not impose conti-
nuity across time in the plant state space (x), which does
indeed exist in a natural figure motion (joint angles evolve
continuously in time.) Analysis of different SLDS infer-

5Test sequences were constructed by concatenating in random order
randomly selected and noise corrupted training sequences. Transitions be-
tween sequences were smoothed using B-spline smoothing.

ence schemes indicates that Viterbi and variational schemes
do seem to yield appealing classifications. However, GPB2
does not considerably lack behind the mentioned schemes
and sometimes even outperforms the first two. Moreover,
GPB2 clearly provides “soft” state estimates, while the
Viterbi scheme does not. Variational inference tends to pro-
duce somewhat soft decisions, but is more often similar to
Viterbi. In terms of computational complexity, Viterbi does
seem to be the clear winner among the SLDS schemes.

6. Conclusions

We have explored the impact of learned SLDS models
on analysis of figure motion. We have compared the SLDS
models using three different inference schemes (Viterbi,
GPB2, and variational) to the more common HMM mod-
els. One of the considered inference scheme, approximate
variational approximation, is novel in the SLDS domain.

Our comprehensive classification experiments have
demonstrated promising results in the use of SLDS models
for modeling of the human figure motion. We demonstrated
accurate discrimination between walking and jogging mo-
tions. We showed that SLDS models provide more robust
classification performance than the more commonly used
HMM models. The fact that these models can be learned
from data may be an important advantage in figure track-
ing, where accuratephysics-based dynamical models may
be prohibitively complex.

We are currently conducting additional experiments that
will shed more light on the predictive qualities of SLDS
models. This evaluation is crucial step in studying the use of
learned models in applications such as figure tracking. We
also plan to build SLDS models for wide variety of motions
and performers and evaluate their performance.
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