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Abstract 

This paper addresses two important issues related to 
texture pattern retrieval: feature extraction and similarity 
search. A Gabor feature representation for textured images 
is proposed, and its peeormance in pattern retrieval is eval- 
uated on a large texture image database. These features 
compare favorably with other existing texture representa- 
tions. A simple hybrid neural network algorithm is used to 
learn the similarity by simple clustering in the texture fea- 
ture space. With learning similarity, the performance of sim- 
ilar pattern retrieval improves significantly. 

An important aspect of this work is its application to 
real image data. Texture feature extraction with similarity 
learning is used to search through large aerial photographs. 
Feature clustering enables efficient search of the database 
as our experimental results indicate. 

1 Introduction 
Texture as a primitive visual cue has been studied for 

over twenty years now. Various techniques have been devel- 
oped for texture segmentation, texture classification, shape 
from texture, and texture synthesis. In addition, much work 
has been done in the context of human texture perception 
and modelling the low level processing. Although texture 
analysis has a long history, its applications to real image 
data has been very limited to-date. 

An important and emerging application where texture 
analysis can make a significant contribution is the area of 
content based retrieval in large image and video databases. 
Using texture as a visual feature, one can query a database 
to retrieve similar patterns. Example queries include: 
“retrieve all landsat images with less than 20% cloud cover” 
or “retrieve all citrus plantations which look like this image 
from the aerial photographs of southern California”. Texture 
classification and segmentation schemes are important in 
answering such queries. However, what distinguishes data- 
base related applications from traditional pattern classifica- 
tion methods is the fact that there is a human in the loop (the 
user) and there is a need to retrieve more than just the best 
match. In typical applications, the input query image is used 
as an initial seed to browse through a large collection of 
data, and similarity based retrieval is needed in such cases. 
In this context the main contributions of this paper are: 

*A Gabor texture feature set is proposed and a compre- 
hensive evaluation and comparison between several texture 
features is provided on a large texture database. We con- 
clude that our Gabor texture features provide the best over- 
all retrieval accuracy. 

*A simple hybrid learning algorithm is proposed to 
compare patterns in the texture feature space. ‘This signifi- 
cantly e.nhances the retrieval performance. 

*A practical application to image browsing is illustrated 
on a large collection of aerial photographs. Gabor features 
cornbinNed with clustering results in a natural hierarchical 
indexing data structure for fast browsing of image data. 

This paper is organized as follows: The next section 
introduces a class of self-similar Gabor functions. A simple 
filter design strategy is suggested for selecting the filter 
parameters. In Section 3 a comprehensive colmparison of 
different multiscale texture feature is provided. Section 4 
discusses learning in the texture feature space and we con- 
clude with some discussions in Section 5. 

2 Gabor Texture Features 
Galbor functions are Gaussians modulated by complex 

sinusoids. In two dimensions they take the form [ 11: 

The Gabor filter masks can be considered as orientation 
and scale tunable edge and line (bar) detectors. The statis- 
tics of these microfeatures in a given region can be used to 
characterize the underlying texture information. A class of 
such self-similar functions, referred to as Gabor wavelets in 
the following discussion, is now considered. This self-simi- 
lar filter dictionary can be obtained by appropriate dilations 
and rota&ions of g (x, y) through the generating function, 

gmn (x, Y) = a-g (x’, Y’), a > 1, m, n = integer (2) 

x’ = a- (xcos0 + ysine) ,y’ = a+ (-xsine + ycos0) , 

where Cf = nx/K, K being the number of orientations. Let 
U, and Uh denote the lower and upper center frequencies of 
interest., and S be the number of scales in the multi-resolu- 
tion decomposition. Then the following design ensures that 
the half-peak magnitude support of the filter responses in 
the frequency spectrum touch each other. Let CT,, = 1/2x0, 
and CS~ = 1/2x0,. Then, 
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a = (uh/u,)-“(s-l) ) (3) 

ou = ((a-l)U/J/((a+l)hm, (4) 

(T, = ~~~(~~[~~-?~~2(~)][2~*2-(21;2:ia:]-:, (5) 

w=u,, 0 = m/K and m = O,l,..., S-l . (6) 

In the experiments on the Brodatz album, we use four scales 
(S = 4 ) and six orientations (K = 6 ). 

2.1 Feature Representation and Distance Measure 
Given an image I (x, y), we compute 

W,,(X,Y) = Il(xl,Y*)g,“*(x-xl.Y-Yl)drldY* > (7) 

where * indicates the complex conjugate. A texture region 
is now characterized by a the mean /.L~~ and the standard 
deviation rsmn of the energy distribution of the transform 
coefficients. 

P,, = JJ pLJ-%Y)pdY 9 (8) 

c3 m,, = J,, (1 W,, (A Y) I- cl,,) 2h4 (9) 

A feature vector is now constructed using p,, and 
0 as components. Recall that S = 4 and K = 6 , 

reF;lting in a feature vector 

7 = [!4x-J qx) !+I, a** CL35 bi5jT. (10) 

Other representations such as using higher order or com- 
plex moments are also possible. However, our extensive 
experiments on a large data set indicate that the marginal 
improvement obtained by using higher order moments does 
not really justify the additional complexity. The complexity 
increases both in terms of added computations as well as 
increase in the feature dimensionality. 

2.2 Retrieval Performance 

Texture Database: The texture database used in the experi- 
ments consists of 116 different texture classes. Each image 
is 512 x 512 pixels. Each image is divided into 16 non- 
overlapping subimages, each 128 x 128 pixels in size, 
thus creating a database of 1856 texture images. These 
images are used in comparing the performance of different 
texture features. 

In the experiments here, a query pattern is defined to be 
any one of the 1856 patterns in the database. This pattern is 
then processed to compute the feature vector as in (10). 
Note that there are 16 images per texture class in t_h$,data- 
base. Consider two image patterns i and j , and let f and 
P represent the corresponding feature vectors. Then the 

distance between the two patterns in the feature space is 
defined to be d (i, j) = aid,,,,, (i, j) , where 

m n 

a ( K,,J and a ( omn) are the standard deviations of the 
respective features over the entire database. The distances 
are then sorted in increasing order and self matches are 
excluded. In the ideal case all the top 15 retrievals are from 
the same large image. The performance is measured in 
terms of the average retrieval rate which is defined as the 
average percentage number of patterns belonging to the 
same image as the query pattern in the top 15 matches. On 
the average 74.37% of the correct patterns are in the top 15 
retrieved images. 

2.3 Comparison with Other Texture Features 

A detailed comparison with some of the other recently 
proposed multiresolution texture image features is made 
here. For the Gabor feature case, the entire 24 x 2 compo- 
nent feature vectors are used. The comparisons are made 
with the conventional pyramid-structured wavelet trans- 
form (PWT) features, tree-structured wavelet transform 
(TWT) features, and multiresolution simultaneous autore- 
gressive model (MR-SAR) features. 

The Gabor features give the best overall performance 
at close to 74% retrieval. This is closely followed by the 
MR-SAR features at 73% (using normalized Euclidean dis- 
tance instead of Mahalanobis distance gave only 65%). As 
can be expected, the TWT features perform better (69.4%) 
than the PWT features (68.7%) but only by a 0.7% margin. 
Figure 1 shows a graph illustrating this retrieval perfor- 
mance as a function of number of top matches considered. 
More details can be found in [3]. 

3 Similarity Measures and Learning 
A similarity measure in the feature space should cap- 

ture the similarity between the original image patterns. 
However, the latter itself is, in many cases, a subjective 
measure. Simple distance measures, such as the normalized 
Euclidean distance, on these features may not preserve the 
perceptual similarity. Computing the appropriate similarity 
measure can be treated as a learning problem. The goal of 
learning is to partition the original feature space into clus- 
ters of visually similar patterns. A large number of labeled 
image data and the associated feature vectors are used dur- 
ing the learning phase. When a texture pattern is presented, 
the network assigns a class label based on the feature vec- 
tor. The final ordered set of retrieval results are then co&- 
puted using the Euclidean distance measure within the same 
class. 
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Figure 1: Comparison of retrieval performance of different texture 
features. 

3.1 Stage I: Kohonen Feature Map 
In the first stage of the learning process, a self-organiz- 

ing feature-mapping algorithm [7] is used. The network 
consisting of two layers transforms the input features of 
arbitrary dimension into a two-dimensional discrete map. 
The first layer of neurons receive the input feature informa- 
tion whereas the second layer of neurons are organized on a 
2-D map for presenting the decision results. The two layers 
are fully connected and the weights associated with these 
connections are adjusted during the training stage. The fea- 
ture map achieves dimensionality reduction while preserv- 
ing topology. 

The weights in the network are adjusted based. on com- 
petitive learning [S]. The training of the network is per- 
formed by randomly presenting a feature vector x to the 
input layer of the network and adjusting the connection 
weight vectors mi according to the updating rules given 
below. In the absence of any additional information about 
cluster formation, the minimum Euclidean distance crite- 
rion is used to decide which neuron is activated. Let us 
denote the fired neuron as c , then 

c = argimin IIx(n)-mill, i = 1,2, . . . . N. (12) 

The updating of the weights associated with the neu- 
rons is only performed within a neighborhood set Nc (n) 
of the neuron c The updating rule can be formulated as: 

mi(n+l) = 
mi(n) +(X(n) [x(n) -mi(n) l,iE NC(n) 
mi(n),ie NC(n) 

(13) 

where a (n) represents a time-dependent learning rate with 
a value between 0 and 1. Note that the weights of the 
selected neurons are adjusted to move in the direction of the 
input vector. Both the size of the neighborhood NC (n) and 
the learning rate 01 (n) decrease with the training time n . In 
our experiments, the learning rate starts at 1 and linearly 

decrea:ses to 0, and the neighborhood size starts by includ- 
ing all the neurons and gradually shrinks to contain only the 
activatled neuron itself. 

3.1.1 Stage TI: Learning vector quantizatiou (LVQ) 
Falllowing the self-organizing stage, a labelled set of 

training feature vectors are presented to the network. Class 
labels are assigned to the second layer of neurons in the fea- 
ture map by majority voting. This is followed by a fine tun- 
ing of the network to improve the classification accuracy. 
Fine tuning is done using a learning vector quantization 
(LVQ3) [7,81 algorithm which can be described as follows: 

Let mi and mj be the two closest weight vectors to a 
given input feature vector x . Let C (x) be the known class 
label associated with x . Let the class label associated with 
the i th neuron be represented by Ci. Let di = 1(x -mill 
be the distance between the input vector and the i th weight 
vector. Define w to be the width of the winldow and let 
y = ( .l - w) / ( 1 + w) . The input vector x is considered 
to be within the window and the following updates are com- 
puted if the relative distances satisfy the following condi- 
tion min (d/d? dj/di) > y , 
*Case 1: Cj = C(x) and Cj#Ci,then 

mi(n+l) = mi(n)-a(n)[x(n)-mi(n)] 

nzj(n+I) = mj(n) +a(n) [x(n)-mj(n)] (14) 

* Case :2: Cj = C (x) = Ci , then 
mk(n!+l) =mk(n)+Ea(n)[x(n)-mk(n)],k6 (i,j) 

(15) 
Since tlhis is a fine-tuning process. the learning rate should 
begin with a ffairly small value (about 0.02 in the experi- 
ments) and gradually decrease to zero. In our (experiments 
w = 0.2 and E = 0.3. 

3.2 Plerformance Evaluation 

We (again) use the Brodatz database to evaluate the 
performance of the learning algorithms for texture similar- 
ity. The training dataset is obtained by partitioning the 
512x512 images into 49 subimages (with overlap), and 
choosing a subset of them. The subimages are all 128x128 
pixels, centered on a 7x7 grid over the original image. The 
first 33 subimages are used for the training set and the last 
16 for testing. 

The 116 texture images are grouped into 32 different 
classes, each class containing between 2-6 similar textures. 
This classification was done manually by researchers in the 
laboratory and Table 1 shows these various classes and the 
corresponding textures. While it is possible that different 
groups of people might come up with slightly dlifferent cat- 
egorizations, our experiments indicate that the a.ctual classi- 
fication will have little effect on the final performance as 
long as similar images are within the same class. 
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Table 1. Texture clusters used in learning similarity measures (identified by human subjects as being visually similar within each cluster). 

For the two layered feature mapping network we 
selected 400 output neurons. As a general rule, the number 
of output neurons is approximately lo-15 times the number 
of classes (clusters) to be learnt. After the training stage, the 
majority rule is used to assign a class label to each of the 
neurons. Within a given cluster, the Euclidean distance is 
used to compute the similarity. 

Figure 2 illustrates an evaluation now based on the 32 
clusters that were used for training and labelling. Here the 
differences are quite striking. Whereas the performance 
without learning deteriorates rapidly (in terms of visual 
similarity) after the first lo-15 top matches, the retrievals 
based on learning similarity continue to perform very well. 

Figure 3 shows some retrieval examples with and with- 
out learning similarity measures, which clearly illustrate the 
superiority of the learning algorithm. Perhaps it is not sur- 
prising to expect much better results as the network uses 
additional information not used when patterns were 
retrieved based only on weighted Euclidean distance. 
Another important point to note is that the clustering can be 
performed in a hierarchical manner, thus creating a tree rep- 
resentation. Searching through a tree is much more effi- 
cient, and resolves some of problems related to indexing in 
high dimensional feature space. Traditional data structures 
do not generalize well into high dimensions (greater than 
20) and the feature vectors we are using are 4%dimen- 
sional. Search mechanisms such as the R* trees under such 
conditions are no better than a linear search [9]. 

3.3 Browsing Large Aerial Photographs 

Query based on texture properties will have many 
applications in image and multi-media databases. Here we 
describe with an example our current work on incorporating 
these features for browsing large satellite images and air 
photos. Typical images in such a database range from few 
megabytes to hundreds of megabytes, posing challenging 
problems in image analysis and visualization of data. Con- 

Figure 2: Retrieval performance before and after learning similar- 
ity measures. Notice the significant improvement in similarity 
based retrieval with learning. 

tent based retrieval will be very useful in this context in 
answering queries such as “Find a vegetation patch that 
looks like this region”. 

We are currently investigating the use of texture primi- 
tives to accomplish rapid content based browsing within an 
image or across similar images. Figure 4 shows an example 
of browsing 5248 x 5248 air photos. Initially, a coarse sub- 
sampled version of the image is loaded on the display mon- 
itor. The original image is analyzed in blocks of pixels (e.g., 
128x128 or 64x64) and the texture features are computed 
and stored as part of the image “meta-data”. The user can 
select any position and display the full resolution version at 
that location, and use that pattern to search for similar look- 
ing regions. 

The current database now consists of about 40 such 
large airphotos, with more than 250,000 texture objects to 
search and retrieve. Our initial results in browsing such a 
large dataset using the learning approach are very encourag- 
ing. In our current implementation, search and retrieval is 
almost real time (2-3 seconds, including search and sorting, 
on a SUN Sparc20 machine). In contrast, a linear search 
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(a) before learning similarity measures (b) after learning similarity measures 

Figure 3: Pattern retrieval with and without learning. Each query pattern has 15 other similar patterns in the database. The input query 
(d0.56.01) is shown at the top of the column in each case. With or without learning, the Gabor features provide a very good representation 
in retrieving all the other 15 images from the same texture class. However, note the degradation in visual similarity after that for the case 
without learning. The images are ordered according to decreasing similarity from left to right and top to bottom. For the case with learn- 
ing similarity, the performance continues without any marked degradation in perceptual similarity, even after 50 patterns are :retrieved. 

would have taken 3-5 minutes (and indexing structures 4 Couchsims 
would not have been very useful either, as noted earlier). 
Ground truth is not available to provide a quantitative eval- 

A Gabor wavelet based texture analysis scheme is pro- 

uation similar to the Brodatz album. However, as the 
posed and its application to a large texture imalge database 

retrieval results in Figure 4 indicate, our approach using 
is demonstrated. A comprehensive performance evaluation 

Gabor features appears to be quite successful on a wide 
of the method is given using a large number of textures, and 
a comparison with some of the well known multiresolution 

range of image patterns. Retrieval examples include vegeta- 
tion patches (such as citrus plantations), parking lots with 

texture classification algorithms is made. The experimental 

cars, highways and intersections, and even some imprinted 
results indicate that the Gabor feature are quite robust and 

text on the images (see the web pages at http:// 
compare favorably with other texture features for pattern 
retrieval. 

vivaldi.ece.ucsb.edu for more examples). The texture fea- 
tures are now being incorporated into a database system 
which allows both textual and texture pattern queries. 

Comparing patterns in the feature space is another 
important issue that is addressed. We propose the use of a 
hybrid neural network learning algorithm to cluster feature 
vectors while preserving the topology and visual similarity. 
As demonstrated by the experimental results, this combina- 
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searching similar patterns 
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Down sampled version of 
the 5248 x 5248 image 

Figure 4: Snapshot of an aerial photograph browsing demonstration. The example shown indicates a query pattern containing a parking 
lot. Next to the query is the image codeword used to index the database. The browser can retrieve almost 99% of all the parking lots in the 
aerial photo database. 

tion of Gabor features and learning significantly enhance 
the retrieval performance. The resulting hierarchical repre- 
sentation, which can be easily generalized into a tree struc- 
ture, also facilitates fast browsing on a large image 
collection. The application to browsing large aerial photo- 
graphs is among the first of its type to demonstrate the use- 
fulness of texture features for content based retrieval on real 
image data. Our current research is to extend these methods 
to deal with scale and rotation invariance [lo] and incorpo- 
rating automated segmentation of images into homoge- 
neous texture regions. 
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