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Abstract 
Digital library access is driven by features, but the 

relevance of a feature for a query is not always ob- 
vious. This paper describes an approach for integrat- 
ing a large number of context-dependent features into 
a semi-automated tool. Instead of requiring univer- 
sal similarity measures or manual selection of rele- 
vant features, the approach provides a learning algo- 
rithm for selecting and combining groupings of the 
data, where groupings can be induced by highly special- 
ized features. The selection process is guided by posi- 
tive and negative examples from the user. The inher- 
ent combinatorics of using multiple features is reduced 
by a multistage grouping generation, weighting, and 
collection process. The stages closest to the user are 
trained fastest and slowly propagate their adaptations 
back to earlier stages. The weighting stage adapts the 
collection stage’s search space across uses, so that, in 
later interactions, good groupings are found given few 
examples from the user. 

1 Issues for digital libraries 
One important issue for digital libraries is finding 

good models and similarity measures for comparing 
database entries (Figure 1). A part of this difficulty is 
that feature extraction and comparison methods are 
highly data-dependent. Similarity measures are also 
user and task dependent, as demonstrated by Fig- 
ure 2. Unfortunately, these dependencies are not, at 
this point, understood well enough, especially by the 
typical digital library user, to permit careful selection 
of the optimal measure beforehand. 

Next, the scope of queries that databases need to 
address is immense. Current computational solutions 
attempt to offer location of perceptual content (“find 
round, red objects”) and objective content (“find pic- 
tures of people in Boston”). Desirable queries also 
extend to subjective content (“give me a scene of a 
romantic forest”), task-specific content (“I need some- 
thing with open space, to place text”), and collabora- 
tive content (“show me pictures children like”). An- 
swering such queries requires a variety of features, or 
metadata, to be attached to the data in a digital li- 
brary, some of which may not be computable directly 
from the data. The implication for algorithms is that 
they cannot rely on one model or one small set of 

*Supported in part by BT, Interval, HP Labs, and NEC. 

carefully-picked features but will have to drink from 
a veritable “feature hydrant” from which only a few 
drops rnay be relevant for the query. 

Some recent systems which perform retrieval on vi- 
sual data are QBIC [9], SWIM [lo], Photo‘book [ll], 
and CORE [la]. A notable quality of these systems 
is that they present many different ways of organizing 
the data but offer little assistance in actually choos- 
ing one of these organizations or making a new one. 
Users are often forced to determine what features and 
feature combinations will be relevant to their intent, if 
any, instead of addressing their intent directly. Since 
intentions can vary greatly and features can be very 
opaque, another solution is needed. The example- 
based interaction in FourEyes, coupled with a learn- 
ing elernent that selects and constructs orga.nizations, 
provides such an alternative. 

2 MLultiple models 
Dealing with these issues requires the use of multi- 

ple features, computed from the data or not, as well as 
ways to make informed, automatic selection of models 
and the features they describe. At this poin.t in time, 
there seems to be no lack of specialized models, just a 
lack of knowing the best ways of utilizing them. Two 
well-known multiple model approaches are Bayesian 
combination [l] and the rule-based blackboard [a], but 
this pa.per advocates a different approach which is 
more desirable for the interactive digital lilbrary set- 
ting. 

The approach described in this paper allows many 
different models to be easily incorporated without the 
computational complexity that usually plagues multi- 
model methods. The idea is to precompute many 
plausible groupings of the data, where groupings are 
induced by different models. Then the system selects 
and co:mbines the groupings, based on positive and 
negative examples from the user. Relevance informa- 
tion, viz. which groupings were most useful, can then 
be fed back to modify these groupings or influence fu- 
ture grouping generation. In this way, the system is 
not only trained during individual example-lbased ses- 
sions with a user, but also trained across sessions to 
suit the tasks which it is asked to perform. This makes 
sure that the search space of groupings is always small 
but still contains desirable solutions. 

An important optimization comes from the observa- 
tion that when a reasonably large number of groupings 
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Figure 1: A basic task for image retrieva!, segmentation, and annotation tools, which is addressed in this paper: 
recovering useful within-image or across-image groupings. A grouping is just a set of related regions. Note that 
useful groupings generally cannot be captured by a single model, or even a single partition or hierarchy, and the 
similarity measure required to induce these groupings may be quite complex. 

Figure 2: Task-dependent performance of texture models. The three patterns on the right are ordered by their 
similarity to the pattern on the left, given the particular model space EV or MRSAR. Both results capture the 
horizontal/vertical structure, but the EV returns a more semantically pleasing result since all images are bricks. 
However, these bricks are at different scales, and have different microtexture. Depending on the user’s task, e.g. 
“find other images that look like bricks,” the MRSAIR result, or that of another model, may be preferable. 
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Figure 3: Interactive pattern recognition framework. The arrow at the bottom describes the rate at which the 
three stages learn. 
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is available, the correct groupings are usually present 
but are hard for the system to identify, gi.ven only a 
few training examples from the user. Therefore, the 
system can significantly improve itself just by chang- 
ing the relative weights of groupings, not the groupings 
themselves. This optimization is realized by placing 
a separate weighting stage in between the generation 
and collection stages. Weighting does not change the 
size of the search space, but it does change the shape, 
by putting the “better” groupings first. 

The resulting three-stage method, illustrated in 
Figure 3, differs from conventional feature extraction 
and classification in three crucial ways. First, the 
feedback arc between the classifier and the features 
is performed by the computer, not the designer. Sec- 
ond, each stage develops at different times and differ- 
ent rates, with the stages closest to the user chang- 
ing fastest. This allows the computations to be dis- 
tributed in time and space, facilitating interactive use 
and the incorporation of more complex models. This 
differs from Bayesian combination which essentially 
executes and adapts all stages at once, restricting the 
Bayesian approach to simple models for acceptable 
speed. Third, training is accumulated across sessions 
with the user, so that the system improves over time 
and can solve similar problems better, i.e. learn faster, 
the next time. 

This paper describes an interactive-time learning 
system, called “FourEyes,” which assists a user in find- 
ing groupings both within and across images based on 
features from a society of models. The current im- 
plementation obtains groupings for still images from 
color models, texture models, and the user. For im- 
ages from a sequence, optical flow groupings are also 
used. The grouping representation used by FourEyes 
allows for a variety of arbitrary models, and could eas- 
ily be extended to include audio, text, or other data. 
However, the focus in this paper is on visual data. 

3 Generating groupings 
A grouping is a set of image regions (“patches”) 

which are associated in some way. The elements of 
a grouping may not necessarily come from tlhe same 
image. This representation is useful since it admits 
different kinds of associations without adding com- 
plexity. For example, one set may represent “regions 
containing between 15% and 25% blue pixel? while 
another may represent “regions containing waterfalls” 
while yet another may represent “regions which were 
browsed very often this week.” It also allows specific 
associations between patches to be weighted indepen- 
dently, since each set may have its own weight.. This is 
important because, for example, lettering may be best 
grouped by shape whereas sky may be best grouped 
by brightness and location in the image. The notion 
of grouping, including the generation methods to be 
described, apply to all kinds of data, not just images. 

FourEyes computes within-image groupings from a 
model feature, such as color or texture, in three steps 
as illustrated in Figure 4. This is the first stage of 
Figure 3. The result is a hierarchy of image regions 
for each image, for each model. Then it computes 
across-image groupings from a hierarchical clustering 
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Figure 5: Collecting groupings 

of a feature measured over the within-image group- 
ings. The within-image groupings need not have been 
generated by the same feature used for across-image 
grouping; they may have come from optical flow or 
even m.anual outlining. For example, if a wit,hin-image 
grouping utilizes face detection to produce segments 
containing faces, the across-image grouping can use a 
face classifier. The clustering algorithm is described in 
[4], a longer version of this paper. All of these within- 
image and across-image groupings are computed off- 
line, before the user begins interaction with the sys- 
tem. On-line modification of groupings, included in 
the FourEyes model as the link from the second stage 
to the first, will be described in a future publication. 

4 Collecting groupings 
Once a set of groupings has been formed, the next 

task is to select or combine these to form compound 
groupings for the user. This is the third stalge of Fig- 
ure 3, referred to below as “the learner.” At every 
point in the interaction, the learner must try to gen- 
eralize from a. set of examples provided by the user. 
The result is a set of image regions which contains all 
of the positive examples, and none of the negative. 
This set is formed from multiple groupings and so is 
called a compound grouping. 

The learning algorithm used in FourEyes descends 
from A& [5]. AQ is a greedy method that collects 
groupings one at a time, such that each one includes 
no negative examples but their union includes all pos- 
itive examples. Starting from an empty union, the 
grouping which adds the most positive examples but 
no negative ones is iteratively added. Since the hierar- 
chies generated in the first stage include the smallest- 
scale patches at the leaves, this algorithm can always 
satisfy any set of examples, no matter how arbitrary. 

The algorithm used in FourEyes differs from A& in 
its evaluation of the next grouping to add. Instead 
of choosing the grouping which simply maximizes the 
number of positive examples (as in our previous work 
[S]), it maximizes the product of this number and the 
prior weight of the grouping. This means that, e.g., a 
grouping with twice the prior weight can cover half as 
many positive examples before it is chosen. Thus the 
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Figure 4: Computing within-image and across-image groupings. In image 1, grouping a contains 6, which contains 
c; e.g. they might be house, door of the house, window on the door. When projected into feature space, they are 
considered individually, and look different. The resulting clustering says that a looks more like b than c. 

prior weights directly influence the learner’s inductive 
bias. The prior weights are determined from statistics 
collected over multiple learning sessions. 

5 Weighting groupings 
The learner in the third stage tries to find the best 

compound grouping according to consistency with the 
user’s examples and an inductive bias. When the num- 
ber of examples is large, consistency alone can serve to 
isolate good groupings. However, each example is ex- 
pensive in terms of the user’s time. When the number 
of examples is small, many groupings will be consis- 
tent; consequently, the bias is crucial in determining 
which groupings are chosen. Thus it is important that 
the learner have adaptive prior weights which change 
between interactions with the user, so that the group- 
ings which were satisfactory this time will be selected 
earlier (i.e. with fewer examples) next time. This is 
the purpose of the second stage of Figure 3. 

5.1 Modeling weight-space 
FourEyes adapts to different learning problems by 

clustering weight-space. Currently this is done via a 
self-organizing map (SOM) [7]. During user interac- 
tion, each SOM unit (stored vector of weights) com- 
petes for consistency with the user’s examples; the 
winning unit propagates its weights over the group- 
ings. When the user is satisfied with the output of the 
learner, the winning unit is updated to more closely 
match the examples. In this way, the SOM defines a 
clustering of the weight-vectors for the problems it has 
seen, where each SOM unit is a cluster center. Note 
that a self-organizing map is typically used for the 
classification of feature vectors in a learning problem; 
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Figure 6: Hypothetical weight-space for learning. 
Each point is a vector of weights for all of the group- 
ings. The optimal weights for different problem do- 
mains will fall into distinguished regions. These re- 
gions can be approximated by the Voronoi cells (in 
bold) of units in a self-organizing map, which clusters 
all of the points it sees. A unit which “favors color” 
weights most highly those groupings which come from 
a particular color model, from a combination of color 
models, or from non-color models that happen to be 
consistent with color. 
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here it is being used for classifying learning problems 
themselves, in terms of the grouping weights they fa- 
vor. Each SOM unit then represents a prototypical 
learning problem. 

Each SOM unit stores, for every grouping, tlhe prob- 
ability of including a positive or negative example. 
These probabilities are thus the “features” which are 
used to describe a learning problem. The distance 
function used to compute the winning unit is roughly 
the correlation between the probability distribution 
stored in a unit versus the actual distribution of the 
user’s examples over the groupings (the precise func- 
tion is described in [4]). When a unit is updated, the 
user’s examples contribute to that unit’s probability 
estimates. 
5.2 Learning speedup 

The learner described in Section 4 was modified in 
two ways: 

1. After every e examples received, the SOM was 
consulted for each label to provide a prior weight 
to be used when selecting groupings for that label. 
The choice of e is a time/accuracy tradeoff, since 
SOM lookups are expensive; the experiments used 
e = 10. 

2. When the learner was signaled that the learning 
task was completed, for each label it updated the 
SOM unit whose prior weight was selected for 
that label. 

Experiments have shown that this self-organizing 
map approach is effective at learning good weights for 
several different learning problems simultaneously [4]. 

6 Performance on natural scenes 
The performance of FourEyes was measured by 

its labeling performance on the natural scenes in the 
“BT images” (http : //vismod. www . media. mit . edu/ 
vismod/imagery/Btphotos). In these images, the 
regions are of irregular shapes and sizes, and con- 
tain many different scales and inhomogeneous tex- 
tures. Three human subjects were asked to freehand 
outline regions in 25 of the natural scenes and assign 
the seven labels “building,” “car,” “grass,” “leaves,” 
“person,” “sky,” and “water” to them. They ‘were not 
asked to make.precise boundaries or make decisions 
on a strictly perceptual basis (both of which would 
have aided FourEyes). Then a majority vote among 
the subjects was used to derive a single, approved 
ground-truth segmentation and labeling of those im- 
ages. Since within-image groupings were computed 
using a 16 x 16 coarse feature image (Figure 4), the 
ground-truth segmentations were quantized to that 
resolution. Note that finer tessellation-sizes could be 
used, or overlapping tessellations, or even single pixels, 
if required by the application. 

FourEyes was then used to simulate what the same 
labeling process would have been like with a computer 
assistant, where the user incrementally labels 32 x 32- 
pixel patches. This corresponds more closely to the 
database access scenario, where the user makes de- 
cisions while browsing the data, than the traditional 

Groupings 1 Zero error 1 25Yo err= 

Table 1: Annotation savings for natural scenes. Num- 
bers are the ratio between the total number of cor- 
rectly labeled 32 x 32-pixel patches (4546 for zero er- 
ror, 3410 for 25% error) and the number of examples. 
The higher the ratio, the more help the system is to 
the user. 

train/test scenario. Five experiments were conducted 
with different sets of groupings in stage 1. Patch size 
varied in these groupings, but the results i.n Table 1 
are given in terms of 32 x 32-pixel patches only. There 
were 4546 labeled 32 x 32-pixel patches and 7 classes 
so these are the theoretical maximum and minimum 
numbers of examples required to reach zero error, i.e. 
perfectly label all patches. 

The baseline experiment (row 1 in Table 1) used a 
set of 1600 groupings corresponding to an 8 X: 8 tessella- 
tion of each image, i.e. into groups of four 32 x32-pixel 
patches. This corresponds to a simple bias toward giv- 
ing nearby patches the same label. It required 2924 
examples to reach zero error, for an annotation savings 
of 1.6:1. 

Next, the feature set of FourEyes was enlarged to 
include within-image groupings computed from the 
MRSAR texture feature over 64 x 64-pixel patches 
(1740 groupings, or about 70 per image). This al- 
lowed FourEyes to achieve a savings of 2:l. Third, 
within-image groupings computed from the Euclidean 
distance between unnormalized histograms of 32 x 32- 
pixel patches in the Ohta color space [8] were added 
(1663 groupings), h h w ic raised the savings to 2.4:1. 

Further improvement was found when the SOM was 
updated and run again on the same problem. Perfor- 
mance improved to 2.9:1, which is therefore the most 
that can be expected with these two models. 

The learning curves exhibited diminishing returns 
after reaching 25% error; the last experiment spent 
75% of its examples after this point. This indicates 
that the system is most effective at getting a quick 
first-cut labeling rather than a perfect labeling. In- 
terestingly, adding across-image groupings computed 
from the MRSAR or Ohta histogram features did not 
improve performance. This indicates that the across- 
image perceptual variations in this data’s semantic 
classes were high enough to confuse these image mod- 
els. Another cause might be the scale-sensitivity of 
these particular across-image features. 

The fourth test added human-provided within- 
image groupings to the first stage of FourEyes. This 
test would correspond to the system forming new 
groupings to better match that person’s preferences. 
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The new groupings were provided by one of the sets 
from which the ground-truth was derived, but delib- 
erately did not match exactly the ground-truth used 
in our tests. This raised the zero-error annotation 
savings slightly and allowed the learner to reach 25% 
error much faster. In the fifth test! the correct within- 
image groupings were added (an ideal situation) and 
FourEyes improved by an order of magnitude. This in- 
dicates that there is still room for improvement in the 
image groupings, either by using better models or by 
learning better groupings over multiple interactions. 

7 Summary 
The “FourEyes” learning system for assisting users 

in digital library segmentation, retrieval, and an- 
notation, has been described. Digital library ac- 
cess requires the use of many context-dependent or 
noisy features, whose relevance is not always obvious. 
FourEyes addresses this problem on multiple fronts: 

1. It first makes tentative organizations of the data, 
in the form of groupings. The grouping represen- 
tation provides a common language for different 
measures of similarity. Grou&gs can be man- 
ually provided, induced by color/texture mod- 
els, derived from optical flow information, etc. 
FourEyes uses both within-image groupings and 
across-image groupings composed of these. 

2. The user no longer has to choose features or set 
feature control knobs. Instead, the user pro- 
vides positive and negative examples which allow 
FourEyes to choose groupings (hence, similarity 
measures) automatically. The interaction is more 
like a conversation where both parties give each 
other prompt and relevant feedback in order to 
resolve ambiguities. 

3. With many groupings to choose from, the num- 
ber of examples required to isolate good group- 
ings can get large. FourEyes circumvents this by 
having prior weights on the groupings and prefer- 
ring groupings with more weight. These weights 
are learned across interactions with users, so that 
the system gets better, i.e. learns faster, from 
repeated use. 

4. Since the optimal weights on groupings change 
with context, FourEyes employs a self-organizing 
map to remember useful weight settings. As 
the user interacts with it, FourEyes chooses the 
most appropriate weights in the map. This way, 
FourEyes can improve its joint performance on a 
wide range of tasks. 

5. FourEyes offers interactive performance by explic- 
itly separating these grouping generation; we:ght- 
ing. and collection stages. It does this with- 

-“, 

out sacrificing adaptabicty or the use of multiple 
models, because feedback between the stages al- 
lows the whole system to learn, though each stage 
at a different rate. 
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