
56

Sound Gradual Typing is Nominally Alive and Well

FABIAN MUEHLBOECK, Cornell University, USA

ROSS TATE, Cornell University, USA

Recent research has identified significant performance hurdles that sound gradual typing needs to overcome.

These performance hurdles stem from the fact that the run-time checks gradual type systems insert into code

can cause significant overhead. We propose that designing a type system for a gradually typed language hand

in hand with its implementation from scratch is a possible way around these and several other hurdles on

the way to efficient sound gradual typing. Such a design process also highlights the type-system restrictions

required for efficient composition with gradual typing. We formalize the core of a nominal object-oriented

language that fulfills a variety of desirable properties for gradually typed languages, and present evidence that

an implementation of this language suffers minimal overhead even in adversarial benchmarks identified in

earlier work.

CCS Concepts: • General and reference → Performance; • Software and its engineering → Formal
language definitions; Runtime environments; Object oriented languages;

Additional Key Words and Phrases: Gradual Typing, Nominal, Immediate Accountability, Transparency

ACM Reference Format:
Fabian Muehlboeck and Ross Tate. 2017. Sound Gradual Typing is Nominally Alive and Well. Proc. ACM
Program. Lang. 1, OOPSLA, Article 56 (October 2017), 44 pages.
https://doi.org/10.1145/3133880

1 INTRODUCTION
Sound gradual typing is the idea that typed and untyped code can be mixed together in a single

language in such a way that the typed code is able to execute as if there were no untyped code.

This means that typed code can rely on type soundness to enable type-driven optimizations.

The basic intuition of how to achieve sound gradual typing is relatively simple: we must protect

the guarantees obtained through static type-checking by inserting run-time checks at locations

in the code where values flow from untyped components to typed components. If a value from

untyped code fails to have its expected type at run time, an exception is thrown. Thus, the statically

checked components of the program can assume all values passed to them are well-typed.

Painted this way, the picture leads us to expect that gradual typing may incur some overhead for

those inserted checks, proportional to the number of times we transition from untyped to typed

parts of the program. In the optimal scenario, these checks are infrequent and efficient, and thus the

overall cost of gradual typing is low and can be easily estimated and planned for by analyzing the

level of interaction between typed and untyped parts of the program. Furthermore, typed code can

be optimized in ways untyped code cannot, so one would expect performance to smoothly improve

Author’s addresses: Fabian Muehlboeck, Cornell University, Department of Computer Science, Ithaca, NY 14850, USA; Ross

Tate, Cornell University, Department of Computer Science, Ithaca, NY 14850, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Association for Computing Machinery.

2475-1421/2017/10-ART56

https://doi.org/10.1145/3133880

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 56. Publication date: October 2017.

https://doi.org/10.1145/3133880
https://doi.org/10.1145/3133880

56:2 Fabian Muehlboeck and Ross Tate

as types are added to a code base. However, we are not aware of any existing proposal for a sound

gradually typed language which has such performance behavior and reasonable performance for

fully untyped code. In fact, Takikawa et al. [2016] measured extreme and unpredictable dips in

performance for programs consisting of both typed and untyped code. These measurements were

made on their current proposal for sound gradual typing for Racket [Tobin-Hochstadt and Felleisen

2006], but they argue that no other system provides convincing reasons for why it should perform

significantly better.

In this paper, we present a way to achieve efficient sound gradual typing. The core component

of this approach is a nominal type system with run-time type information, which lets us verify

assumptions about many large data structures with a single, quick check. The downside of this

approach is that it limits expressivity, particularly with respect to structural data. Nonetheless, we

argue that one should be able to build useful programming languages even under these limitations,

and we sketch ideas about how to address the limitations in the future. Furthermore, by designing

this system hand-in-hand with gradual typing, we are able to execute even untyped code efficiently

despite our reliance on nominal typing.

To support our claims about efficiency, we built a prototype compiler for a nominal object-

oriented language and used it to implement key examples presented by Takikawa et al. Given that

this involves a major shift in programming paradigms, we engineered the examples to exhibit the

same complexity in terms of transitions between untyped and typed code as they did in Racket.

Whereas Takikawa et al. measured overheads over 10,000% relative to the performance of fully

untyped code, we measured worst-case overheads of less than 10%.

In summary, the contributions of this paper are as follows:

• We present new desirable properties of sound gradual type systems that we believe signifi-

cantly improve their performance (Section 3).

• We present a simple gradually typed nominal object-oriented language (Section 5 through 7)

that fulfills the properties traditionally desired of gradual type systems in addition to our

own new properties (Section 8). We also give a crisp connection between the direct semantics

of the language (Section 6) and the cast semantics of the language (Section 7).

• We provide evidence of our approach’s feasibility and efficiency by presenting an implemen-

tation of said language and comparing benchmarks between it, Typed Racket [Takikawa et al.

2016], C# [Bierman et al. 2010], and Reticulated Python [Vitousek et al. 2014] (Section 9).

• We illustrate the significant tradeoffs and future challenges of our approach and sketch

possible avenues for addressing its current limitations in the future (Section 10).

This work draws heavily from earlier work on gradual typing, which we review next.

2 BACKGROUND
Gradual typing, as originally proposed by Siek and Taha [2006], features two core elements: a

special type dyn and a consistency relation τ ∼ τ ′ expressing that τ and τ ′ are structurally equal

except for places featuring dyn. For example, the following types are consistent:

dyn ∼ (dyn → dyn) ∼ (int → dyn) ∼ (int → bool)

A program in their gradually typed language type-checks according to the original typing rules,

but with type equality replaced with the consistency relation in many places. This enables dyn
to stand for any type while also maintaining the familiar static typing rules where dyn is not

present. The gradually typed program is then translated into a variant of the original statically

typed language by inserting dynamic casts where run-time checks are necessary to monitor the

boundary between untyped and typed code.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 56. Publication date: October 2017.

Sound Gradual Typing is Nominally Alive and Well 56:3

Here is how this works for an example program:

f : dyn → dyn ⊢ (λ f ′ : int → int. f ′ 5) f

The lambda term expects a parameter of type int → int, but it is applied to an argument of

type dyn → dyn. Despite this difference in types, the program type-checks because these two

types are considered to be consistent with each other. This gradually typed program is then

translated to a statically typed program by inserting run-time casts, resulting in

f : dyn → dyn ⊢ (λ f ′ : int → int. f ′ 5) (f :: int → int)

Here e :: τ represents a run-time check that e has type τ , conceptually throwing a run-time

exception if it does not.

2.1 Casting Strategies
In most gradual typing settings, casts are the only source of run-time overhead incurred by gradual

typing. Thus, where casts are inserted and how they work has a big impact on the performance of

a gradually typed program. Before we suggest our own variation on casts in Section 3, we give an

overview of existing casting strategies that have been studied as such.

2.1.1 Guarded. Most work on sound gradual typing—including the original works by Siek and

Taha [2006], Tobin-Hochstadt and Felleisen [2006], Matthews and Findler [2007], and Gronski et al.

[2006]—uses the guarded cast semantics. In those systems, a cast like the one above reduces as

follows:

f :: int → int 7→ λx : int. (f (x :: dyn)) :: int
Instead of checking whether the function f always returns an int when given an int, which is

generally impossible, it is wrapped in a new function that upcasts its input to dyn—which always

works—and, after the call to f completes, checks that its output is an int. Wadler and Findler [2009],

and later Ahmed et al. [2011], showed that this is sound even if it is later discovered that f does

not always return an int when given an int. However, instead of having one check at the point

where the function is passed to the typed part of the program, this strategy will incur checks every

time the function is called, which can cause signficant overhead if that function is heavily used.

Simply wrapping functions into other functions also does not preserve object identity, which can

be a problem in languages where object identity is semantically significant.

2.1.2 Transient. The transient cast semantics was proposed by Vitousek et al. [2014] to preserve

object identity in Reticulated Python. It puts casts nearly everywhere in the code: the caller of

a function casts an argument to the type that the function expects, but since a different caller

might see that function as dyn → τ , the function itself also casts its parameters, leading to many

unnecessary checks even in fully typed code. As such, soundness was not originally meant to be

monitored in production programs, but rather intended to help with finding the sources of type

errors during debugging. However, Vitousek et al. [2017] recently used this casting strategy as the

basis of their work on open-world soundness, finding overheads much smaller than those reported

by Takikawa et al. [2016], but still several multiples of the original run times, sometimes over 10x.

2.1.3 Monotonic. Another approach used by Vitousek et al. [2014] in Reticulated Python, and by

Swamy et al. [2014] and Rastogi et al. [2015] in Safe TypeScript, is what Siek et al. [2015b] formalized

as the monotonic approach. Here, every value keeps track of what type it has been checked to

have, and enforces that type in later mutations. For example, the record {x : 5, y : “Hello′′} might

be checked to have type {x : int}, after which it will get a special run-time-type-information

field assigned and become {x : 5, y : “Hello′′, rtti : {x : int}}. Any subsequent assignment of a

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 56. Publication date: October 2017.

56:4 Fabian Muehlboeck and Ross Tate

non-integer value to x would fail, and future checks can use the information in rtti to fast-track
failure or success instead of checking the value of x itself. The rtti field itself can only change

monotonically towards more precise types (if they are consistent with the current values in the

structure). Applying this scheme to higher-order types is not straightforward; thus Swamy et al.

do not treat a function dyn → dyn as compatible with int → int, while Siek et al. fall back to

guarded semantics for function types.

2.2 Properties of Gradual Type Systems
Beyond soundness, there are additional desired properties for gradual type systems suggested

by the literature. In the following, we describe what they are and why they are useful. Later, in

Section 3, we propose two more properties related specifically to the efficiency of gradual typing.

2.2.1 Blame and Accountability. Lacking a proper word for a notion of “can assign blame

correctly” as defined by Tobin-Hochstadt and Felleisen [2006] and Wadler and Findler [2009], we

define accountability as the property that, when an inserted cast fails, it can refer the programmer

to some untyped part of the program that is at fault. Higher-order types are what make blame

hard to implement, since a higher-order cast cannot be determined right or wrong until later in the

program when the cast function is supplied an argument. Blame tracking is the technique used to

enable dynically created casts to keep track of the statically inserted cast they originated from.

2.2.2 The Gradual Guarantee. Siek et al. [2015a] defined the gradual guarantee, which expresses

the idea that adding or removing type information from a program should not change its behavior

in unexpected ways. In particular, making a well-typed program more dynamic should always

result in a well-typed program that produces the same output. The only exception is that a more

dynamic program can succeed where the original would fail because the original might assert some

unnecessary and overly restrictive type cast.

The gradual guarantee thus captures the expectation that adding type annotations to an untyped

program should preserve the semantics of the program provided those annotations are correct.

While this clearly seems like a desirable property for gradually typed languages, Siek et al. [2015a]

demonstrate that several existing gradual type systems do not satisfy this property, including Safe

TypeScript [Swamy et al. 2014]. They remark that it seems “challenging to satisfy the gradual

guarantee and efficiency at the same time”.

2.3 Overhead of Gradual Typing
Recently, Takikawa et al. [2016] surveyed the state of performance evaluations on gradual type

systems. They found that no gradually typed language had a systematic evaluation of the behavior

of the language during the process of gradually typed software development, by which they mean

an evaluation of how having mixed typed and untyped code affects run-time overheads. What they

found instead was that if there was some kind of overhead evaluation, it usually just compared

completely typed and completely untyped versions of programs. Thus, Takikawa et al. proposed a

scheme of using microbenchmarks divided up into smaller modules. Each of these modules would

exist in two versions, one completely typed, and one completely untyped. Thus, if a program

consists of N modules, it would have 2
N
potential configurations (i.e. different combinations of

typed/untyped versions of the modules). Takikawa et al. created a suite of microbenchmarks in

Typed Racket, and measured the overhead of gradual typing by comparing the running time of each

configuration to the running time of the completely untyped configuration. While the completely

typed configuration was usually about 30% faster than the completely untyped one, they found

some programs had configurations with over 10,000% overhead. Furthermore, for some programs

there was no sequence of annotating modules (simulating a gradual evolution from a completely

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 56. Publication date: October 2017.

Sound Gradual Typing is Nominally Alive and Well 56:5

untyped to a completely typed program) where every intermediate configuration had less than

1,000% overhead. We agree with their assessment that such overheads are far beyond acceptable,

and that sound gradual typing needs significant improvements in efficiency in order to be adopted.

2.4 Gradual Typing for Object-Oriented Languages
Gradual typing was extended to object-oriented languages quite early, again by Siek and Taha

[2007]. Their approach was based on structural subtyping on records. They used the guarded

casting strategy, even delaying checks for the presence of expected fields to whenever that field

was actually accessed. This is an example of how design choices in casting strategies are not

limited to just functions. Since the language we are formalizing and have implemented is a nominal

object-oriented language, it touches on many aspects from prior work on sound gradual object-

oriented languages (both nominal and structural). Such languages include C# [Bierman et al. 2010],

GradualTalk [Allende et al. 2014], Reticulated Python [Vitousek et al. 2014], Safe TypeScript [Rastogi

et al. 2015; Swamy et al. 2014], and StrongScript [Richards et al. 2015]. We discuss their relations to

our work as we get to the relevant parts of the paper.

3 TOWARDSWELL-BEHAVED AND EFFICIENT GRADUAL TYPING
In the light of the previous discussion, we want to devise a sound gradually typed language that is

accountable, fulfills the gradual guarantee, and has acceptably low overhead for the checks needed

to ensure soundness. Since the overhead of gradual typing comes from the run-time checks it needs

to insert, we aim to minimize the number and cost of those checks. The main ingredients of our

scheme to achieve this goal are nominality and run-time type information. The idea is that every

value will be tagged with its most precise type as run-time type information. This enables what we

call transparency and immediate accountability, the combination of which provides efficiency.

In this section, we give a brief overview of what these ingredients are and how our approach

relates to existing work. We formalize transparency and immediate accountability in Section 8.

3.1 Transparency
A transparent casting strategy is one in which a cast is invisible to the runtime system after it is

evaluated, unless of course it fails. Thus, guarded casting is not transparent because a cast can wrap

a value with a new value that would otherwise not be present. Transient casting, on the other hand,

is transparent because the value is simply passed on after the cast succeeds. Monotonic casting

provides a middle ground in which the same value is passed on, but the value is modified in place.

3.2 Immediate Accountability
Accountability is the ability to identify a source of a cast failure in the source program. Immediate
accountability is the ability to identify that source immediately as it is being executed. In other

words, loops and recursion aside, once execution has successfully proceeded past a point in the

program, then that point cannot be at fault for some future cast failure. None of guarded casting,

transient casting, or monotonic casting are necessarily immediately accountable. They often only

do shallow aspects of a cast immediately, and defer deep aspects of a cast to later. C# [Bierman

et al. 2010] and Safe TypeScript [Swamy et al. 2014] are the only prior gradual type systems that

we know of that are immediately accountable, both of which sacrifice the gradual guarantee to

achieve this.

3.3 Run-Time Type Information
Having every value always be tagged with its most precise type requires a significant assumption:

every value’s most-precise type must be known upon construction of the value, even if it is

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 56. Publication date: October 2017.

56:6 Fabian Muehlboeck and Ross Tate

constructed in an untyped part of the program. We discuss the implications of this requirement

next and in Section 10.3.

3.4 Discussion
Most earlier work on gradually typing focuses on adding gradual typing to an existing system.

Half of this work aims to add gradual typing to an existing untyped language. Examples of this

category are Reticulated Python [Vitousek et al. 2014], Gradualtalk [Allende et al. 2014], Safe

TypeScript [Rastogi et al. 2015; Swamy et al. 2014], and StrongScript [Richards et al. 2015], as well as

the two widespread unsound gradually typed languages (preferably referred to as optionally typed

languages [Bracha 2004]), Hack [Facebook, Inc. 2016] and TypeScript [Microsoft 2012]. The other

half aims to add gradual typing to, i.e. “gradualize”, an existing typed language. Examples of this

category are C# [Bierman et al. 2010], gradual typing for generics by Ina and Igarashi [2011], and

work on systematically [Garcia et al. 2016] or automatically [Cimini and Siek 2016] gradualizing

given typed languages.

Certainly much of the appeal of gradual typing is that it can give a preexisting language new

access to the counterpointing paradigm. However, both directions currently have weaknesses to

overcome due to the fact that gradual typing is heavily intertwined with both the type system

and the runtime implementation. Adding sound gradual typing to an untyped language seems to

frequently incur significant overhead, sometimes making programs multiple orders of magnitude

slower [Takikawa et al. 2016]. Part of the problem is that the type-system features needed to capture

the idioms common to untyped languages are not easy to check efficiently, especially when the

underlying runtime is not designed for it.

Conversely, adding gradual typing to a typed language can introduce unexpected behavior due

to violations of the gradual guarantee. For example, in C#, adding more precise type information to

a well-typed program may cause that program to cease being well-typed, as the new information

may introduce ambiguities (e.g. through additional available overloadings) that would have to be

resolved. When such an ambiguity is introduced at compile time, C# can rely on the programmer

to resolve the error. However, with gradual typing, such ambiguities can be introduced at run time,

where no such programmer is readily available to resolve the problem, causing the system to throw

a run-time error. Furthermore, C# compilation is heavily type-directed, but gradual typing often

makes type information available only at run time, so C# is forced to defer much of its compilation

of untyped code to run time. We have found that this can introduce significant overhead, as we

illustrate in Section 9. We discuss these and other issues in more detail in Section 10. The main point

here is that gradual typing is not easy to bolt onto existing languages without serious drawbacks.

Thus, in contrast to most earlier work, we focus on gradual typing for new systems, where the

entire language can be designed from the start to both support and benefit from gradual typing.

Clearly we can benefit from all the work on adding gradual typing to existing systems, but our

change in focus also enables us to benefit from a greater degree of flexibility. Here we use that

flexibility to address the efficiency issues in prior work while retaining desirable properties such

as accountability and the gradual guarantee. While the improvement in performance is certainly

more noticeable when compared to systems that have added sound gradual typing to untyped

languages, we even achieve better performance than systems that have added sound gradual

typing to typed languages. We accomplish this by designing a language with a nominal runtime

environment, which is where most of our performance gains come from, optimized for gradual

typing, which is where our smaller performance gains come from. Nominality in and of itself is not

a guarantee for good performance, nor does it imply transparency or accountability. For example,

our benchmarks for C#—which is nominal, transparent, and immediately accountable—show that its

dynamically typed parts are quite slow (see Section 9). As another example, StrongScript [Richards

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 56. Publication date: October 2017.

Sound Gradual Typing is Nominally Alive and Well 56:7

et al. 2015] uses nominality for performance in fully typed programs, but the language as a whole is

neither transparent nor immediately accountable, and there is no performance evaluation of mixed

programs, where Takikawa et al. [2016] found the biggest problems. Furthermore, Richards et al.

found that blame tracking produced significant overhead, prompting them to only evaluate the

performance of their system without blame.

Of course, the nominality of our runtime environment restricts the programmer. While gradual

typing can recover some of the expressiveness of structural typing that prior research has worked

hard to preserve, there is still much that is lost. We expect to address this by developing methods for

mixing structural values into our nominal system, much like we mix untyped and typed code. And

in fact, there is already significant work to this effect, some with [Richards et al. 2015; Wrigstad et al.

2010] and some without gradual typing [Anderson and Drossopoulou 2003]. But it is important to

recognize that adding structural reasoning is not necessary for many of the well-known applications

of gradual typing. Much like how we focus on gradual typing being a part of the language from

the beginning, one envisions gradual typing being a part of the software-development process

from the beginning. Stable code would typically be typed, benefiting from better optimization

and providing machine-checkable document for programmers and IDEs interacting with this code.

Meanwhile unstable code would not need to be typed, which is useful for prototyping, scripting, or

simply letting the programmer first experiment in the paradigm they are most comfortable with. In

particular, student programmers can enjoy the benefits of working with well-typed APIs without

having the type system impede their first explorations into programming.

What we present in this paper is a minimal system striving towards this end, just large enough

to test whether this path has promise. Our formalization presented in Section 5 is sufficient for

covering the same feature set as Featherweight Java [Igarashi et al. 2001] with interfaces and little

more. Meanwhile, we have made an effort to be forwards compatible with a multitude of features

frequently found in nominal industry languages, all while also making an effort to be forwards

compatible with structural values. Our implementation covers a much larger subset of pre-generics

Java, including assignment, interfaces, overloading, primitive types, messages to super, access

control, and null pointers. Some of these features were adapted to work with gradual typing in a

way that satisfies the gradual guarantee. For example, we require that all overloadings of a method

be disjoint in order to avoid ambiguities at dynamic method lookup at run time, and we made null

explicit in anticipation of adding generics types later to avoid problems with both type-argument

inference [Smith and Cartwright 2008] and unsoundness [Amin and Tate 2016]. While we have yet

to decide how to accommodate structural values, we will discuss a number of possible strategies to

this end in Section 10.3.

4 THE OPTIMISTIC PERSPECTIVE
Throughout the remainder of this paper we will be using the terms optimistic and pessimistic. This is
a change in terminology that we find unifies our definitions. The idea is that there are two attitudes

towards typing. One is the optimistic attitude: programs should be able to proceed so long as they

might succeed. Dynamic typing takes this attitude, trying to only stop a program when execution

encounters an issue that cannot be overcome. The other is the pessimistic attitude: programs should

only be able to proceed when it is known they will succeed. Static typing takes this attitude, trying

to only compile a program if it is exhibits certain guarantees.

Both attitudes have their advantages and disadvantages, and consequently are each better suited

to different circumstances. The purpose of gradual typing is to give the programmer the ability to

explicitly control which attitude is applied where in a given program. Thus, when a variable is given

the type dynamic, the programmer is directing the compiler to treat the variable as optimistically

having whatever type is necessary for the usages at hand. On the other hand, when a variable

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 56. Publication date: October 2017.

56:8 Fabian Muehlboeck and Ross Tate

Class/Interface Name C Field Name f Method Namem Variable Name x

Type τ F ⊤ | C | dynamic
Context Γ F · | Γ,τ x

Expression e F x | let τ x B e in e | C(e, . . .) | e . fδ | e .mδ (e, . . .) | cast e to τ
Dispatch Mode δ F C | dynamic

Method Signature s F τ m(Γ)
Method Definition d F s 7→ e
Interface Definition i F interface C {s; . . . }

Class Definition c F class C(τ f , . . .) implements C, . . . {d ; . . . }
Environment Definition ΨF · | Ψ, i | Ψ, c

Fig. 1. Grammar

is given the type Number, the programmer is directing the compiler to treat the variable as

pessimistically only being usable where a Number provides sufficient guarantees. In this way, a

gradually typed language enables the programmer to change attitudes as they see fit.

In technical terms, this new terminology expresses the same concept that Garcia et al. [2016]

generalize as consistent lifting.

5 THE TYPE SYSTEM
The grammar of our small gradually typed object-oriented language is shown in Figure 1. The

grammar is mostly standard besides being fairly minimal. Our implementation does of course

handle a much richer set of features as described in Section 9. The point of this formalization is

not to specify our implemented language, but to be able to discuss the interesting aspects of our

approach: nominality, run-time type information, transparency, and immediate accountability. Note

that as another simplification, we do not concern ourselves with naming issues; it is obvious how

to adjust the rules throughout this paper to address problems such as name shadowing.

5.1 Dispatch Modes
The one irregular feature of our grammar is the use of dispatch modes δ . Every field access and

method invocation is annotated with a dispatch mode. This reflects the fact that, at compile time, one

must decide how a field should be accessed or a method implementation should be looked up. For

example, a method could be looked up by accessing some offset of the object’s virtual-method table.

In this case, the dispatch mode is the class that specifies which offset to use. Alternatively, a method

could be looked up by searching through the object’s interface table, in which case the dispatch

mode is the interface to search for. Lastly, since we are providing a gradually typed language, a

method could be looked up in the object’s hashtable, like one would do in a dynamically-typed

language such as Python. In this case, the dispatch mode is dynamic.
Note that this means we view objects as supplying both a virtual-method table

1
(and interface

table) and a (possibly immutable and shared) hashtable. Similarly, fields can be accessed through

fixed offsets when the object’s class is known, or through the hashtable when the field access

is being typed dynamically. This allows us to interact with objects efficiently regardless of the

typing attitude we happen to be applying in a given part of the program. Although in theory we

could develop a more traditional calculus without dispatch modes, we include them here to better

illustrate how we are able to implement gradual typing.

1
For simplicity, we do not allow classes to extend other classes. However, we have designed our calculus to support class

inheritance, and our implementation supports it as well.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 56. Publication date: October 2017.

Sound Gradual Typing is Nominally Alive and Well 56:9

Ψ ⊢ C S C

C implements C ′ ∈ Ψ

Ψ ⊢ C S C ′ Ψ ⊢ τ S ⊤ Ψ ⊢ τ S dynamic Ψ ⊢ dynamic ◃ C

Fig. 2. Subtyping, where S is optimistic ◃ or pessimistic ◂

Ψ ⊢ τ Ψ ⊢ e S τ

Ψ ⊢S e

Ψ | · ⊢ e S τ

Ψ ⊢ e S τ

τ x ∈ Γ Ψ ⊢ τ S τ ′

Ψ | Γ ⊢ x S τ ′

Ψ ⊢ τ Ψ | Γ ⊢ e S τ
Ψ | Γ,τ x ⊢ e ′ S τ ′

Ψ | Γ ⊢ let τ x B e in e ′ S τ ′

class C(τ1, . . . ,τn) ∈ Ψ
∀i . Ψ | Γ ⊢ ei S τi Ψ ⊢ C S τ

Ψ | Γ ⊢ C(e1, . . . , en) S τ

Ψ ⊢ δ . f : τ
Ψ ⊢ e S δ Ψ ⊢ τ S τ ′

Ψ | Γ ⊢ e . fδ S τ ′

Ψ ⊢ δ .m(τ1, . . . ,τn) : τ Ψ | Γ ⊢ e S δ
∀i . Ψ | Γ ⊢ ei S τi Ψ ⊢ τ S τ ′

Ψ | Γ ⊢ e .mδ (e1, . . . , en) S τ ′
Ψ | Γ ⊢ e S ⊤ Ψ ⊢ τ S τ ′

Ψ | Γ ⊢ cast e to τ S τ ′

class C(τ1 f1, . . .) ∈ Ψ

Ψ ⊢ C . fi : τi

Ψ ⊢ dynamic. f : dynamic

τ C .m(τ1, . . . ,τn) ∈ Ψ

Ψ ⊢ C .m(τ1, . . . ,τn) : τ

Ψ ⊢ dynamic.m(dynamic, . . .) : dynamic

Ψ ⊢ ⊤

interface C ∈ Ψ

Ψ ⊢ C

class C ∈ Ψ

Ψ ⊢ C Ψ ⊢ dynamic Ψ ⊢ ·

Ψ ⊢ Γ Ψ ⊢ τ

Ψ ⊢ Γ,τ x

Fig. 3. Expression Typing, where S is either optimistic ◃ or pessimistic ◂ subtyping

In general, the dispatch modes will be inferred by the compiler. As this issue is orthogonal to the

properties that we are trying to formalize and comes with its own interesting design choices, we

defer discussion of dispatch-mode inference to Appendix A.

5.2 Subtyping
Our system provides two kinds of subtyping: optimistic and pessimistic. Optimistic subtyping (◃)

recognizes that dynamic is optimistically a subtype of any type τ because it can optimistically be

interpreted as being τ . Pessimistic subtyping (◂) ensures that one type is a subtype of another only

if all values of the former type are also values of the latter type. The two differ by only rule, so we

use the metavariable S to formalize both of them simultaneously in Figure 2.

Like most subtyping relations, pessimistic subtyping is transitive. However, optimistic subtyping,

like its inspiration consistent subtyping [Siek and Taha 2007], is not transitive because it conceptually
confuses existentials with universals. That is, dynamic semantically represents ∃α .α . Consequently,
every type is semantically a subtype of dynamic, as is captured by both pessimistic and optimistic

subtyping. But the optimistic attitude says to also treat dynamic as ∀α .α when it would make the
subtyping hold, making dynamic an optimistic subtype of every type. Thus the difference between

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 56. Publication date: October 2017.

56:10 Fabian Muehlboeck and Ross Tate

Ψ ⊢ Ψ

⊢ Ψ Ψ ⊢ ·

Ψ ⊢ Ψ′ Ψ ⊢ i

Ψ ⊢ Ψ′, i

Ψ ⊢ Ψ′ Ψ ⊢ c

Ψ ⊢ Ψ′, c

∀i . Ψ ⊢ si

Ψ ⊢ interface C {s1; . . . }

∀i . Ψ ⊢ τi ∀i . Ψ | C ⊢ di
∀i . interface Ci {s

i
1
; . . .} ∈ Ψ ∀i .∀j .∃ki, j . Ψ ⊢ dki, j ◃ s

i
j

Ψ ⊢ class C(τ1 f1, . . .) implements C1, . . . {d1; . . . }

Ψ ⊢ τ Ψ ⊢ Γ

Ψ ⊢ τ m(Γ)

Ψ ⊢ τ Ψ ⊢ Γ Ψ | C this, Γ ⊢ e ◃ τ

Ψ | C ⊢ τ m(Γ) 7→ e

Ψ ⊢ · ◃ ·

Ψ ⊢ Γ ◃ Γ′ Ψ ⊢ τ ◃ τ ′

Ψ ⊢ Γ,τ x ◃ Γ,τ ′ x

Ψ ⊢ Γ′ ◃ Γ Ψ ⊢ τ ◃ τ ′

Ψ ⊢ τ m(Γ) 7→ e ◃ τ ′m(Γ′)

Fig. 4. Class and Interface Validation

optimistic and pessimistic subtyping captures the difference between the optimistic and pessimistic

attitudes.

5.3 Expression Typing
Our expression-typing rules are shown in Figure 3. Observe that they look nearly identical to what

one might expect for a statically typed language. The only other major difference is that they are

parameterized by a subtyping relation S . When one uses optimistic subtyping ◃ for S , we say the

expression type-checks optimistically. Likewise, when one uses pessimistic subtyping ◂ for S , we
say the expression type-checks pessimistically. This parameterization illustrates that type-checking

is both standard and adjustable to the preferred attitude at hand.

5.4 Class and Interface Validation
Class and interface validation is shown in Figure 4. Once again it is quite standard. The one point to

note is that a class is allowed to only optimistically satisfy method signatures of implemented inter-

faces. In this way the class implementation can be completely untyped, even if it is implementing

typed interfaces. The only requirement then is that the class specify the list of interfaces it intends

to implement, and at least provide methods with the appropriate names and arities. Note also that

method definitions are always type-checked optimistically. Consequently, one of the challenges is

to achieve sound gradual typing throughout the class hierarchy.

6 THE DIRECT SEMANTICS
Traditionally, sound gradually typed calculi are formalized using a type-directed translation to a

cast calculus [Cimini and Siek 2016; Henglein 1994; Siek and Taha 2007, 2006]. We will do so as

well in the next section, but here we first develop an operational semantics directly on our calculus.

The intent is to provide an intuitive semantics that programmers can use to reason about how

their gradually typed programs will behave without needing to understand the details of when and

where casts are inserted and how they are implemented. In the next section, we will demonstrate

that there is a strong relationship between these direct semantics and the ones derived from cast

insertions.

We formalize the direct semantics of our calculus using rewrite rules, as presented in Figure 5.

This formalization is odd in that some of the assumptions of the various rules are parenthesized.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 56. Publication date: October 2017.

Sound Gradual Typing is Nominally Alive and Well 56:11

G
r
a
m
m
a
r

Value v F C(v, . . .)
Error ε F v . fdynamic | v .mdynamic(v, . . .) | cast v to C

Valuation ν F v | ε | ∞

Evaluation Context E F · | let τ x B E in e | C(v, . . . ,E, e, . . .) | E. fδ
| E.mδ (e, . . .) | v .mδ (v, . . . ,E, e, . . .) | cast E to τ

Method Implementation
¯d F τ mδ (Γ) 7→ e

Class Implementation c̄ F class C(τ f , . . .) implements C, . . . { ¯d ; . . . }
Environment Implementation Ψ̄F · | Ψ̄, i | Ψ̄, c̄

T
e
r
m
i
n
a
l
s

Ψ ⊢ v ◂ τ

Ψ ⊢ v terminal τ

Ψ ⊢ e erroneous

Ψ ⊢ e terminal τ

Ψ ⊢◂ E Ψ ⊢◂ v
v = C(. . .) ¬ Ψ ⊢ C ◂ C ′

Ψ ⊢ E[cast v to C ′] bad-cast

@e ′. Ψ ⊢ e −▸ e ′

¬ Ψ ⊢ e terminal τ

Ψ ⊢ e lapse τ

Ψ ⊢ e bad-cast

Ψ ⊢ e erroneous

Ψ ⊢◂ E Ψ ⊢◂ v
v = C(. . .) class C(f 1, . . .) ∈ Ψ @i . f = f i

Ψ ⊢ E[v . fdynamic] erroneous

Ψ ⊢◂ E Ψ ⊢◂ v ∀i . Ψ ⊢◂ vi
v = C(. . .) @τ ,τ1, . . . ,τn . τ C .m(τ1, . . . ,τn) ∈ Ψ

Ψ ⊢ E[v .mdynamic(v1, . . . ,vn)] erroneous

V
a
l
u
a
t
i
o
n
s

Ψ̄ ⊢ e R∗ v
Ψ̄ ⊢ v ◂ τ

Ψ̄ ⊢ e R∞ v : τ

Ψ̄ ⊢ e R∗ E[ε]
Ψ̄ ⊢ E[ε] erroneous

Ψ̄ ⊢ e R∞ ε : τ

Ψ̄ ⊢ e R∞

Ψ̄ ⊢ e R∞ ∞ : τ

Ψ ⊢ e R∗ e ′

Ψ ⊢ e ′ lapse τ

Ψ ⊢ e R∗ lapse τ

E
v
a
l
u
a
t
i
o
n

C
o
n
t
e
x
t
s

Ψ ⊢S ·

Ψ ⊢S E

Ψ ⊢S let τ x B E in e

class C(τ1, . . . ,τn) ∈ Ψ
∀j . Ψ ⊢ vj S τj Ψ ⊢S E

Ψ ⊢S C(v1, . . . ,vi ,E, ei+2, . . . , en)

Ψ ⊢S E

Ψ ⊢S E. fδ

Ψ ⊢S E

Ψ ⊢S E.mδ (e1, . . .)

Ψ ⊢ δ .m(τ1, . . . ,τn) : τ
Ψ ⊢ v S δ ∀j . Ψ ⊢ vj S τj Ψ ⊢S E

Ψ ⊢S v .mδ (v1, . . . ,vi ,E, ei+2, . . . , en)

Ψ ⊢S E

Ψ ⊢S cast E to τ

R
e
d
u
c
t
i
o
n
s

Ψ̄ ⊢ e R e ′

(Ψ̄ ⊢◃ E)

Ψ̄ ⊢ E[e] R E[e ′]

(Ψ̄ ⊢ v ◃ τ)

Ψ̄ ⊢ let τ x B v in e R e[x 7→ v]

v = C(v1, . . .) class C(f 1, . . .) ∈ Ψ̄
(Ψ̄ ⊢ v ◃ δ)

Ψ̄ ⊢ v . f iδ R vi

v = C(. . .) C .mδ (τ1 x1, . . . ,τn xn) 7→ e ∈ Ψ̄
(Ψ̄ ⊢ v ◃ δ) (∀i . Ψ̄ ⊢ vi ◃ τi)

Ψ̄ ⊢ v .mδ (v1, . . . ,vn) R e[this 7→ v,x1 7→ v1, . . . ,xn 7→ vn]

v = C(. . .) Ψ̄ ⊢ C ◂ τ
(Ψ̄ ⊢ v ◃ ⊤)

Ψ̄ ⊢ cast v to τ R v

Fig. 5. Operational Semantics, where R is either optimistic −▹ (ignoring parenthesized assumptions) or pes-
simistic −▸ (asserting parenthesized assumptions) reduction

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 56. Publication date: October 2017.

56:12 Fabian Muehlboeck and Ross Tate

This is because the rules are parameterized by a reduction relation R that can stand for either

optimistic reduction (−▹) or pessimistic reduction (−▸). For optimistic reduction, one ignores the

parenthesized assumptions, optimistically hoping that the expected invariants of the system hold.

For pessimistic reduction, one includes the parenthesized assumptions, pessimistically asserting the

expected invariants of the system throughout execution. Obviously pessimistic reduction provides

more guarantees, but optimistic reduction is much more efficient. Thus we can gain much from

understanding the relationship between these two semantics.

Values, Valuations, and Lapses. The values in our system are instances of classes. The arguments

to the class constructor indicate the object’s values for the class’s fields.

Note that error is not an expression in our formalization. Instead, we simply let failing casts get

stuck. This means even non-value programs can get stuck for both acceptable and unacceptable

reasons. For example, a program could be stuck because it is a failed cast, which is acceptable and

would be caught by the runtime system. However, a program could also be stuck because it is trying

to access a field at amemory offset not provided by the object, which is unacceptable and corresponds

to a potentially dangerous memory-access violation. We use the judgement Ψ ⊢ e terminal τ ,
defined in Figure 5, to indicate when e is stuck for an acceptable reason with type τ . In particular,

e could be a value of type τ , a failed dynamic field lookup, a failed dynamic method lookup, or a

failed cast. As a convenience, we also use the counterpoint judgement Ψ ⊢ e lapse τ to indicate

when e is pessimistically stuck for a reason unacceptable for type τ , which we call a lapse because

it indicates a current violation of some intended invariant.

Each of these cases represents a different observable result of executing a program. We use

valuations ν to represent the acceptable results. The idea is that, ignoring situations where a

program lapses, a program’s semantics are the valuations it can result in. Since a program might fail

to terminate, we include∞ as a valuation representing when programs execute forever. We capture

valuations with the judgement Ψ̄ ⊢ e R∞ ν : τ , defined in Figure 5. As a convenience, we also use

the counterpoint judgement Ψ ⊢ e R∗ lapse τ to indicate that e results in some unacceptable lapse

rather than an acceptable valuation.

Reductions. Now we discuss the reduction rules in more detail. As we mentioned before, these

rules specify both optimistic reduction (−▹), which ignores the parenthesized assumptions, and

pessimistic reduction (−▸), which asserts the parenthesized assumptions. Pessimistic reduction of

evaluation contexts uses the judgement Ψ ⊢◃ E to ensure that evaluation of expressions only moves

on from left to right when the already computed values actually have their expected types. The

use of assertions aside, the reduction rules are standard except for one oddity in our semantics for

method invocations.

In particular, the assumption C .mδ (τ1 x1, . . . ,τn xn) 7→ e ∈ Ψ̄ looks up class C’s implementation
for methodm and dispatch mode δ in the environment implementation Ψ̄. The most important detail

of this assumption is the inclusion of the dispatch mode δ in this lookup. This allows class C to

provide a different implementation ofm for each appropriate dispatch mode. This will enable C
to address the fact that its method definition only optimistically satisfies the signatures of the

interfaces it implements. To understand how, let us consider implementations in more detail.

Implementations. Whereas our typing rules are defined in the context of an environment definition,
our reduction rules are defined in the context of an environment implementation. The two differ in

that the former specifies class definitions, whereas the latter specifies class implementations. A

class definition provides a method definition for each methodm of the class; a class implementation

provides a method implementation for each methodm of the class and each suitable dispatch mode δ

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 56. Publication date: October 2017.

Sound Gradual Typing is Nominally Alive and Well 56:13

Ψ | Ψ ⊢S Ψ̄

Ψ ⊢S Ψ̄ Ψ | · ⊢S ·

Ψ | Ψ′ ⊢S Ψ̄

Ψ | Ψ′, i ⊢S Ψ̄, i

Ψ | Ψ′ ⊢S Ψ̄ Ψ | c ⊢S c̄

Ψ | Ψ′, c ⊢S Ψ̄, c̄

∀i .∃ji . Ψ | C | dji ⊢S
¯di

∀i .∃ji . Ψ ⊢ ¯dji :C di ∀i .∃ji . Ψ ⊢ ¯dji :dynamic di
∀i . interface Ci {s

i
1
; . . . } ∈ Ψ ∀i .∀j .∃ki, j . Ψ ⊢ ¯dki, j :Ci s

i
j

Ψ | class C(τ1 f1, . . .) implements C1, . . . {d1; . . . } ⊢S class C(τ1 f1, . . .) implements C1, . . . { ¯d1; . . . }

∀i . Ψ ⊢ τ ′i ◃ τi Ψ ⊢ τ ◃ τ ′ Ψ | C this,τ ′
1
x1, . . . ,τ

′
n xn ⊢ e ′ S τ ′

Ψ ⊢ let τ1 x1 B x1 in . . . let τn xn B xn in let τ x B e in x ≼ e ′ : τ ′

Ψ | C | τ m(τ1 x1, . . . ,τn xn) 7→ e ⊢S τ ′mδ (τ
′
1
x1, . . . ,τ

′
n xn) 7→ let τ ′ x B e ′ in x

Ψ ⊢ ¯d :δ s

Ψ ⊢ ¯d :δ s 7→ e Ψ ⊢ τ mC (Γ) 7→ e :C τ m(Γ)

Ψ ⊢ dynamicmdynamic(dynamic x1, . . . , dynamic xn) 7→ e :dynamic τ m(τ1 x1, . . . ,τn xn)

Fig. 6. Implementation Validation, where S is either optimistic ◃ or pessimistic ◂ subtyping

form. The body of each such method implementation is a slightly adjusted version of the body of

the method definition to account for the corresponding dispatch mode, as we will describe below.

We formalize implementations of definitions in Figure 6. The judgement Ψ ⊢S Ψ̄ indicates that

Ψ̄ is a valid implementation of the environment definition Ψ. Furthermore, if the parameter S is

optimistic subtyping (◃), then the body of every method implementation in Ψ̄ is optimistically

typed. Likewise, if the parameter S is pessimistic subtyping (◂), then the body of every method

implementation in Ψ̄ is pessimistically typed.

A class implementation c̄ is valid for a class definition c if every method implementation in c̄
corresponds to some method definition in c and every method definition in c has a corresponding
method implementation in c̄ for each necessary dispatch mode. In particular, there must be an

implementation for the dispatch modes corresponding to the class itself and to dynamic dispatch.

Furthermore, if a method definition is used to satisfy some method signature in an interface imple-

mented by the class, then there must be an implementation for the dispatch mode corresponding

to that interface. Thus, a class implementation simply specifies the contents of the virtual-method

table, interface table, and dispatch hashtable, but with each way to dispatch a given method having

its own implementation (employing low-level tricks to keep the size of the executable down).

Each of these method implementations corresponds to the same method definition, and while

that implies they are closely related, it does not imply they are identical. First, the signature of

a method implementation coincides with the signature corresponding to its own dispatch mode,

not to its method definition. Second, the body of the method implementation needs to be adjusted

to conform with the corresponding signature. For example, consider a method implementation

whose dispatch mode is an interface implemented by the class. The body of the method definition

is defined in terms of the class’s signature for the method, but that signature only optimistically
satisfies the signature of the method required by the interface.

We address this difference by inserting variable assignments to retype the method parameters

and return value according to the method signature. Next, the refinement relation (≼) specifies that

the actual method body e ′ of the implementation is a refinement of the original body wrapped

in these retyping expressions, which means the implementation can have casts inserted to check

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 56. Publication date: October 2017.

56:14 Fabian Muehlboeck and Ross Tate

optimistic assumptions made in the method definition. Refinement is a relation, not a procedure,

which means the refined expression may have no additional casts at all, or just the right amount to

type-check pessimistically (in addition to optimistically), or many more than necessary. We defer

detailed discussion of refinement until the next section.

Given an environment definition Ψ, there exists a naïve implementation of Ψ. In particular,

because refinement is reflexive, one can simply define every method implementation to be the body

of the corresponding method definition modulo retyping the inputs and output. As an abuse of

notation, we refer to this naïve implementation as Ψ. If Ψ is a valid environment definition, then it

is trivial to prove that Ψ is also a valid optimistically-typed implementation of itself.

Similarly, given an environment implementation Ψ̄, there often exists a corresponding definition

for Ψ̄. In particular, one derives a classC’s definition of a method from that method’s implementation

for the dispatch mode C . As an abuse of notation, we refer to this corresponding definition as Ψ̄.
If Ψ̄ is a valid implementation of some valid environment definition Ψ, then the definition Ψ̄ has

exactly the same typing information as Ψ.

Soundness. Even without inserting casts or restricting to specific implementations, we can make

interesting observations about the behavior of our direct semantics, as proven in Appendix B. The

first is that typed expressions are guaranteed to be either terminal or reducible:

Theorem 6.1 (Progress). For every environment Ψ and implementation Ψ̄ where ⊢ Ψ and Ψ ⊢S Ψ̄
hold,

∀e,τ . Ψ ⊢ e S τ =⇒ Ψ ⊢ e terminal τ xor ∃e ′. Ψ̄ ⊢ e R e ′

where S is either optimistic ◃ or pessimistic ◂ subtyping, and R is either optimistic −▹ or pessimistic −▸
reduction.

Note that this theorem states that even an optimistically typed expression is either terminal

or pessimistically reducible. That is, we can even guarantee pessimistic progress for optimistic

expressions. Also, note that in order to be terminal, every relevant value inv must be pessimistically
typed. This is ensurable even for optimistically typed expressions because every optimistically

typed value is necessarily also pessimistically typed.

The second observation we can make is that pessimistic typing is preserved by reduction:

Theorem 6.2 (Pessimistic-Type Preservation). For every environment Ψ and implementation Ψ̄
where ⊢ Ψ and Ψ ⊢◂ Ψ̄ hold,

∀τ , e, e ′. Ψ ⊢ τ ∧ Ψ ⊢ e ◂ τ ∧ Ψ̄ ⊢ e R e ′ =⇒ Ψ ⊢ e ′ ◂ τ

where R is either optimistic −▹ or pessimistic −▸ reduction.

Importantly, this states that even optimistic reduction preserves pessimistic typing, which is

arguably the whole purpose of pessimistic typing. However, neither form of reduction preserves

optimistic typing. Clearly optimistic reduction does not preserve optimistic typing, otherwise

we would not be referring to it as optimistic typing. But it is surprising that even pessimistic

reduction fails to preserve optimistic typing despite the many run-time assertions it makes. To

see why, optimistically type the program let dynamic x B "Hello" in x % 10, and then try

to optimistically type the reduction of that program, "Hello" % 10. This failure of pessimistic

reduction is critical, as it illustrates why inserting casts is necessary to ensure soundness.

The third and final observation we make is that optimistic and pessimistic reduction coincide for
pessimistically typed programs:

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 56. Publication date: October 2017.

Sound Gradual Typing is Nominally Alive and Well 56:15

Theorem 6.3 (Pessimistic Identification). For every environment Ψ and implementation Ψ̄
where ⊢ Ψ and Ψ ⊢◂ Ψ̄ hold,

∀e,τ . Ψ ⊢ e ◂ τ =⇒ ∀ν . Ψ̄ ⊢ e −▹∞ ν : τ ⇐⇒ Ψ̄ ⊢ e −▸∞ ν : τ

This means that, for pessimistically typed programs, we can use the more efficient optimistic

reduction and yet still enjoy the stronger guarantees of pessimistic reduction. In particular, a

pessimistically typed program will never become unacceptably stuck by either semantics, so its

observable results are completely described by its set of valuations, which is identical across the

two forms of reduction. Again, this is not true for optimistically typed programs. Thus, given

an optimistically typed program, we would like a way to interpret it using a “better”-behaved

pessimistically typed program. This is the purpose of cast insertion, or program refinement, which

we discuss next.

7 THE CAST SEMANTICS
We define the cast semantics for our gradual calculus using program refinement. Program refinement

is a generalization of cast insertion, the process traditionally used to enforce soundness for gradual

type systems [Findler and Felleisen 2002; Siek and Taha 2006; Tobin-Hochstadt and Felleisen

2006]. Whereas cast insertion traditionally specifies how to transform a program by inserting casts,

program refinement simply states that two programs are similar but with one having some casts

inserted, akin to the similarity relation defined by Tobin-Hochstadt and Felleisen [2006]. That is,

refinement specifies no strategy about how to insert casts. A refinement might have too few casts

to achieve a particular goal, or more casts than are strictly necessary. This laxity actually makes

it easier to reason about refinement, especially with respect to reduction, and in a more uniform

manner, especially with respect to typing.

Program Refinement. Program refinement is formalized using the judgement Ψ ⊢ e ≼ ẽ : τ ,
which indicates that the expression ẽ2 is a refinement of e when the expected output type is τ .
The formalization of refinement has only one interesting rule, presented below; the other rules in

Appendix C simply allow this rule to be applied throughout the program.

Ψ ⊢ e ≼ ẽ : τ

Ψ ⊢ e ≼ cast ẽ to τ : τ

This rule is the only rule that lets refinement insert a cast. It states that we can refine a program

by inserting a cast to the expected return type τ of the program. By restricting inserted casts to

be of precisely this form, we ensure that they only check optimistic assumptions of the original

program. In particular, we avoid inserting casts that would introduce run-time errors that have no

relationship to the optimism of the original program, say by arbitrarily inserting casts of string

expressions to integers.

Program Translation. We mentioned that refinement is reflexive, but the primary purpose of

refinement is translation of optimistically typed programs into pessimistically typed programs.

Although refinement does not specify how precisely to implement such a translation, we can

combine it with the concepts we have already developed to formalize the concept of a translation.

Given an environment definition Ψ and implementation Ψ̄, expressions e and ẽ , and type τ , we say
we have a well-formed translation if ⊢ Ψ | e Ψ̄ | ẽ : τ holds, as defined in Figure 7. That is, a

translation is well-formed if the original program Ψ | e optimistically has type τ , the translated

2
Note that, whereas the grammar for a Ψ̄ is different than that for a Ψ, the notation ẽ is not introducing a new grammar. It

is simply a convention we employ to help the reader keep track of which expressions are “original” expressions versus

“refined” expressions.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 56. Publication date: October 2017.

56:16 Fabian Muehlboeck and Ross Tate

⊢ Ψ Ψ ⊢ τ Ψ ⊢ e ◃ τ
Ψ ⊢◂ Ψ̄ Ψ ⊢ e ≼ ẽ : τ Ψ ⊢ ẽ ◂ τ

⊢ Ψ | e Ψ̄ | ẽ : τ

⊢ Ψ | e Ψ̄ | ẽ : τ Ψ̄ ⊢ ẽ −▹∞ ν : τ

Ψ ⊢ e ∞ ν : τ

Fig. 7. Cast Semantics

program Ψ̄ | ẽ is a refinement of the original programwith expected return type τ , and the translated
program pessimistically has type τ .
This indicates when we have a well-formed translation, but for a given Ψ and e there may be

multiple such translations. To this end, we have the following property, proven in Appendix C,

that all well-formed translations are semantically equivalent (recalling that pessimistically typed

programs cannot get stuck in an unacceptable manner):

Theorem 7.1 (Translation Irrelevance). For every Ψ, Ψ̄1, Ψ̄2, e , ẽ1, ẽ2, and τ ,(
⊢ Ψ | e Ψ̄1 | ẽ1 : τ
⊢ Ψ | e Ψ̄2 | ẽ2 : τ

)
=⇒ ∀ν . Ψ̄1 ⊢ ẽ1 R

∞ ν : τ ⇐⇒ Ψ̄2 ⊢ ẽ2 R
∞ ν : τ

where R is either optimistic −▹ or pessimistic −▸ reduction.

This means that, in order to use well-formed translation as a basis for our cast semantics, we

just need some well-formed translation for our given optimistically typed program. Which one we

happen to choose is irrelevant. Fortunately, we have the following:

Theorem 7.2 (Translation Existence). For every environment Ψ, expression e , and type τ ,

⊢ Ψ ∧ Ψ ⊢ τ ∧ Ψ ⊢ e ◃ τ =⇒ ∃Ψ̄, ẽ . ⊢ Ψ | e Ψ̄ | ẽ : τ

Thus every optimistically typed program has a well-formed translation. Defining such a transla-

tion is straightforward and tedious, so we defer formal construction to Appendix C.

Given that we have both translation irrelevance and existence, we can define the cast semantics

for our gradually typed language using the judgement Ψ ⊢ e ∞ ν : τ defined in Figure 7.

Semantic Preservation. Now that we know that we can always refine an optimistically typed

program into a pessimistically typed program, we want to know that this translation respects the

direct semantics of the original program in a reasonable manner. We demonstrate this with two

observations, the proofs of which can be found in Appendix C.

Theorem 7.3 (Pessimistic-Valuation Preservation). For every environment Ψ, expression e ,
and type τ where ⊢ Ψ and Ψ ⊢ τ and Ψ ⊢ e ◃ τ hold,

∀ν . Ψ ⊢ e −▸∞ ν : τ =⇒ Ψ ⊢ e ∞ ν : τ

This states that if the direct semantics of our original program can pessimistically produce

some result, then translation also produces that result. That is, translation preserves pessimistic

valuations. Note that translation does not preserve optimistic valuations, though. This is because a

program can happen to optimistically reduce to some value even if it requires repeatedly violating

expected invariants of the system throughout the process, and a typical sound gradual type system

has no principled way of safely arriving at that haphazard but fortuitous result.

This leads us to wonder what happens when the original program goes awry. In particular, due to

pessimistic progress and preservation, we know that the translation must result in some valuation

even if the original program does not. The following gives us some insight into what the valuation

must be.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 56. Publication date: October 2017.

Sound Gradual Typing is Nominally Alive and Well 56:17

Theorem 7.4 (Optimistic-Valuation Reflection). For every environment Ψ, expression e , and
type τ where ⊢ Ψ and Ψ ⊢ τ and Ψ ⊢ e ◃ τ hold,

∀ν . Ψ ⊢ e ∞ ν : τ =⇒

Ψ ⊢ e −▹∞ ν : τ
or

Ψ ⊢ ν bad-cast ∧ Ψ ⊢ e −▹∗ lapse τ

This states that any valuation resulting from translation must also result optimistically from the

original program unless the valuation is a bad cast catching the fact that the original program would

become pessimistically stuck in an unacceptable manner, which Theorem 6.1 guarantees can only

happen if the original program would become ill-typed. In combination with pessimistic-valuation

preservation, this informs us that the cast semantics is essentially the same as the direct semantics

except that it results in bad casts rather than lapsing.

Thus, with the combination of valuation preservation and reflection, we see that there is a

very close relationship between our cast semantics and our direct semantics, one that is common

among sound gradual type systems. This suggests that programmers can rely on the more intuitive

direct semantics as a reasonable approximation of what the cast semantics provides. There is still

some gap, though, since the cast semantics preserves pessimistic valuations but reflects optimistic
valuations. In most gradual type systems, bridging this gap requires understanding the details of

where casts are inserted and how they are implemented. In our system, though, we can actually

close that gap. The stronger guarantees in the next section ensure that our cast semantics even

reflects pessimistic valuations, showing that programmers need only understand direct pessimistic

reduction to anticipate the behavior of our cast semantics.

8 THE GUARANTEES
The challenge at hand is to design a gradually typed language that is both principled and efficient.

Here we address the principles by formalizing the guarantees that our calculus provides, the proofs

of which can be found in Appendix D. Afterwards, we will address efficiency by comparing with

other similarly principled gradual type systems.

8.1 Immediacy
Sound gradual typing guarantees that a cast will fail before the program would get stuck in an

unacceptable manner. However, most sound gradually typed languages only have this property

with respect to optimistic reduction. Our system has a stronger property, which we call immediacy,
formalized as follows:

Theorem 8.1 (Immediacy). For every Ψ, Ψ̄, e , ẽ , and τ where ⊢ Ψ | e Ψ̄ | ẽ : τ holds,

∀e ′.
(
Ψ ⊢ e −▸∗ e ′

Ψ ⊢ e ′ lapse τ

)
=⇒ ∃ẽ ′.

(
Ψ̄ ⊢ ẽ −▹∗ ẽ ′

Ψ̄ ⊢ ẽ ′ bad-cast

)
∧ Ψ ⊢ e ′ ≼ ẽ ′ : τ

In the statement of this theorem, we distinguish the clause Ψ ⊢ e ′ ≼ ẽ ′ : τ . Without this

clause, the theorem simply states that the cast semantics results in a bad cast whenever the original
program would eventually get pessimistically stuck in an unacceptable manner. This is sufficient to

strengthen optimistic-valuation reflection into pessimistic-valuation reflection, as we discussed in

the previous section. And with the distinguished clause, the theorem furthermore guarantees that

the bad cast occurs immediately when the original program would get pessimistically stuck.

This is in contrast with most work on sound gradual typing. To see why, consider the following

traditional gradually typed program:

let dyn → dyn f B (λs : str. s .length) in let int → int д B f in slow(); д 5

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 56. Publication date: October 2017.

56:18 Fabian Muehlboeck and Ross Tate

This program can pessimistically reduce in a single step to the following:

let int → int д B (λs : str. s .length) in slow(); д 5

This reduced program, however, can no longer reduce pessimistically. The value λs : str. s .length
fails to have the expected type int → int of the variable д, even optimistically. This clearly

indicates a violation of the intended invariants of the program. For a gradual type system to provide

immediacy, the cast semantics for this program would have to raise an error at this point in the

execution. However, most prior work cannot recognize the error until the call to д 5 eventually

executes.

Interestingly, threesomes [Siek and Wadler 2010] do raise an error immediately for this example,

provided one uses a variant that is what Siek et al. [2009] describe as the eager error-detection
strategy. Furthermore, it has been proven that eager threesomes can be viewed as a cast-insertion

implementation of the semantics prescribed by Garcia et al. [2016] when applied to a gradually

typed lambda calculus [Toro and Tanter 2017]. So it might generally be the case that the semantics

prescribed by Garcia et al. [2016] will always provide immediacy.

8.2 Immediate Accountability
Accountability is the ability to indicate what component of the program is to blame for a given

cast failure observed by the cast semantics of a program, and to furthermore ensure that only

dynamically typed components are ever blamed. Like in previous work on blame [Ahmed et al.

2011; Tobin-Hochstadt and Felleisen 2006; Wadler and Findler 2009], we can augment our calculus

with labels and errors so that, when such a cast failure occurs, it provides a label specifying

some optimistic assumption that turned out not to hold at run time. However, we forgo such an

augmentation here because, for our calculus, the process is particularly uninteresting.

The reason is that our system is transparent—unlike in most existing accountable systems, casts

are not introduced by our operational semantics. This means that casts are only introduced by

program refinement and so directly correspond to locations in the original program. All erroneous

casts in our semantics have the property that they are casts to a class or interface type, never to

dynamic. Program refinement only introduces casts of an expression to its expected return type,

which means the receiver of such a cast must be statically typed. Furthermore, the expression being

refined optimistically has that expected return type. If that expression were also statically typed, that

would imply the expression also has that expected return type pessimistically. Type preservation

would then ensure that this cast would succeed. So the cast can only fail if the expression is

dynamically typed. Thus, all erroneous casts not in the original program are necessarily casts from

dynamically typed code to statically typed code that were directly inserted by program refinement,

making blame trivial to achieve.

But whereas accountability is the property that a failing cast correctly identifies a faulty optimistic

assumption in the source code, what we call immediate accountability furthermore demands

that execution is currently at that point in the source code. That is, optimistic checks either fail

immediately or never. This property makes blame tracking completely unnecessary, since immediate

accountability guarantees that a cast fails only if that cast itself is to blame. For our system, the

reasoning above, in combination with immediacy, ensures that our system provides immediate

accountability.

However, in general the combination of immediacy and accountability is not sufficient to provide

immediate accountability. This is evidenced by the fact that eager threesomes [Toro and Tanter

2017] require blame tracking in order to provide accountability [Siek and Wadler 2010] even though

they provide immediacy.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 56. Publication date: October 2017.

Sound Gradual Typing is Nominally Alive and Well 56:19

⊤ ⊑ ⊤ C ⊑ C τ ⊑ dynamic · ⊑ ·

Γ ⊑ Γ′ τ ⊑ τ ′

Γ,τ x ⊑ Γ′,τ ′ x

∞ ⊑ ∞ x ⊑ x

τ ⊑ τ ′ e1 ⊑ e ′
1

e2 ⊑ e ′
2

let τ x B e1 in e2 ⊑ let τ ′ x B e ′
1
in e ′

2

∀i . ei ⊑ e ′i

C(e1, . . . , en) ⊑ C(e ′
1
, . . . , e ′n)

e ⊑ e ′ δ ⊑ δ ′

e . fδ ⊑ e ′. fδ ′

e ⊑ e ′ δ ⊑ δ ′ ∀i . ei ⊑ e ′i

e .mδ (e1, . . . , en) ⊑ e ′.mδ ′(e ′
1
, . . . , e ′n)

e ⊑ e ′ τ ⊑ τ ′

cast e to τ ⊑ cast e ′ to τ ′

· ⊑ ·

Ψ ⊑ Ψ′ i ⊑ i ′

Ψ, i ⊑ Ψ′, i ′
Ψ ⊑ Ψ′ c ⊑ c ′

Ψ, c ⊑ Ψ′, c ′

∀i . τi ⊑ τ ′i ∀i . di ⊑ d ′
i

class C(τ1 f1, . . .) implements C1, . . . {d1; . . . } ⊑ class C(τ ′
1
f1, . . .) implements C1, . . . {d

′
1
; . . . }

∀i . si ⊑ s ′i

interface C {s1; . . . } ⊑ interface C {s ′
1
; . . . }

τ ⊑ τ ′ Γ ⊑ Γ′

τ m(Γ) ⊑ τ ′m(Γ′)

s ⊑ s ′ e ⊑ e ′

s 7→ e ⊑ s ′ 7→ e ′

Fig. 8. Optimism Relation, a.k.a. Precision Relation [Garcia et al. 2016; Siek et al. 2015a]

8.3 The Gradual Guarantee
The gradual guarantee [Siek et al. 2015a], in our terms, states that adding optimism to a program

should increase the likelihood that the program will type-check and evaluate successfully, and

nothing more. We formalize this using an optimism relation (⊑), shown in Figure 8, which indicates

when two components only differ in terms of degree of optimism, with the right component being

the more optimistic of the two. This is traditionally known as a precision relation [Garcia et al. 2016;

Siek et al. 2015a] or naïve subtyping [Wadler and Findler 2009]. We use the new terminology both

to be consistent to with the rest of the paper and to address the fact that the precision relation is

backwards, as noted by its inventors [Siek et al. 2015a], since it places the more precise component

on what the name suggests should be the less precise side.

The gradual guarantee formally consists of three theorems adapted from [Siek et al. 2015a]. Our

first theorem states that a program that is already optimistically typed will still be optimistically

typed if it is made more optimistic:

Theorem 8.2 (Gradual Optimism).

∀ ©«
Ψ,Ψ′

Γ, Γ′

τ , τ ′

e, e ′

ª®®®¬ .
©«

⊢ Ψ
Ψ ⊢ Γ
Ψ ⊢ τ
Ψ | Γ ⊢ e ◃ τ

ª®®®¬ ∧
©«
Ψ ⊑ Ψ′

Γ ⊑ Γ′

τ ⊑ τ ′

e ⊑ e ′

ª®®®¬ =⇒
©«

⊢ Ψ′

Ψ′ ⊢ Γ′

Ψ′ ⊢ τ ′

Ψ′ | Γ′ ⊢ e ′ ◃ τ ′

ª®®®¬
Our second theorem states that if a program results in a valuation, then a more optimistic version

of that program results in the same valuation or some more optimistic one unless the valuation was

an overly pessimistic cast in the more pessimistic program.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 56. Publication date: October 2017.

56:20 Fabian Muehlboeck and Ross Tate

Theorem 8.3 (Gradual Preservation). For every Ψ, Ψ′, e , e ′, τ , and τ ′ such that ⊢ Ψ, ⊢ Ψ′,
Ψ ⊢ τ , Ψ′ ⊢ τ ′, Ψ ⊢ e ◃ τ , and Ψ′ ⊢ e ′ ◃ τ ′ hold,

∀ν .
©«
Ψ ⊢ e ∞ ν : τ

Ψ ⊑ Ψ′

τ ⊑ τ ′

e ⊑ e ′

ª®®®¬ =⇒
∃ν ′.

(
Ψ′ ⊢ e ′ ∞ ν ′ : τ ′

ν ⊑ ν ′

)
or

Ψ ⊢ ν bad-cast

Our third theorem states that, if an optimistic program results in a valuation, then a more

pessimistic version results in that same valuation or some more pessimistic one unless it encounters
an overly pessimistic cast first.

Theorem 8.4 (Gradual Reflection). For every Ψ, Ψ′, e , e ′, τ , and τ ′ such that ⊢ Ψ, ⊢ Ψ′, Ψ ⊢ τ ,
Ψ′ ⊢ τ ′, Ψ ⊢ e ◃ τ , and Ψ′ ⊢ e ′ ◃ τ ′ hold,

∀ν ′.
©«

Ψ ⊑ Ψ′

τ ⊑ τ ′

e ⊑ e ′

Ψ′ ⊢ e ′ ∞ ν ′ : τ ′

ª®®®¬ =⇒ ∃ν . Ψ ⊢ e ∞ ν : τ ∧
ν ⊑ ν ′

or
Ψ ⊢ ν bad-cast

Together, these theorems prove our calculus provides the gradual guarantee. Interestingly, gradual

preservation and reflection can be derived from our earlier theorems bymaking one key observation:

making a program more optimistic has the effect of making it more likely to be able to reduce

pessimistically. Thus our direct semantics provides new perspective on the gradual guarantee.

8.4 Transparency
Lastly, it is easy to prove the following theorem about our optimism relation:

Theorem 8.5 (Transparency).

∀v,v ′. v ⊑ v ′ =⇒ v = v ′

For languages providing the gradual guarantee, we believe this accurately formalizes our concept

of transparency. In particular, the combination implies that making a program more optimistic

will not affect the values that arise during that program’s execution. This is in contrast to calculi

like the cast calculus [Siek et al. 2015a], in which two values can be related and yet differ due to

inserted casts, which are precisely the wrapper functions we actively avoided in order to get the

following promising experimental results.

9 EXPERIMENTAL EVALUATION
We claim that our approach to gradual typing can be implemented efficiently and avoid the

performance pitfalls of gradual typing that Takikawa et al. [2016] described. Here we present an

evaluation of our experimental language called Nom. We used benchmarks from two different

sources: first, there are two benchmarks from the benchmark suite used by Takikawa et al. [2016],

and second, there are five benchmarks that are among those that Vitousek et al. [2017] selected

from the official Python benchmark suite [Python Development Team 2008] at the time. These

serve to evaluate our implementation on two metrics, respectively. The first set of benchmarks tests

the overhead that is introduced at the boundaries between typed and untyped code. The second set

of benchmarks tests whether type annotations improve the performance of programs, which is a

part of our motivation for gradual typing. For comparison with another sound nominally typed

language with gradual typing, we also translated the first group of benchmarks to C#, and we

present the results of running those translations alongside the others.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 56. Publication date: October 2017.

Sound Gradual Typing is Nominally Alive and Well 56:21

9.1 The Experimental Compiler
Our experimental compiler supports our language Nom that implements the formalized features

discussed so far along with mutable state, primitive types, implementation inheritance, overloading,

access/visibility modifiers, and static fields and methods. Unlike in our calculus, field accesses and

method invocations are not explicitly annotated with a dispatch mode, and Appendix A discusses

how Nom addresses the subtleties involved in bridging this gap.

Because dynamic checks are more common with gradual typing, we make some optimizations

to the standard implementation for a nominally typed object-oriented language. At compile time, a

number is generated for each class type. An object is represented as its class number followed by

its fields. The class number is used to index arrays that provide standard features such as method

tables and interface tables, which are used by statically typed method invocations. Each class index

is also associated with a flat list of all its supertypes—class hierarchies are usually rather shallow,

so scanning these lists for a matching supertype can be expected to be quick. In order to make

dynamically typed method invocations efficient, the class number is used to access an array of

association lists mapping method identifiers to dispatching methods, each of which employs a

statically determined decision tree to determine which overloading to call, if any, based on the

types of the arguments. This is essentially an extension of the hybrid-casting technique of Allende

et al. [2013] in GradualTalk [Allende et al. 2014]. Furthermore, at the call site of each applicable

method invocation, we cache the result of method lookup for the three most recent run-time types

of the receiver. This is a standard technique for dynamic languages, known as inline caching [Ahn

et al. 2014; Deutsch and Schiffman 1984].

Rather than compiling to assembly, our compiler translates to C, which can then be compiled by

a standard C compiler.
3
We use the Boehm-Demers-Weiser conservative garbage collector [Demers

et al. 1990].

9.2 Design of Benchmark Programs
In contrast to work that adds gradual typing to existing programming languages, we do not have

access to a large collection of programs written in our language. However, as a first step, all we

need is a program that has a large number of transitions between untyped and typed code, as

these are the only possible sources of gradual-typing overhead in our system. Fortunately, the two

smallest poorly performing (i.e. more than 100x slowdown) programs in the benchmark suite of

Takikawa et al. were also among those with the highest numbers of boundary transitions. These

two programs are sieve and snake. sieve implements the sieve of Eratosthenes using streams to

determine the 10,000
th
prime number. snake implements the popular game Snake and runs it using

a statically predetermined list of about 55,000 moves and events. Note that sieve in particular was

written “to illustrate the pitfalls of sound gradual typing” [Takikawa et al. 2016], as it consists of

just two heavily interacting modules.

Given that the programs were written in a different programming paradigm, there are some

design choices to be made in how to translate them to Nom and C#. We strove to mimic the

structure of the original programs as much as possible in order to keep the numbers and kinds

of transitions across module boundaries the same. The biggest differences are that we manually

implement tail-recursion elimination in our translation and—as Nom does not support anonymous

functions—we model function types using interfaces and closures using classes. All in all, the

converted programs are nominal but not necessarily written in an object-oriented style. Thus good

performance with these programs is likely to imply good performance in most cases both because

3
For the benchmarks, we use the Microsoft C compiler, set to optimize for speed (/O2).

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 56. Publication date: October 2017.

56:22 Fabian Muehlboeck and Ross Tate

Fig. 9. Benchmark results for sieve (left) and snake (right)

they have already been demonstrated to cause problems for prior work due to frequent interaction

between modules and because they are written in a style that is not favored by our implementation.

The Python benchmarks were much easier to translate, as they were written in a style that

fits our language much more closely. As such, they are more what a typical benchmark for our

language would look like.

9.3 Benchmark Results
All benchmarks were run on an Intel Core i7-3770 at 3.4Ghz with 16GB of main memory, running

Windows 7 with minimal background activity. The benchmark programs were run over several

iterations. For each iteration, the sequence in which individual configurations were run was

determined randomly.

9.3.1 Sieve. sieve is an extreme microbenchmark, consisting of just two heavily interacting

modules with several hundred million transitions between those two modules. As such, it is a key

benchmark to measure the efficiency of casts in a gradually typed language. The left-hand side

of Figure 9 shows the results for the sieve benchmark for Racket, C#, and Nom. There are four

configurations, corresponding to the fully untyped program “00”, the fully typed program “11”,

and the two mixed configurations “01” and “10”. In Typed Racket, the two mixed configurations

cause extreme overheads due to gradual typing, as described by Takikawa et al. [2016]. C#, on the

other hand, is unaffected by interaction but instead suffers significant slowdown in the presence of

dynamic typing.

Regarding Nom, its performance is, in relative terms, fairly constant across the configurations,

though there is an increase in performance in the fully typed configuration. This is despite the

fact that we still measured several hundreds of millions of transitions between typed and untyped

code when executing either mixed configuration in Nom, the same magnitude that Takikawa et al.

reported for Racket.

9.3.2 Snake. The right-hand side of Figure 9 shows the timings for snake as a scatter plot of
running times, in seconds, grouped by the number of typed modules. There are two versions for

Racket here because the original version published by Takikawa et al. checks the entire contents of

lists when casting them from untyped code to typed code, an operation that in theory increases the

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 56. Publication date: October 2017.

Sound Gradual Typing is Nominally Alive and Well 56:23

Fig. 10. Benchmarks taken from Vitousek et al. [2017]’s selection of Python benchmarks

time complexity of the programs. We thus developed a modified version of snake, labeled Racket*,

that uses a user-defined structure instead of Racket’s cons-lists in an attempt to make those checks

lazy, similar to how our Nom implementation of lists works. Interestingly, there does not seem to be

much difference in performance between the two Racket versions, suggesting that the performance

issues Takikawa et al. observed are due to the concerns we have discussed throughout the paper

rather than due to the use of deep casts. As before, the performance of Nom, on the other hand,

consistently improves as more types are added to the program. The same holds for C#, though

again suffering significantly more overhead in the presence untyped code.

9.3.3 Python Benchmarks. For the Python benchmarks, we chose five with some preference

towards the ones that had poor performance under the transient-cast implementation of Vitousek

et al. [2017] (pystone and float suffer from about 200% overhead, and go and spectralnorm
suffer from about 400% overhead for typed code compared to untyped code

4
). In contrast to the

Racket benchmarks, these programs were written in a language that is close to ours and thus

were translated with minimal effort. The left-hand side of Figure 10 shows the results of these

benchmarks for Reticulated Python, and the right-hand side of Figure 10 shows the results for Nom.

The absolute running times should not be compared other than to serve as an indicator of overall

reasonableness; Python is interpreted, whereas our code is compiled and optimized by a C compiler,

so absolute differences are not meaningful. The effect of types on performance within each language

is meaningfully different, though. The transient casting strategy slows down programs as more

type annotations are added because type annotations cause checks to be inserted and executed

regardless of whether the whole program is typed or not. This may be a reasonable thing to do in

the scenarios that Vitousek et al. are considering, where an open world can readily circumvent

invariants of the gradual-typing implementation, but we believe that in general programs should

overall become faster as more type annotations are added due to the additional optimizations this

enables. Nom achieves this goal here, although the snake benchmark best illustrates this behavior

because it provides data on many intermediate configurations as well.

9.4 Validity
We only evaluated our system on a small set of small programs.While our system performed well for

these programs, there is always the possibility that it may perform poorly for some other program.

However, by the nature of our implementation, our overhead is proportional to the number of run-

time interactions between typed and untyped code. Importantly, our overhead is fairly unaffected

by the kind of interactions that occur due to the transparency of our casts. Consequently, it is likely

4
Without blame. Adding blame tracking in many cases more than doubles the overhead.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 56. Publication date: October 2017.

56:24 Fabian Muehlboeck and Ross Tate

the case that sieve does in fact represent a worst-case scenario regarding overhead created by our

system due to the immense degree of interaction points as designed by Takikawa et al. While it

seems possible that there are other programs that could increase our overhead by small factors, say

by designing a program to thwart any effectiveness of inline caches, it seems unlikely that there

are programs that would increase our overhead by large factors, especially to the degree observed

in the related works we compare to.

As for the measurements we do provide, the usual caveats to experimental running-time mea-

surements apply. Efforts we took to mitigate the risk of obtaining misleading numbers include

• running the benchmarks sequentially, not in parallel, with a separate randomized order for

each trial run,

• confirming that several minor variations of the Nom benchmarks, such as employing object-

oriented-style dynamic dispatch instead of functional-style static dispatch, exhibited similar

performances,

• and observing no significant differences in performance across three different machines.

Furthermore, the artifact-evaluation committee approved the validity of our manual translations of

the benchmarks and successfully reproduced our results.

10 DISCUSSION
To the best of our knowledge, we have provided the first results of an evaluation of a sound

gradually typed language following the methodology suggested by Takikawa et al. [2016] that

showsminimal overhead.While our type system is relatively restrictive compared to other gradually

typed languages, we hope to have established a baseline from which more expressive sound gradual

type systems can be explored with similarly minimal overhead. In this section, we argue that this

baseline is valid and useful, sketching an outlook of how to get to more expressive type systems

from it, and sketching the challenges that still need to be overcome.

10.1 Designing for Performance
Nom’s efficiency comes from a combination of multiple factors that keep potentially expensive

run-time operations cheap. Nominality makes casts infrequent and efficient. Transparency prevents

overhead due to wrapper allocation. Immediate accountability makes blame tracking unnecessary.

Furthermore, the clear separation of dynamic vs. statically checked field accesses and method

invocations allows us to implement and optimize both using the techniques appropriate to each. In

the following, we illustrate the advantages of each of these properties by comparing Nom to the

other languages that we benchmarked.

Typed Racket. In Typed Racket, most of the overhead of gradual typing is caused by expensive

run-time checks. Compared to Nom, these have two major causes: wrappers vs. transparency, and

structural vs. nominal. In gradually-typed Racket, transferring a value across the typed/untyped

boundary, in either direction, often requires the value to be wrapped in order to enforce soundness

and provide blame. Thus each such transfer causes an allocation, and these wrappers themselves

often have to produce more wrapped values, leading to more allocations. Allocation is known to

be a fairly slow operation even in Racket where allocation is quite optimized. Furthermore, these

wrappers introduce layers of indirection, especially since wrappers often end up being stacked onto

each other in our benchmarks. Note that this stacking is indirect, so using threesomes à la Siek and

Wadler [2010] would not help—in fact it would only add more overhead. Our system is transparent,

so we suffer none of these allocations or layers of indirection.

The second major reason is that Typed Racket uses a structural type system whereas we use

a nominal type system. In Typed Racket, one can dynamically check that a value has a field of

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 56. Publication date: October 2017.

Sound Gradual Typing is Nominally Alive and Well 56:25

the appropriate name, and one can check that the value in that field is a function. However, one

cannot check what kind of function it is. Consequently, every time one uses that function to get

an integer (the type that your typed code is expecting), one has to check that it actually returns

an integer. This is even the case when that function was created by typed code but happened to

transfer through untyped code. In Nom, we can often accomplish all these checks with a single

nominal check. In particular, if the value was created by typed code, then that single nominal

check accomplishes what Racket would need a potentially infinite number of structural checks

for. In problematic programs, such as sieve and snake, these two major differences can each

introduce multiple factors of overhead in gradually-typed Racket (but not in Nom), explaining the

performance differences.

C#. We experimented with a few variations of dynamic programs in C# to investigate why

increased dynamism causes large overheads. As an example, we experimented with casting every-

thing to and from Object instead of dynamic. Conceptually, these two programs should have the

same performance since the dynamic program is simply doing those casts implicitly at run time.

However, we found that the Object version of the program was significantly faster. This leads us

to believe that C#’s choice of implementation of dynamic, which recompiles the relevant code at

run time using the run-time type of the relevant value, is the cause of its inefficiency. This choice

seems to be forced upon C# in order to accommodate the many type-system features of C# that

were not designed with gradual typing in mind, an issue we will discuss this further in Section 10.3.

Reticulated Python. As already stated in Section 9.3.3, the transient casting strategy in Reticulated

Python inserts more casts as more type annotations are added, making fully typed code the slowest

configuration of any program. In contrast, pessimistically typed code in Nom is sound without

any casts being inserted and can additionally benefit from type-directed compiler optimizations.

Furthermore, the numbers we give for the Reticulated Python benchmarks are for the versions

of the programs where blame tracking was turned off. Blame tracking significantly increases—

sometimes doubles—the overhead of gradual typing in Reticulated Python. In contrast, as discussed

in Section 8.2, Nom’s immediate accountability makes blame tracking completely unnecessary.

10.2 Scaling to Industry
Our compiler and language are experimental and thus lack many features that real-world compilers

and languages would have, such as support for debugging, multithreading, separate compilation,

etc. However, features that do not affect the type system should not affect the efficiency of gradual-

typing-related operations. In fact, in contrast to systems with monotonic run-time type information,

our approach has trivial multithreading support, as all operations during a cast are read-only.

With respect to type-system features, the major differences between Nom and pre-generics Java is

that Nom restricts overloading and does not support exceptions and arrays (though we provide a

natively implemented ArrayList class whose getter method is typed as returning dynamic). We

do not believe that adding these features would cause significant gradual-typing overhead. If that

turns out to be the case, then Nom should be easy to extend to something that could be used in

an industrial setting, although incorporating more powerful features such as generics would still

require substantial research, as discussed next.

10.3 Increasing Expressiveness
Nominal typing faces many challenges specific to nominality. This is true even without gradual

typing, and still today discoveries about the foundations of nominal typing are being made. Here we

discuss some of the challenges related to gradual typing, in particular ones that make the gradual

guarantee difficult to achieve.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 56. Publication date: October 2017.

56:26 Fabian Muehlboeck and Ross Tate

10.3.1 Types Affect Execution. Unlike structurally typed languages, types in statically typed

nominal languages often affect execution. Examples of this are method overloading and extension

methods. With method overloading, the type of the arguments is used to determine which over-

loading to call. When there is ambiguity, languages like C# and Java report a type error forcing

the programmer to resolve the ambiguity before compiling. This use of ambiguity as error is often

necessary when types affect execution in order to keep execution predictable.

However, with gradual typing these ambiguities arise at run time, when the programmer is not

generally available to disambiguate the execution, and so an error is thrown. And because the

run-time types of values can provide more overloadings than might have been statically available,

making a program more dynamic can even introduce such ambiguity errors, violating the gradual

guarantee. Thus, gradually typed nominal languages cannot rely on the programmer to resolve the

many ambiguities that statically typed nominal language often have. For method overloading, this

means all overloadings provided by a given class or interface must have pairwise disjoint signatures

in order to satisfy the gradual guarantee.

C# has another issue with gradual typing: extension methods. Extension methods are a way

to retroactively add methods to an interface or class. In C#, when the type-checker fails to find a

method declaration in a given receiver’s class or interface, it checks for extension methods defined

for that class or interface in the current static scope. But this faces two challenges when gradually

typed. First, the current static scope is not available at run time. As a consequence, C# fails to

identify extension methods at run time and simply throws a run-time type exception. This means

that LINQ, the specialized syntax used to describe database queries that is built entirely on extension

methods, is completely unusable by dynamically typed C#. Second, a method declaration that is

not visible at compile time, so that the extension method is invoked, could be visible at run time, so

that the instance’s method is invoked, thereby causing dynamic typing to change the semantics of

the program, violating the gradual guarantee.

10.3.2 Generics. Java, C#, and Scala have all had generics for over a decade, and more recent

nominal languages such as Ceylon and Kotlin continue the trend. Thus gradual typing for nominal

types needs to address generics. Ina and Igarashi have considered gradual typing for generics [Ina

and Igarashi 2011]. They have an interesting approach to Foo<dynamic>, where Foo<T> is a generic
class, which is to consider all uses of T in the body of Foo as potentially dynamic. Unfortunately, this
means that even well-typed code may need to have frequent run-time checks inserted. Furthermore,

they do not consider generic methods, type-argument inference, or any form of variance, all of

which are essential to how generics are used in practice. As such, there is still significant work to

be done for generics, some of the many challenges of which we discuss here.

One surprisingly simple yet challenging problem is decidability. In order to fulfill the gradual

guarantee, subtyping needs to be decidable so that run-time casts are guaranteed to terminate. In

the presence of variant generics, subtyping is often undecidable, as Kennedy and Pierce [2007] and

Grigore [2017] have shown. A promising approach is that of Greenman et al. [2014], who identified

a pattern in how generics are used in practice; a pattern that can be enforced by the language

design to ensure that subtyping is decidable.

Our approach requires the ability to check subtyping at run time. This implies that every instance

of List<String> stores the information necessary to determine at run time that the instance is

not just a List, but a List of String. This is known as reified generics and is the counterpoint to

type erasure. This might cause some concern, as reified generics imply that type information has

to be constructed and passed around at run time throughout generic methods. Schinz [2005] did an

analysis of what the impact of this would be for Scala on the JVM, and he found that it would on

average make programs run 50% slower, allocate 140% more memory, and compile to 30% more

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 56. Publication date: October 2017.

Sound Gradual Typing is Nominally Alive and Well 56:27

byte code. However, Microsoft added reification to the CLR because of its potential to improve

performance with primitive types and specialization, and Ceylon’s generics are reified because the

team found they could implement it with little overhead, even on the JVM. It is thus unclear what

the overhead of reified generics might actually entail for gradual typing.

The greatest challenge, though, is likely to be type-argument inference, a feature that is critical

to making use of generic methods convenient. To understand why it is likely to be such a significant

challenge, consider the following statically typed C# function SnocS (without extension methods):

List<T> SnocS<T>(IEnumerable<T> startS, T endS) {
var elemsS = Enumerable.ToList(startS);
elemsS.Add(endS);
return elemsS;

}

and its corresponding dynamically typed C# function SnocD

dynamic SnocD(dynamic startD, dynamic endD) {
var elemsD = Enumerable.ToList(startD);
elemsD.Add(endD);
return elemsD;

}

In order to fulfill the gradual guarantee, if a call to SnocS succeeds, the same call to SnocD should

succeed. However, the expression SnocS(new List<string>(), 5) succeeds in C#, whereas the

expression SnocD(new List<string>(), 5) throws a run-time type exception. In particular, the

invocation elemsD.Add(endD) fails because at run time elemsD is a List<string> but endD is

an int. In the corresponding line of SnocS, the run-time type of elemsS is List<object>. The
cause of the difference in behavior is that in SnocS, the type argument for ToList is inferred to

be T, which at run time is object, due to the static type of startS and endS, whereas in SnocD
it is inferred to be string due to the dynamic type of startD. Thus, in addition to developing a

decision procedure for type-argument inference, which is as of yet an unsolved problem, a gradual

type system for generics must also overcome this challenge regarding the gradual guarantee.

It is due to these many complications with nominal typing that C# is forced to implement gradual

typing using run-time compilation. This unfortunate fact is likely the cause of its poor performance

in Section 9. Thus, with nominal typing, it seems to be important to design the language with

gradual typing in mind in order to not only achieve the gradual guarantee, but also to achieve

efficient implementation of dynamic typing.

10.3.3 Interacting with Structural Values. Our work relies heavily on one major assumption:

that all C-like values can be explicitly tagged to indicate that they indeed are instances of C . It is
particularly critical that this assumption applies even to values created in untyped code.

However, there are many situations in which structural values are either unavoidable or are

the appropriate solution. Values might originate from other languages, with JavaScript being a

particularly notable example. Records might be the natural way to represent certain data, and

are especially useful for interacting with databases or performing database-like operations. Pro-

grammers might want to write function expressions without having to concern themselves with

determining specifically which interface that function is implementing. Each of these are important

applications of gradual typing that are especially well suited for structural typing and therefore

especially challenging for nominal typing.

Structural Run-Time Type. One likely step towards addressing these challenges is to allow a

Structural run-time type. In C#, this type is the specially handled ExpandoObject class. Values

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 56. Publication date: October 2017.

56:28 Fabian Muehlboeck and Ross Tate

of this type would be structural values, and method invocation and field access on this type would

implement standard structural method invocation and field access. This would likely be a sufficient

solution for records and interacting with databases. However, like Thorn’s like types [Wrigstad

et al. 2010] or StrongScript’s optional types [Richards et al. 2015], it provides no means for

structural values to be given to code expecting nominal values, implying there is still a significant

interoperability barrier between the two.

One potential solution to overcoming this barrier is to adapt the existing work on monotonic

references [Siek et al. 2015b; Swamy et al. 2014; Vitousek et al. 2014] to assign nominal type-tags to

objects. A question that needs to be resolved here is whether additional type specialization should

be allowed to happen after the first tag has been added, as this is not something one would expect

from a nominal type system. Furthermore, although this avoids introducing wrappers, it is not fully

transparent since it modifies values in place, so it is possible performance may return as an issue.

First-Class Functions. Given that it is in general impossible to decide whether a given function

only returns values of some type when passed values of some other type, implementing transparent

casting and immediate accountability for unannotated functions is a daunting task. Intraprocedural

type inference is still an unsolved problem in object-oriented languages like ours, but if it is possible,

it should enable run-time type-checking of dynamic code. In such a scenario, function values could

then mostly consist of an AST representation and a map from already checked and validated

signatures of the function to accordingly compiled code. In the absence of intraprocedural type

inference, another solution might be to have declared function types, similar to C#’s delegates, and

require that such a type be specified for every anonymous function. Alternatively, one might be

able to efficiently adapt monotonic casting specifically to function values and nominal interfaces.

11 CONCLUSION
We have provided new properties of gradual type systems that, in conjunction with the gradual

guarantee, capture an intuition about when and where gradual typing can produce overhead even

in the ideal case. The properties do not necessarily guarantee an efficient implementation of gradual

typing, as we demonstrate with benchmarks for C#.

We showed, however, that by codesigning the type system and underlying runtime system

alongside these desired properties for gradual typing, we could create an efficient and well-behaved

gradually typed nominal object-oriented language. We provided evidence that our language does

not suffer from previously measured extreme overheads due to gradual typing, even in adversarial

scenarios where programs have a high level of interaction between typed and untyped code.

As part of our design, we chose to use nominal typing instead of structural typing as an explicit

tradeoff of expressiveness for performance. We argued how this loss of expressiveness is acceptable

for many applications of gradual typing, and we illustrated paths forward towards recovering

expressiveness while still maintaining performance. In general, there are many desirable features

that our language does not have, but it seems that many of them can be added with reasonable

effort. Indeed, sound gradual typing is nominally alive and well.

ACKNOWLEDGMENTS
This work was supported by the NSF under grant CCF-1350182. The authors would like to express

their thanks to the anonymous reviewers, the artifact-evaluation committee, the members of IFIP

WG 2.16, the Ceylon team, the Kotlin team, Benjamin Chung, Ronald Garcia, Ben Greenman,

Andrew Hirsch, Tom Magrino, Matthew Milano, Greg Morrisett, Gregor Richards, Adrian Sampson,

Jeremy Siek, Éric Tanter, and Sam Tobin-Hochstadt for their numerous thoughts and suggestions.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 56. Publication date: October 2017.

Sound Gradual Typing is Nominally Alive and Well 56:29

REFERENCES
Amal Ahmed, Robert Bruce Findler, Jeremy G. Siek, and Philip Wadler. 2011. Blame for All. In POPL 2011. ACM, New York,

NY, USA, 201–214.

Wonsun Ahn, Jiho Choi, Thomas Shull, María J. Garzarán, and Josep Torrellas. 2014. Improving JavaScript Performance by

Deconstructing the Type System. In PLDI 2014. ACM, New York, NY, USA, 496–507.

Esteban Allende, Oscar Callaú, Johan Fabry, Éric Tanter, and Marcus Denker. 2014. Gradual Typing for Smalltalk. Science of
Computer Programming 96 (2014), 52 – 69. Special issue on Advances in Smalltalk based Systems.

Esteban Allende, Johan Fabry, and Éric Tanter. 2013. Cast Insertion Strategies for Gradually-Typed Objects. In DLS 2013.
ACM, New York, NY, USA, 27–36.

Nada Amin and Ross Tate. 2016. Java and Scala’s Type Systems are Unsound: The Existential Crisis of Null Pointers. In

OOPSLA 2016. ACM, New York, NY, USA, 838–848.

Christopher Anderson and Sophia Drossopoulou. 2003. BabyJ: From Object Based to Class Based Programming via Types.

InWOOD 2003. Elsevier Science Publishers B. V., Amsterdam, The Netherlands, 53 – 81.

Gavin Bierman, Erik Meijer, and Mads Torgersen. 2010. Adding Dynamic Types to C#. In ECOOP 2010. Springer Berlin
Heidelberg, Berlin, Heidelberg, 76–100.

Gilad Bracha. 2004. Pluggable Type Systems. (2004). In Workshop on Revival of Dynamic Languages.
Matteo Cimini and Jeremy G. Siek. 2016. The Gradualizer: A Methodology and Algorithm for Generating Gradual Type

Systems. In POPL 2016. ACM, New York, NY, USA, 443–455.

Alan Demers, Mark Weiser, Barry Hayes, Hans Boehm, Daniel Bobrow, and Scott Shenker. 1990. Combining Generational

and Conservative Garbage Collection: Framework and Implementations. In POPL 1990. ACM, New York, NY, USA,

261–269.

L. Peter Deutsch and Allan M. Schiffman. 1984. Efficient Implementation of the Smalltalk-80 System. In POPL 1984. ACM,

New York, NY, USA, 297–302.

Facebook, Inc. 2016. The Hack Language Specification, Version 1.1. (April 2016).

Robert Bruce Findler and Matthias Felleisen. 2002. Contracts for Higher-Order Functions. In ICFP 2002. ACM, New York,

NY, USA, 48–59.

Ronald Garcia, Alison M. Clark, and Éric Tanter. 2016. Abstracting Gradual Typing. In POPL 2016. ACM, New York, NY,

USA, 429–442.

Ben Greenman, Fabian Muehlboeck, and Ross Tate. 2014. Getting F-Bounded Polymorphism into Shape. In PLDI 2014. ACM,

New York, NY, USA, 89–99.

Radu Grigore. 2017. Java Generics are Turing Complete. In POPL 2017. ACM, New York, NY, USA, 73–85.

Jessica Gronski, Kenneth Knowles, Aaron Tomb, Stephen N. Freund, and Cormac Flanagan. 2006. SAGE: Hybrid Checking

for Flexible Specifications. Scheme and Functional Programming Workshop 6 (2006), 93–104.

Fritz Henglein. 1994. Dynamic Typing: Syntax and Proof Theory. Science of Computer Programming 22, 3 (1994), 197 – 230.

Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. 2001. Featherweight Java: A Minimal Core Calculus for Java and

GJ. TOPLAS 23, 3 (May 2001), 396–450.

Lintaro Ina and Atsushi Igarashi. 2011. Gradual Typing for Generics. In OOPSLA 2011. ACM, New York, NY, USA, 609–624.

Andrew Kennedy and Benjamin C. Pierce. 2007. On Decidability of Nominal Subtyping with Variance. In FOOL/WOOD 2007.
Microsoft Research, Cambridge, UK, 1–12.

Jacob Matthews and Robert Bruce Findler. 2007. Operational Semantics for Multi-Language Programs. In POPL 2007. ACM,

New York, NY, USA, 3–10.

Microsoft. 2012. TypeScript. (Oct. 2012).

The Python Development Team. 2008. Python Benchmarks.

https://hg.python.org/benchmarks/. (Dec. 2008).

Aseem Rastogi, Nikhil Swamy, Cédric Fournet, Gavin Bierman, and Panagiotis Vekris. 2015. Safe & Efficient Gradual Typing

for TypeScript. In POPL 2015. ACM, New York, NY, USA, 167–180.

Gregor Richards, Francesco Zappa Nardelli, and Jan Vitek. 2015. Concrete Types for TypeScript. In ECOOP 2015, Vol. 37.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 76–100.

Michel Schinz. 2005. Compiling Scala for the Java Virtual Machine. Ph.D. Dissertation. EPFL.
Jeremy Siek, Ronald Garcia, and Walid Taha. 2009. Exploring the Design Space of Higher-Order Casts. In ESOP 2009.

Springer-Verlag, Berlin, Heidelberg, 17–31.

Jeremy Siek and Walid Taha. 2007. Gradual Typing for Objects. In ECOOP 2007. Springer-Verlag, Berlin, Heidelberg, 2–27.
Jeremy G Siek and Walid Taha. 2006. Gradual Typing for Functional Languages. Scheme and Functional Programming

Workshop 6 (2006), 81–92.

Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and John Tang Boyland. 2015a. Refined Criteria for Gradual Typing. In

SNAPL 2015, Vol. 32. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 274–293.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 56. Publication date: October 2017.

http://doi.acm.org/10.1145/1926385.1926409
http://doi.acm.org/10.1145/2594291.2594332
http://doi.acm.org/10.1145/2594291.2594332
http://dx.doi.org/10.1016/j.scico.2013.06.006
http://doi.acm.org/10.1145/2508168.2508171
http://doi.acm.org/10.1145/2983990.2984004
http://dx.doi.org/10.1016/S1571-0661(04)80802-8
https://doi.org/10.1007/978-3-642-14107-2_5
http://bracha.org/pluggableTypesPosition.pdf
http://doi.acm.org/10.1145/2837614.2837632
http://doi.acm.org/10.1145/2837614.2837632
http://doi.acm.org/10.1145/96709.96735
http://doi.acm.org/10.1145/96709.96735
http://doi.acm.org/10.1145/800017.800542
https://github.com/hhvm/hack-langspec
http://doi.acm.org/10.1145/581478.581484
http://doi.acm.org/10.1145/2837614.2837670
http://doi.acm.org/10.1145/2594291.2594308
http://doi.acm.org/10.1145/3009837.3009871
http://schemeworkshop.org/2006/06-freund.pdf
http://schemeworkshop.org/2006/06-freund.pdf
http://dx.doi.org/10.1016/0167-6423(94)00004-2
http://doi.acm.org/10.1145/503502.503505
http://doi.acm.org/10.1145/503502.503505
http://doi.acm.org/10.1145/2048066.2048114
https://www.microsoft.com/en-us/research/publication/on-decidability-of-nominal-subtyping-with-variance/
http://doi.acm.org/10.1145/1190216.1190220
http://www.typescriptlang.org/
https://hg.python.org/benchmarks/
https://hg.python.org/benchmarks/
http://doi.acm.org/10.1145/2676726.2676971
http://doi.acm.org/10.1145/2676726.2676971
http://drops.dagstuhl.de/opus/volltexte/2015/5218
http://lampwww.epfl.ch/~schinz/thesis-final-A4.pdf
http://dx.doi.org/10.1007/978-3-642-00590-9_2
http://dl.acm.org/citation.cfm?id=2394758.2394762
http://schemeworkshop.org/2006/13-siek.pdf
http://drops.dagstuhl.de/opus/volltexte/2015/5031

56:30 Fabian Muehlboeck and Ross Tate

Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, Sam Tobin-Hochstadt, and Ronald Garcia. 2015b. Monotonic References

for Efficient Gradual Typing. In ESOP 2015. Springer Berlin Heidelberg, Berlin, Heidelberg, 432–456.

Jeremy G. Siek and Philip Wadler. 2010. Threesomes, with and without Blame. In POPL 2010. ACM, New York, NY, USA,

365–376.

Daniel Smith and Robert Cartwright. 2008. Java Type Inference is Broken: Can We Fix It?. In OOPSLA 2008. ACM, New

York, NY, USA, 505–524.

Nikhil Swamy, Cedric Fournet, Aseem Rastogi, Karthikeyan Bhargavan, Juan Chen, Pierre-Yves Strub, and Gavin Bierman.

2014. Gradual Typing Embedded Securely in JavaScript. In POPL 2014. ACM, New York, NY, USA, 425–437.

Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S. New, Jan Vitek, and Matthias Felleisen. 2016. Is Sound Gradual

Typing Dead?. In POPL 2016. ACM, New York, NY, USA, 456–468.

Sam Tobin-Hochstadt and Matthias Felleisen. 2006. Interlanguage Migration: From Scripts to Programs. In OOPSLA 2006.
ACM, New York, NY, USA, 964–974.

Matías Toro and Éric Tanter. 2017. A Gradual Interpretation of Union Types. In SAS 2017. Springer International Publishing,
Cham, 382–404.

Michael M. Vitousek, Andrew M. Kent, Jeremy G. Siek, and Jim Baker. 2014. Design and Evaluation of Gradual Typing for

Python. In DLS 2014. ACM, New York, NY, USA, 45–56.

Michael M. Vitousek, Cameron Swords, and Jeremy G. Siek. 2017. Big Types in Little Runtime: Open-World Soundness and

Collaborative Blame for Gradual Type Systems. In POPL 2017. ACM, New York, NY, USA, 762–774.

Philip Wadler and Robert Bruce Findler. 2009. Well-Typed Programs Can’t Be Blamed. In ESOP 2009. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1–16.

Tobias Wrigstad, Francesco Zappa Nardelli, Sylvain Lebresne, Johan Östlund, and Jan Vitek. 2010. Integrating Typed and

Untyped Code in a Scripting Language. In POPL 2010. ACM, New York, NY, USA, 377–388.

A INFERRING DISPATCH MODES
Dynamic dispatch is an important part of object-oriented programming languages. As such, we

need it to be implemented efficiently in a well-behaved manner. For efficiency, the core challenge

is devising a quick and uniform process for looking up a specific object’s implementation of a

method without knowing which of a wide variety of objects is being accessed. For behavior, the core

challenge is that the caller of a method may view it differently than the implementor of the method

due to features such as inheritance and subtyping. While these challenges need to be addressed by

all object-oriented languages, gradual typing introduces new layers of complexity to each of them.

In our calculus, we demonstrate that our strategy for addressing these challenges is to use dispatch
modes. This is really an extension of what is already done for nominally typed object-oriented

languages. When the dispatch mode is a class, the mode indicates that we can and will look up

a method’s implementation by accessing a fixed offset within the object’s virtual-method table,

taking advantage of the fact that full Nom enforces single class inheritance. When the dispatch

mode is an interface, the mode indicates that we can and will look up a method’s implementation by

first looking up the address of the appropriate interface-method table within the object’s interface

table and then accessing a fixed offset within that interface-method table. These dispatch modes

capture how dynamic dispatch is implemented in nominally typed object-oriented languages. To

efficiently extend this approach to gradual typing, we introduce a dynamic dispatch mode. When

the dispatch mode is dynamic, the mode indicates that we will look up a method’s implementation

by accessing the object’s dynamic-dispatch hashtable, failing if no appropriate entry exists. This is

how dynamic dispatch is implemented by dynamically typed object-oriented languages. Thus our

dispatch modes combine the implementation strategies for both statically typed and dynamically

typed languages.

In our calculus, these dispatch modes are already specified. However, in a real gradually typed

object-oriented language, they would be inferred at compile time, as we do in Nom. We have

already shown that our annotated language is well-behaved, so here we discuss how to make the

unannotated language be similarly well-behaved.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 56. Publication date: October 2017.

https://doi.org/10.1007/978-3-662-46669-8_18
https://doi.org/10.1007/978-3-662-46669-8_18
http://doi.acm.org/10.1145/1706299.1706342
http://doi.acm.org/10.1145/1449764.1449804
http://doi.acm.org/10.1145/2535838.2535889
http://doi.acm.org/10.1145/2837614.2837630
http://doi.acm.org/10.1145/2837614.2837630
http://doi.acm.org/10.1145/1176617.1176755
https://doi.org/10.1007/978-3-319-66706-5_19
http://doi.acm.org/10.1145/2661088.2661101
http://doi.acm.org/10.1145/2661088.2661101
http://doi.acm.org/10.1145/3009837.3009849
http://doi.acm.org/10.1145/3009837.3009849
https://doi.org/10.1007/978-3-642-00590-9_1
http://doi.acm.org/10.1145/1706299.1706343
http://doi.acm.org/10.1145/1706299.1706343

Sound Gradual Typing is Nominally Alive and Well 56:31

A.1 Restricting Dispatch Modes
Observe that, in theory, one could always infer the dynamic dispatch mode. However, this would

mean the type-checker could never reject a method invocation. Conceptually, although dynamic
provides a way to make our type-checker more optimistic, we only want to rely on optimism when

so directed by the programmer. Thus, if the receiver of a method invocation has a pessimistic type,

i.e. a type besides dynamic, then the invocation should be valid only if there exists a pessimistic

dispatch mode for which the receiver and arguments are optimistically acceptable. We call such an

invocation pessimistically dispatchable.

A.2 Resolving Ambiguities
Consider the following hierarchy:

interface I1 {
Integer foo1(Integer a1, dynamic a2);

}
class C1 implements I1 {

Integer foo1(dynamic a1, Integer a2) {...}
}
class Sub1 extends C1 {

Integer foo1(Number a1, Number a2) {...}
}

Suppose we have a call to foo1 on a receiver expression of type C1 and with two argument

expressions each of type dynamic. The question is what dispatch mode, if any, should be inferred

for this invocation. First observe that it is pessimistically dispatchable, as evidenced by both the C1
and I1 dispatch modes. Thus, we should infer some dispatch mode for this invocation.

The question, then, is which dispatch mode should be inferred, since we have already seen that

there are multiple optimistically typed candidates. The problem is that each dispatch mode imposes

a different cast on the arguments. I1 requires the first argument to be cast to Integer, whereas
C1 requires the second argument to be cast. Thus the choice of inferred dispatch mode can affect

the semantics of the program. We want the semantics to be easy to predict by a non-expert user,

and we want the semantics to be stable under simple program transformations that most users

would expect to be inconsequential (such as weakening the static type of the receiver to be just I1).
So to rectify this problem, here we must turn to design tradeoffs.

One possible solution is to determine the dispatch mode at run time based on the the run-time

types of the arguments. If the first argument is an Integer, then use the I1 dispatch mode. If the

second argument is an Integer, then use the C1 dispatch mode. If both arguments are Integers,
then either dispatch mode can be chosen without affecting the semantics of that particular run-time

invocation. If neither argument is an Integer, then indicate a run-time type failure, much like a

failed cast or a failed dynamic method lookup. The advantage of this solution is that the run-time

semantics precisely reflects the semantics of the statically typed language: the gradually typed

expression executes just as if it were statically typed, but with its dynamic components filled in with

their run-time types. This is the approach implemented by C# [Bierman et al. 2010] and advocated

for by Garcia et al. [2016].

The disadvantage, though, is poor performance due to heavy branching on run-time type

information. That is, it essentially amounts to deferring compilation of the method invocation until

run time, despite the fact that everything we need to know to compile this method is available

to us at compile-time except simply which casts to insert. Thus another possible solution is to

simply use the dynamic dispatch mode in such ambiguous cases. This way we can go straight to

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 56. Publication date: October 2017.

56:32 Fabian Muehlboeck and Ross Tate

the dynamic dispatcher, which will simply redirect to the method’s implementation along with

precompiled checks that the arguments are valid. Note that this shows that even when the receiver

has a pessimistic type, it can still be appropriate to use the dynamic dispatch mode. This solution

is more efficient, but it does have a disadvantage. In particular, suppose the run-time type of the

receiver was Sub1, and the run-time types of the arguments were both Float. Then this solution

would allow execution to proceed even though neither of the statically available dispatch modes

would accept those arguments.

It is worth noting that we encountered multiple situations forcing this design tradeoff between

precise reflection of the statically typed language and efficient implementation of mixed-type code.

The criteria discussed in this paper, including the gradual guarantee, provide no insights into how to

make this tradeoff. For Nom, we considered each situation separately, rather than always appealing

to one extreme or the other. For example, with method overloading, which we do not discuss in the

paper, we allow an overriding of an overloading to proceed with more lax arguments, as above, but

we prevent invocations from proceeding with an overloading that is unrelated to the overloadings

that were statically available. We do this because we view unrelated overloadings as having possibly

unrelated specifications, whereas we view overridden overloadings as having related specifications

with possibly relaxed requirements. Thus our semantics guarantees that execution proceeds only

with a statically available overriding specification, although possibly a variant with more relaxed

requirements.

A.3 Aggregating Return Types
Now consider the following hierarchy:

interface I2 {
Integer foo2();

}
class C2 implements I2 {

dynamic foo2() {...}
}

Suppose we have a variable x2 of type C2, and suppose we call foo2 on x2 and print the result to

the console. This is pessimistically dispatchable, and neither dispatch mode imposes any casts on

any arguments (since there are no arguments), so we can use either one. Virtual-method tables are

more efficient, so we choose to use the C2 dispatch mode.

Now suppose the implementation of foo2 returns a String. According to the semantics of our

calculus, this would succeed with the C2 dispatch mode and the Stringwould proceed to be printed
to the console. However, suppose we make the seemingly harmless transformation of changing

the declared type of x2 to be just I2 instead of C2. Now the inferred dispatch mode would be I2,
whose implementation would cast the returned value to Integer, which would fail. Thus this

seemingly innocuous change would in fact significantly change the semantics of the program. And

interestingly, this is perfectly acceptable for the gradual guarantee, since we are replacing a static

type with a different static type, not a dynamic type.

Nonetheless, we believe this would be unacceptable to many programmers. So to address this

problem, Nom aggregates the return types of inherited method specifications. This can be imple-

mented in the language specification either by requiring return types to be pessimistic subtypes
of inherited return types, or by inserting casts to inherited return types into the method defini-

tion. The downside of the former implementation is that it occasionally requires untyped classes

implementing typed interfaces to explicitly state a return type. The downside of the latter im-

plementation is that the pessimistic semantics of untyped method implementations need to be

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 56. Publication date: October 2017.

Sound Gradual Typing is Nominally Alive and Well 56:33

Ψ ⊢ e erroneous cast v to C

Ψ ⊢ e bad-cast

Ψ ⊢ e erroneous ε

Ψ ⊢ e erroneous

Ψ ⊢◂ v v = C(. . .) ¬ Ψ ⊢ C ◂ C ′

Ψ ⊢ cast v to C ′ erroneous cast v to C ′

Ψ ⊢◂ v v = C(. . .) class C(f 1, . . .) ∈ Ψ @i . f = f i

Ψ ⊢ v . fdynamic erroneous v . fdynamic

Ψ ⊢◂ v ∀i . Ψ ⊢◂ vi v = C(. . .) @τ ,τ1, . . . ,τn . τ C .m(τ1, . . . ,τn) ∈ Ψ

Ψ ⊢ v .mdynamic(v1, . . . ,vn) erroneous v .mdynamic(v1, . . . ,vn)

Ψ ⊢ e erroneous ε

Ψ ⊢ let τ x B e in e ′ erroneous ε

class C(τ1, . . . ,τn) ∈ Ψ ∀j . Ψ ⊢ vj ◂ τj Ψ ⊢ ei+1 erroneous ε

Ψ ⊢ C(v1, . . . ,vi , ei+1, . . . , en) erroneous ε

Ψ ⊢ e erroneous ε

Ψ ⊢ e . fδ erroneous ε

Ψ ⊢ e erroneous ε

Ψ ⊢ e .mδ (e1, . . . , en) erroneous ε

Ψ ⊢ δ .m(τ1, . . . ,τn) : τ
Ψ ⊢ v ◂ δ ∀j . Ψ ⊢ vj ◂ τj Ψ ⊢ ei+1 erroneous ε

Ψ ⊢ v .mδ (v1, . . . ,vi , ei+1, . . . , en) erroneous ε

Ψ ⊢ e erroneous ε

Ψ ⊢ cast e to τ erroneous ε

Fig. 11. Errors without Evaluation Contexts

revised to incorporate inherited return types, a layer of indirection that may not be obvious to

programmers. Nom implements the latter so that untyped code can remain untouched. Overall, our

experience with dispatch modes points at a non-trivial design space that is to be further explored.

B PROOF OF SOUNDNESS
The use of evaluation contexts in our operational semantics often complicate proofs unnecessarily.

In Figure 11, we present formalizations of bad-cast and erroneous without evaluation contexts,

as well as introduce a new judgement Ψ ⊢ e erroneous ε indicating that ε is the particular error
indicated by e . These formalizations of bad-cast and erroneous are equivalent to the ones in

Figure 5, so we abuse notation and denote both pairs of judgements in the same manner. In Figure 12,

we present a formalization of our reduction rules without evaluation contexts in Figure 12. This

formalization is also equivalent to the one in Figure 5, so we abuse notation again and denote both

judgements in the same manner.

B.1 Progress
Lemma B.1. For every environment Ψ where ⊢ Ψ holds,

∀v,τ . Ψ ⊢ v ◃ τ =⇒ Ψ ⊢ v ◂ τ

Proof. By induction on the proof of Ψ ⊢ v ◃ τ , applying the fact that Ψ ⊢ C ◃ τ implies

Ψ ⊢ C ◂ τ for any Ψ, C , and τ . �

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 56. Publication date: October 2017.

56:34 Fabian Muehlboeck and Ross Tate

Ψ̄ ⊢ ex R e ′x

Ψ̄ ⊢ let τ x B ex in e R let τ x B e ′x in e

(Ψ̄ ⊢ v ◃ τ)

Ψ̄ ⊢ let τ x B v in e R e[x 7→ v]

Ψ̄ ⊢ ei+1 R e ′i+1

(class C(τ1, . . . ,τn) ∈ Ψ̄) (∀j . Ψ̄ ⊢ vj ◃ τj)

Ψ̄ ⊢ C(v1, . . . ,vi , ei+1, . . . , en) R C(v1, . . . ,vi , e
′
i+1
, . . . , en)

Ψ̄ ⊢ e R e ′

Ψ̄ ⊢ e . fδ R e ′. fδ

v = C(v1, . . .) class C(f 1, . . .) ∈ Ψ̄
(Ψ̄ ⊢ v ◃ δ)

Ψ̄ ⊢ v . f iδ R vi

Ψ̄ ⊢ e R e ′

Ψ̄ ⊢ e .mδ (e1, . . . , en) R e ′.mδ (e1, . . . , en)

Ψ̄ ⊢ ei+1 R e ′i+1
(Ψ̄ ⊢ δ .m(τ1, . . . ,τn) : τ)

(Ψ̄ ⊢ v ◃ δ) (∀j . Ψ̄ ⊢ vj ◃ τj)

Ψ̄ ⊢ v .mδ (v1, . . . ,vi , ei+1, . . . , en) R Ψ̄ ⊢ v .mδ (v1, . . . ,vi , e
′
i+1
, . . . , en)

v = C(. . .) C .mδ (τ1 x1, . . . ,τn xn) 7→ e ∈ Ψ̄
(Ψ̄ ⊢ v ◃ δ) (∀i . Ψ̄ ⊢ vi ◃ τi)

Ψ̄ ⊢ v .mδ (v1, . . . ,vn) R e[this 7→ v,x1 7→ v1, . . . ,xn 7→ vn]

Ψ̄ ⊢ e R e ′

Ψ̄ ⊢ cast e to τ R cast e ′ to τ

v = C(. . .) Ψ̄ ⊢ C ◂ τ
(Ψ̄ ⊢ v ◃ ⊤)

Ψ̄ ⊢ cast v to τ R v

Fig. 12. Reduction Rules without Evaluation Contexts, where R is either optimistic −▹ (ignoring parenthe-
sized assumptions) or pessimistic −▸ (asserting parenthesized assumptions) reduction

Lemma B.2. For every environment Ψ and implementation Ψ̄ where ⊢ Ψ and Ψ ⊢S Ψ̄ hold,

∀e,τ . Ψ ⊢ e S τ =⇒

∃v . e = v ∧ Ψ ⊢ v ◂ τ
or

∃ε . Ψ ⊢ e erroneous ε
or

∃e ′. Ψ̄ ⊢ e R e ′

where S is either optimistic ◃ or pessimistic ◂ subtyping, and R is either optimistic −▹ or pessimistic −▸
reduction.

Proof. By induction on the proof of Ψ ⊢ e S τ , applying Lemma B.1 when necessary. Note that

the first two cases combined are simply Ψ ⊢ e terminal τ . �

Lemma B.3. For every environment Ψ and implementation Ψ̄ where ⊢ Ψ and Ψ ⊢S Ψ̄ hold,

∀Ψ, e,τ . Ψ ⊢ e terminal τ =⇒ @e ′. Ψ̄ ⊢ e R e ′

where S is either optimistic ◃ or pessimistic ◂ subtyping, and R is either optimistic −▹ or pessimistic −▸
reduction.

Proof. By induction on the two cases of Ψ ⊢ e terminal τ . �

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 56. Publication date: October 2017.

Sound Gradual Typing is Nominally Alive and Well 56:35

Theorem 6.1 (Progress). For every environment Ψ and implementation Ψ̄ where ⊢ Ψ and Ψ ⊢S Ψ̄
hold,

∀e,τ . Ψ ⊢ e S τ =⇒ Ψ ⊢ e terminal τ xor ∃e ′. Ψ̄ ⊢ e R e ′

where S is either optimistic ◃ or pessimistic ◂ subtyping, and R is either optimistic −▹ or pessimistic −▸
reduction.

Proof. Corollary of Lemmas B.2 and B.3. �

B.2 Pessimistic-Type Preservation
Lemma B.4. For every environment Ψ where ⊢ Ψ holds,

∀τ ,τ ′,τ ′′. Ψ ⊢ τ ◂ τ ′ ∧ Ψ ⊢ τ ′ ◂ τ ′′ =⇒ Ψ ⊢ τ ◂ τ ′′

Proof. By consideration of the cases of both Ψ ⊢ τ ◂ τ ′ and Ψ ⊢ τ ′ ◂ τ ′′. �

Lemma B.5. For every environment Ψ where ⊢ Ψ holds,

∀Γ, e,τ ,τ ′. Ψ | Γ ⊢ e ◂ τ ∧ Ψ ⊢ τ ◂ τ ′ =⇒ Ψ | Γ ⊢ e ◂ τ ′

Proof. By induction on the proof of Ψ | Γ ⊢ e ◂ τ , regularly applying Lemma B.4. �

Lemma B.6. For every environment Ψ where ⊢ Ψ holds,

∀Γ,τx ,x , e,τ , ex . Ψ | Γ,τx x ⊢ e ◂ τ ∧ Ψ | Γ ⊢ ex ◂ τx =⇒ Ψ | Γ ⊢ e[x 7→ ex] ◂ τ

Proof. By induction on the proof of Ψ | Γ,τx x ⊢ e ◂ τ , applying Lemma B.5 in the case where

e is x . �

Theorem 6.2 (Pessimistic-Type Preservation). For every environment Ψ and implementation Ψ̄
where ⊢ Ψ and Ψ ⊢◂ Ψ̄ hold,

∀τ , e, e ′. Ψ ⊢ τ ∧ Ψ ⊢ e ◂ τ ∧ Ψ̄ ⊢ e R e ′ =⇒ Ψ ⊢ e ′ ◂ τ

where R is either optimistic −▹ or pessimistic −▸ reduction.

Proof. By induction on the proof of Ψ̄ ⊢ e R e ′, applying Lemma B.6 in cases with variable

substitutions. �

B.3 Pessimistic Identification
Lemma B.7. For every environment Ψ and implementation Ψ̄ where ⊢ Ψ and Ψ ⊢S Ψ̄ hold,

∀e,τ . Ψ ⊢ e S τ =⇒ ∀e ′. Ψ̄ ⊢ e −▹ e ′ ⇐⇒ Ψ̄ ⊢ e −▸ e ′

where S is either optimistic ◃ or pessimistic ◂ subtyping.

Proof. Pessimistic reduction always implies optimistic reduction trivially from the respective

definitions. When the term being reduced is optimistically typed, optimistic reduction implies

pessimistic reduction because the only additional requirements of pessimistic reduction are that

the components of the expression that are relevant to the reduction are appropriately typed, which

trivially holds when the entire expression is optimistically typed. When the term being reduced is

pessimistically typed, it is trivially also optimistically typed, so the same reasoning applies. �

Theorem 6.3 (Pessimistic Identification). For every environment Ψ and implementation Ψ̄
where ⊢ Ψ and Ψ ⊢◂ Ψ̄ hold,

∀e,τ . Ψ ⊢ e ◂ τ =⇒ ∀ν . Ψ̄ ⊢ e −▹∞ ν : τ ⇐⇒ Ψ̄ ⊢ e −▸∞ ν : τ

Proof. Corollary of Lemma B.7 and Theorem 6.2. �

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 56. Publication date: October 2017.

56:36 Fabian Muehlboeck and Ross Tate

Ψ ⊢ x ≼ x : τ

Ψ ⊢ ex ≼ ẽx : τx Ψ ⊢ e ≼ ẽ : τ

Ψ ⊢ let τx x B ex in e ≼ let τx x B ẽx in ẽ : τ

class C(τ1, . . . ,τn) ∈ Ψ ∀i . Ψ ⊢ ei ≼ ẽi : τi

Ψ ⊢ C(e1, . . . , en) ≼ C(ẽ1, . . . , ẽn) : τ

Ψ ⊢ e ≼ ẽ : δ

Ψ ⊢ e . fδ ≼ ẽ . fδ : τ

Ψ ⊢ δ .m(τ1, . . . ,τn) : τ
Ψ ⊢ e ≼ ẽ : δ ∀i . Ψ ⊢ ei ≼ ẽi : τi

Ψ ⊢ e .mδ (e1, . . . , en) ≼ ẽ .mδ (ẽ1, . . . , ẽn) : τ ′
Ψ ⊢ e ≼ ẽ : ⊤

Ψ ⊢ cast e to τ ≼ cast ẽ to τ : τ ′

Ψ ⊢ e ≼ ẽ : τ

Ψ ⊢ e ≼ cast ẽ to τ : τ

Ψ ⊢ e ≼ ẽ : τ e , ẽ

Ψ ⊢ e ≺ ẽ : τ

Ψ ⊢ · ≼ ·

Ψ ⊢ Ψ̄ ≼ Ψ̄′

Ψ ⊢ Ψ̄, i ≼ Ψ̄′, i

Ψ ⊢ Ψ̄ ≼ Ψ̄′ Ψ ⊢ c̄ ≼ c̄ ′

Ψ ⊢ Ψ̄, c̄ ≼ Ψ̄′, c̄ ′

∀i . Ψ ⊢ ¯di ≼ ¯d ′
i

Ψ ⊢ class C(τ1 f1, . . .) implements C1, . . . { ¯d1; . . . } ≼ class C(τ1 f1, . . .) implements C1, . . . { ¯d ′
1
; . . . }

Ψ ⊢ e ≼ ẽ : τ

Ψ ⊢ τ mδ (Γ) 7→ e ≼ τ mδ (Γ) 7→ ẽ

Fig. 13. Program Refinement

C PROOF OF SEMANTIC PRESERVATION
The full rules for program refinement are presented in Figure 13.

C.1 Translation Irrelevance
Theorem 7.1 (Translation Irrelevance). For every Ψ, Ψ̄1, Ψ̄2, e , ẽ1, ẽ2, and τ ,(

⊢ Ψ | e Ψ̄1 | ẽ1 : τ
⊢ Ψ | e Ψ̄2 | ẽ2 : τ

)
=⇒ ∀ν . Ψ̄1 ⊢ ẽ1 R

∞ ν : τ ⇐⇒ Ψ̄2 ⊢ ẽ2 R
∞ ν : τ

where R is either optimistic −▹ or pessimistic −▸ reduction.

Proof. Given two refinements ẽ and ẽ ′ of an expression e , one can construct an expression ẽ ′′ that
is a refinement of both ẽ and ẽ ′. Likewise, given two implementations Ψ̄ and Ψ̄′

of an environment Ψ,
one can construct an implementation Ψ̄′′

that is a refinement of both Ψ̄ and Ψ̄′
. One can generalize

the lemmas of this appendix to also relate the semantics between refinements of implementations.

A corollary of those generalizations, specifically the generalizations of Lemmas C.5 and C.10, is

that a pessimistically typed program will have the exact same semantics as any of its refinements

due to Theorem 6.2. Thus ẽ must have the same semantics as its refinement ẽ ′′, which must have

the same semantics as ẽ ′, implying ẽ and ẽ ′ have the same semantics. �

C.2 Translation Existence
Theorem 7.2 (Translation Existence). For every environment Ψ, expression e , and type τ ,

⊢ Ψ ∧ Ψ ⊢ τ ∧ Ψ ⊢ e ◃ τ =⇒ ∃Ψ̄, ẽ . ⊢ Ψ | e Ψ̄ | ẽ : τ

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 56. Publication date: October 2017.

Sound Gradual Typing is Nominally Alive and Well 56:37

Ψ | Γ ⊢ x cast x to τ : τ

Ψ | Γ ⊢ ex ẽx : τ Ψ | Γ,τ x ⊢ e ẽ : τ ′

Ψ | Γ ⊢ let τ x B ex in e let τ x B ẽx in ẽ : τ ′

class C(τ1, . . . ,τn) ∈ Ψ ∀i . Ψ | Γ ⊢ ei ẽi : τi

Ψ | Γ ⊢ C(e1, . . . , en) C(ẽ1, . . . , ẽn) : τ

Ψ | Γ ⊢ e ẽ : δ

Ψ | Γ ⊢ e . fδ cast ẽ . fδ to τ : τ

Ψ ⊢ δ .m(τ1, . . . ,τn) : τ Ψ | Γ ⊢ e ẽ : δ ∀i . Ψ | Γ ⊢ ei ẽi : τi

Ψ | Γ ⊢ e .mδ (e1, . . . , en) cast ẽ .mδ (ẽ1, . . . , ẽn) to τ
′

: τ ′

Ψ | Γ ⊢ e ẽ : ⊤

Ψ | Γ ⊢ cast e to τ cast cast ẽ to τ to τ ′ : τ ′

Ψ ⊢ Ψ Ψ̄

⊢ Ψ Ψ̄ Ψ ⊢ · ·

Ψ ⊢ Ψ′ Ψ̄

Ψ ⊢ Ψ′, i Ψ̄, i

Ψ ⊢ Ψ′ Ψ̄ Ψ ⊢ c c̄

Ψ ⊢ Ψ′, c Ψ̄, c̄

∀i . Ψ | C ⊢ di ¯dCi : di ∀i . Ψ | C ⊢ di ¯ddynamici : dynamic
∀i . interface Ci {s

i
1
; . . . } ∈ Ψ ∀i . ∀j . ∀k . Ψ ⊢ dk : sij =⇒ Ψ | C ⊢ dk ¯dCik :Ci s

i
j

Ψ ⊢ class C(τ1 f1, . . .) implements C1, . . . {d1; . . . } class C(τ1 f1, . . .) implements C1, . . .

⋃

δ ∈

{ C
dynamic

C1

...

} ¯dδ
1

; . . .

Ψ | C ⊢ d C ¯d : s

Ψ | C ⊢ d ¯d : s 7→ e

Ψ | C ⊢ τ m(τ1 x1, . . . ,τn xn) 7→ e dynamic
¯d : dynamicm(dynamic x1, . . . , dynamic xn)

Ψ | C ⊢ τ m(τ1 x1, . . . ,τn xn) 7→ e ¯d : dynamic

Ψ | C this,τ ′
1
x1, . . . ,τ

′
n xn ⊢ let τ1 x1 B x1 in . . . let τn xn B xn in let τ x B e in x ẽ : τ ′

Ψ | C ⊢ τ m(τ1 x1, . . . ,τn xn) 7→ e δ τ ′mδ (τ
′
1
x1, . . . ,τ

′
n xn) 7→ let τ ′ x B ẽ in x : τ ′m(τ ′

1
x1, . . . ,τ

′
n xn)

Fig. 14. Program Translation

Proof. An algorithm for developing well-formed translations is presented in Figure 14. Note

that this algorithm is naïve in that it nearly always inserts casts regardless of whether they may

actually be necessary. The only major exception is the case of class constructors, in which the fact

that the expression optimistically has the expected return type impliesC is a pessimistic subtype of

the expected return type. Regardless, even though there are more complex algorithms that would

produce more efficient translations, this one is still correct. �

C.3 Pessimistic-Valuation Preservation
Lemma C.1. For every environment Ψ and implementation Ψ̄ where ⊢ Ψ and Ψ ⊢◂ Ψ̄ hold,

∀v, ẽ,τ . Ψ ⊢ v ◃ τ ∧ Ψ ⊢ v ≼ ẽ : τ =⇒ Ψ̄ ⊢ ẽ −▸∗ v

Proof. Becausev is an optimistically typed value, Lemma B.1 tells us thatv is also pessimistically

typed. Using that fact, the remainder is proven by induction on the proof of Ψ ⊢ v ≼ ẽ : τ . �

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 56. Publication date: October 2017.

56:38 Fabian Muehlboeck and Ross Tate

Lemma C.2. For every environment Ψ and implementation Ψ̄ where ⊢ Ψ and Ψ ⊢◂ Ψ̄ hold,

∀ε, e, ẽ,τ .
(
Ψ ⊢ e erroneous ε

Ψ ⊢ e ≼ ẽ : τ

)
=⇒ ∃ẽ ′.

(
Ψ̄ ⊢ ẽ ′ erroneous ε

Ψ̄ ⊢ ẽ −▸∗ ẽ ′

)
Proof. By induction on the proof of Ψ ⊢ e ≼ ẽ : τ , applying Lemma C.1 to reduce values. �

Lemma C.3. For every environment Ψ where ⊢ Ψ holds,

∀e, ẽ,τ ,x ,v . Ψ ⊢ e ≼ ẽ : τ =⇒ Ψ ⊢ e[x 7→ v] ≼ ẽ[x 7→ v] : τ

Proof. By induction on the proof of Ψ ⊢ e ≼ ẽ : τ . �

Lemma C.4. For every environment Ψ and implementation Ψ̄ where ⊢ Ψ and Ψ ⊢◂ Ψ̄ hold,

∀τ , e, ẽ, e ′.
(
Ψ ⊢ e ≼ ẽ : τ
Ψ ⊢ e −▸ e ′

)
=⇒ ∃ẽ ′.

(
Ψ ⊢ e ′ ≼ ẽ ′ : τ
Ψ̄ ⊢ ẽ −▸+ ẽ ′

)
Proof. By induction on the proof of Ψ ⊢ e ≼ ẽ : τ , applying Lemma C.1 and the assertions of

pessimistic reduction to reduce values, and applying Lemma C.3 in cases with variable substitutions.

Note that the case of method-invocation refinement relies on a particular formal detail of

implementations. Suppose e is of the form v .mδ (v1, . . . ,vn), where v is an instance of class C , and
e pessimistically steps. The fact that this pessimistically steps informs us that each value has its

expected type, sowe can apply LemmaC.1 to show that ẽ pessimistically reduces tov .mδ (v1, . . . ,vn).
It may seem trivial that this then steps to the same expression that e steps to, but recall that we
are reducing e in implementation Ψ but ẽ in implementation Ψ̄. Our definition of implementation

validation in Figure 6 ensures that e steps to let τ δm x B eCm in x , where eCm is essentially C’s
definition ofm (with arguments substituted), and τ δm is δ ’s return type form. Furthermore, our

definition of implementation validation ensures that ẽ steps to let τ δm x B ẽδm in x , where ẽδm
is a refinement of eCm under type τ δm . Consequently, our definition of implementation validation

makes it trivial to show that let τ δm x B ẽδm in x is a refinement of let τ δm x B eCm in x under τ ,
as required for our goal. However, had our definition of implementation validation elided the use

of let τ δm x B • in x and instead just used •, we would have a problem since ẽδm is a refinement

of eCm under τ δm but not under the type τ required for our goal. Thus this formal detail is critical to

this lemma, but overall it seems to be simply an artifact of our choice of strategy for formalization

rather than anything with deep significance. �

Lemma C.5. For every Ψ, Ψ̄, e , ẽ , and τ where ⊢ Ψ | e Ψ̄ | ẽ : τ holds,

∀ν . Ψ ⊢ e −▸∞ ν : τ =⇒ Ψ̄ ⊢ ẽ R∞ ν : τ

where R is either optimistic −▹ or pessimistic −▸ reduction.

Proof. Since ẽ is pessimistically typed, by Theorem 6.3 we only need to prove this for the case

where R is pessimistic reduction. This case is a corollary of Lemma C.4, applying Lemma C.1 for

the case where ν is a value, and Lemma C.2 for the case where ν is erroneous, and noting that

Lemma C.4 guarantees the translation makes at least one step for every step of the original program

for the case where ν is non-termination. �

Theorem 7.3 (Pessimistic-Valuation Preservation). For every environment Ψ, expression e ,
and type τ where ⊢ Ψ and Ψ ⊢ τ and Ψ ⊢ e ◃ τ hold,

∀ν . Ψ ⊢ e −▸∞ ν : τ =⇒ Ψ ⊢ e ∞ ν : τ

Proof. Corollary of Theorem 7.2 and Lemma C.5. �

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 56. Publication date: October 2017.

Sound Gradual Typing is Nominally Alive and Well 56:39

Ψ ⊢ e lapse τ

Ψ ⊢ let τ x B e in e ′ lapse τ ′
@τ1, . . . ,τn . class C(τ1, . . . ,τn) ∈ Ψ

Ψ ⊢ C(e1, . . . , en) lapse τ

class C(τ1, . . . ,τn) ∈ Ψ
∀j . Ψ ⊢ vj ◃ τj Ψ ⊢ ei+1 lapse τi+1

Ψ ⊢ C(v1, . . . ,vi , ei+1, . . . , en) lapse τ
′

class C(τ1, . . . ,τn) ∈ Ψ
∀i . Ψ ⊢ vi ◃ τi ¬ Ψ ⊢ C ◃ τ

Ψ ⊢ C(v1, . . . ,vn) lapse τ

Ψ ⊢ e lapse δ

Ψ ⊢ e . fδ lapse τ

Ψ ⊢ e lapse δ

Ψ ⊢ e .mδ (e1, . . . , en) lapse τ

Ψ ⊢ v ◃ δ @τ1, . . . ,τn ,τ . Ψ ⊢ δ .m(τ1, . . . ,τn) : τ

Ψ ⊢ v .mδ (e1, . . . , en) lapse τ
′

Ψ ⊢ δ .m(τ1, . . . ,τn) : τ Ψ ⊢ v ◃ δ ∀j . Ψ ⊢ vj ◃ τj Ψ ⊢ ei+1 lapse τi+1

Ψ ⊢ v .mδ (v1, . . . ,vi , ei+1, . . . , en) lapse τ
′

Ψ ⊢ e lapse ⊤

Ψ ⊢ cast e to τ lapse τ ′

Fig. 15. Lapses without Reduction

C.4 Optimistic-Valuation Reflection
The use of negation in our definition of lapses often complicate proofs unnecessarily. In Figure 15,

we present a formalization of lapses without negation except for optimistic subtyping. This formal-

ization is equivalent to the one in Figure 5, so we abuse notation and denote both judgements in

the same manner.

Lemma C.6. For every environment Ψ where ⊢ Ψ holds,

∀e,v,τ . Ψ ⊢ e ≼ v : τ =⇒ e = v

Proof. By induction on the proof of Ψ ⊢ e ≼ v : τ . �

Lemma C.7. For every environment Ψ and implementation Ψ̄ where ⊢ Ψ and Ψ ⊢◂ Ψ̄ hold,

∀e, ẽ,τ , ẽ ′. Ψ ⊢ e ≼ ẽ : τ ∧ Ψ̄ ⊢ ẽ R ẽ ′ =⇒

Ψ ⊢ e ≼ ẽ ′ : τ ∧ Ψ ⊢ ẽ ′ ≺ ẽ : τ
or

∃e ′. Ψ ⊢ e R e ′ ∧ Ψ ⊢ e ′ ≼ ẽ ′ : τ

where R is either optimistic −▹ or pessimistic −▸ reduction.

Proof. Proof by induction on the proof of Ψ ⊢ e ≼ ẽ : τ , applying Lemma C.6 to get values, and

applying Lemma C.3 in cases with variable substitutions. The case for method invocation relies on

the same detail of implementations as Lemma C.4, and the proof is nearly identical. Note that the

fact that this lemma holds for pessimistic reduction, not just optimistic reduction, is the stronger

property of our system that enables us to achieve immediacy. �

Lemma C.8. For every environment Ψ and implementation Ψ̄ where ⊢ Ψ and Ψ ⊢◂ Ψ̄ hold,

∀ε, e, ẽ,τ .
(
Ψ̄ ⊢ ẽ erroneous ε

Ψ ⊢ e ≼ ẽ : τ

)
=⇒

Ψ ⊢ e erroneous ε
or

Ψ ⊢ ε bad-cast ∧ Ψ ⊢ e lapse τ

Proof. By induction on the proof of Ψ ⊢ e ≼ ẽ : τ , applying Lemma C.6 to get values. �

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 56. Publication date: October 2017.

56:40 Fabian Muehlboeck and Ross Tate

Lemma C.9. For every environment Ψ and type τ where ⊢ Ψ and Ψ ⊢ τ hold, the binary relation
Ψ ⊢ e ≺ e ′ : τ is well-founded.

Proof. Given any e and e ′ such that Ψ ⊢ e ≼ e ′ : τ holds, we can show by induction on the

proof of Ψ ⊢ e ≼ e ′ : τ that either the syntactic height of e is strictly less than the syntactic height

of e ′ or the expressions e and e ′ are syntactically identical. Consequently, for any e and e ′ such
that Ψ ⊢ e ≺ e ′ : τ holds, the expressions e and e ′ are by definition distinct, so the syntactic height

of e must be strictly less than the syntactic height of e ′, ensuring well-foundedness. �

Lemma C.10. For every Ψ, Ψ̄, e , ẽ , and τ where ⊢ Ψ | e Ψ̄ | ẽ : τ holds,

∀ν . Ψ ⊢ ẽ R∞ ν : τ =⇒

Ψ ⊢ e R∞ ν : τ
xor

Ψ ⊢ ν bad-cast ∧ Ψ ⊢ e R∗ lapse τ

where R is either optimistic −▹ or pessimistic −▸ reduction.

Proof. Proof by consideration of the cases of Ψ ⊢ ẽ R∞ ν : τ , applying Lemma C.7 in all cases.

In the case of a value, one furthermore applies Lemma C.6. In the case of an error, one furthermore

applies Lemma C.8. In the case of non-termination, one furthermore applies Lemma C.9. �

Theorem 7.4 (Optimistic-Valuation Reflection). For every environment Ψ, expression e , and
type τ where ⊢ Ψ and Ψ ⊢ τ and Ψ ⊢ e ◃ τ hold,

∀ν . Ψ ⊢ e ∞ ν : τ =⇒

Ψ ⊢ e −▹∞ ν : τ
or

Ψ ⊢ ν bad-cast ∧ Ψ ⊢ e −▹∗ lapse τ

Proof. Corollary of Lemma C.10. �

D PROOF OF GUARANTEES
D.1 Immediacy

Theorem 8.1 (Immediacy). For every Ψ, Ψ̄, e , ẽ , and τ where ⊢ Ψ | e Ψ̄ | ẽ : τ holds,

∀e ′.
(
Ψ ⊢ e −▸∗ e ′

Ψ ⊢ e ′ lapse τ

)
=⇒ ∃ẽ ′.

(
Ψ̄ ⊢ ẽ −▹∗ ẽ ′

Ψ̄ ⊢ ẽ ′ bad-cast

)
∧ Ψ ⊢ e ′ ≼ ẽ ′ : τ

Proof. By Lemma C.4, ẽ must pessimistically (and therefore optimistically) reduce to some ẽ ′
0

that is a refinement of e ′. By Theorem 6.2, ẽ ′
0
is pessimistically typed since ẽ is pessimistically

typed. By combining Lemmas C.7 and C.9, because ẽ ′
0
is a pessimistically typed refinement of a

pessimistically irreducible expression e ′, there must exist a pessimistically irreducible expression ẽ ′

such that Ψ̄ ⊢ ẽ ′
0
−▸∗ ẽ ′ and Ψ ⊢ e ′ ≼ ẽ ′ hold. By Theorem 6.2, ẽ ′ is also pessimistically typed and

so, by Theorem 6.1, also terminal.

Now first suppose ẽ ′ were a value of type τ . Then, by Lemma C.6, e ′ would have to be that same

value of type τ . However, by assumption e ′ is not a terminal of type τ and so cannot be such a value.

Thus ẽ ′ must be erroneous. Since ẽ ′ is a refinement of e ′, but e ′ is itself not erroneous (since it is not
terminal), Lemma C.8 informs us that ẽ ′ must be specifically a bad cast, proving our theorem. �

Corollary D.1. For every environment Ψ, expression e , and type τ where ⊢ Ψ, Ψ ⊢ τ , and Ψ ⊢ e ◃ τ
hold,

Ψ ⊢ e −▸∗ lapse τ =⇒ ∃ε . Ψ ⊢ e ∞ ε : τ ∧ Ψ ⊢ ε bad-cast

Proof. Corollary of Theorem 8.1. �

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 56. Publication date: October 2017.

Sound Gradual Typing is Nominally Alive and Well 56:41

Lemma D.2. For every environment Ψ,

∀e, e ′. Ψ ⊢ e −▹ e ′ =⇒

Ψ ⊢ e −▸ e ′

or
∀τ . Ψ ⊢ e lapse τ

Proof. By induction on the proof of Ψ ⊢ e −▹ e ′. �

Lemma D.3 (Pessimistic-Valuation Reflection). For every environment Ψ, expression e , and
type τ where ⊢ Ψ and Ψ ⊢ τ and Ψ ⊢ e ◃ τ hold,

∀ν . Ψ ⊢ e ∞ ν : τ =⇒

Ψ ⊢ e −▸∞ ν : τ
or

Ψ ⊢ ν bad-cast ∧ Ψ ⊢ e −▸∗ lapse τ

Proof. Note that this can be proven as a corollary of Theorem 6.3 and Lemma C.10. However,

the proof of Lemma C.10 with pessimistic reduction relies on the fact that Lemma C.7 holds

with pessimistic reduction. For many gradual type systems, Lemma C.7 only holds for optimistic

reduction. So our goal here is to show that pessimistic-valuation reflection can proven from just

immediacy and properties we expect to hold of any sound gradual type system.

Given Ψ ⊢ e ∞ ν : τ , Theorem 7.4 tells us that either e optimistically results in ν or ν is a bad

cast and e optimistically reduces to a lapse. In more detail, optimistic-valuation reflection tells us

that for each sequence ẽ0 −▹ . . . of single-step optimistic reductions, where ẽ0 is a pessimistically

typed refinement of e , there is a corresponding sequence e0 −▹
? . . . of single-or-no-step optimistic

reductions, where e0 is e and each ẽi is a refinement of ei . Furthermore, if the first sequence

terminates with a value, then the second sequence terminates with that same value. And if the

first sequence continues forever, then the second sequence continues forever and contains enough

single-step reductions to correspond to an infinite digression. And if the first sequence terminates

with an error, then either the second sequence terminates with that error, or the error is a bad cast

and the second sequence terminates with some lapse.

Now suppose every optimistic reduction in the second sequence is also a pessimistic reduction.

Then the optimistic valuation or lapse of e is also a pessimistic result of e , achieving our goal.

The alternative then, is that there is some single-step optimistic reduction in the second sequence

that is not also a pessimistic reduction. Let i be such that ei −▹ ei+1 is the first such single-step

reduction. Since i is the first such reduction, by definition e pessimistically reduces to ei . By
Lemma D.2, ei furthermore lapses. And since ei is optimistically reducible, it cannot be a value.

Thus we can apply Theorem 8.1. In more detail, immediacy tells us that ẽi , being a pessimistically

typed refinement of a lapse ei , necessarily optimistically reduces to a bad cast that is itself a

refinement of ei . In particular, immediacy tells us that the first sequence terminates and every

single-or-no-step reduction after ei is actually a no-step reduction. In particular, ei −▹
? ei+1 must

be a no-step reduction, contradicting our definition of i . Thus, no such i can exist, guaranteeing

that every optimistic reduction in the second sequence is also a pessimistic reduction. �

D.2 Gradual Optimism
Lemma D.4. For every environment Ψ and Ψ′,

Ψ ⊑ Ψ′ =⇒ ∀τ ,τ ′. Ψ ⊢ τ S τ ′ =⇒ Ψ′ ⊢ τ S τ ′

where S is either optimistic ◃ or pessimistic ◂ subtyping.

Proof. By induction on Ψ ⊑ Ψ′
, since precision does not affect the inheritance hierarchy. �

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 56. Publication date: October 2017.

56:42 Fabian Muehlboeck and Ross Tate

Lemma D.5. For every environment Ψ,

∀τ1,τ
′
1
,τ2,τ

′
2
. τ1 ⊑ τ ′

1
∧ τ2 ⊑ τ ′

2
∧ Ψ ⊢ τ1 ◃ τ2 =⇒ Ψ ⊢ τ ′

1
◃ τ ′

2

Proof. By consideration of the cases of τ1 ⊑ τ ′
1
, τ2 ⊑ τ ′

2
, and Ψ ⊢ τ1 ◃ τ2. �

Theorem 8.2 (Gradual Optimism).

∀ ©«
Ψ,Ψ′

Γ, Γ′

τ , τ ′

e, e ′

ª®®®¬ .
©«

⊢ Ψ
Ψ ⊢ Γ
Ψ ⊢ τ
Ψ | Γ ⊢ e ◃ τ

ª®®®¬ ∧
©«
Ψ ⊑ Ψ′

Γ ⊑ Γ′

τ ⊑ τ ′

e ⊑ e ′

ª®®®¬ =⇒
©«

⊢ Ψ′

Ψ′ ⊢ Γ′

Ψ′ ⊢ τ ′

Ψ′ | Γ′ ⊢ e ′ ◃ τ ′

ª®®®¬
Proof. Each typing conclusion is proven by induction on the corresponding typing assumption,

regularly applying Lemmas D.4 and D.5. �

D.3 Gradual Preservation
Lemma D.6.

∀v, e ′. v ⊑ e ′ =⇒ e ′ = v

Proof. By induction on the proof of v ⊑ e ′. �

Lemma D.7.

∀e, e ′,x ,v . e ⊑ e ′ =⇒ e[x 7→ v] ⊑ e ′[x 7→ v]

Proof. By induction on the proof of e ⊑ e ′. �

Lemma D.8. For every environment Ψ,

∀τ1,τ2,τ
′
2
. τ2 ⊑ τ ′

2
∧ Ψ ⊢ τ1 ◂ τ2 =⇒ Ψ ⊢ τ1 ◂ τ

′
2

Proof. By consideration of the cases of τ2 ⊑ τ ′
2
and Ψ ⊢ τ1 ◂ τ2. �

Lemma D.9. For every Ψ and Ψ′ where Ψ ⊑ Ψ′ holds,

∀e1, e
′
1
, e2. e1 ⊑ e ′

1
∧ Ψ ⊢ e1 R e2 =⇒ ∃e ′

2
. Ψ′ ⊢ e ′

1
R e ′

2
∧ e2 ⊑ e ′

2

where R is either optimistic −▹ or pessimistic −▸ reduction.

Proof. By induction on the proof of Ψ ⊢ e1 R e2, applying Lemma D.6 to get values, applying

Theorem 8.2 to ensure those values are still typed in the case of pessimistic reduction, applying

Lemma D.7 in cases with variable substitutions, and applying Lemmas D.4 and D.8 in the case of

cast reduction. �

Lemma D.10. For every Ψ and Ψ′ where Ψ ⊑ Ψ holds,

∀ε, e, e ′.
(
Ψ ⊢ e erroneous ε

e ⊑ e ′

)
=⇒

Ψ′ ⊢ e ′ erroneous ε
or

Ψ ⊢ ε bad-cast

Proof. By induction on the proof of Ψ ⊢ e erroneous ε , applying Theorem 8.2 and Lemmas D.6

and B.1 for values. �

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 56. Publication date: October 2017.

Sound Gradual Typing is Nominally Alive and Well 56:43

Corollary D.11. For every Ψ and Ψ′ where Ψ ⊑ Ψ′ holds,

∀e, e ′,ν ,τ . Ψ ⊢ e R∞ ν : τ ∧ e ⊑ e ′ =⇒

Ψ′ ⊢ e ′ R∞ ν : τ
or

Ψ ⊢ ν bad-cast

where R is either optimistic −▹ or pessimistic −▸ reduction.

Proof. Proof by consideration of the cases of Ψ ⊢ e R∞ ν : τ , applying Lemma D.9 in all cases.

In the case of a value, one furthermore applies Lemma D.6. In the case of an error, one furthermore

applies Lemma D.10. �

Theorem 8.3 (Gradual Preservation). For every Ψ, Ψ′, e , e ′, τ , and τ ′ such that ⊢ Ψ, ⊢ Ψ′,
Ψ ⊢ τ , Ψ′ ⊢ τ ′, Ψ ⊢ e ◃ τ , and Ψ′ ⊢ e ′ ◃ τ ′ hold,

∀ν .
©«
Ψ ⊢ e ∞ ν : τ

Ψ ⊑ Ψ′

τ ⊑ τ ′

e ⊑ e ′

ª®®®¬ =⇒
∃ν ′.

(
Ψ′ ⊢ e ′ ∞ ν ′ : τ ′

ν ⊑ ν ′

)
or

Ψ ⊢ ν bad-cast

Proof. By Lemma D.3, Ψ ⊢ e ∞ ν : τ implies either ν is a bad cast or Ψ ⊢ e −▸∞ ν : τ holds.

In the former case, we are done. In the latter case, Corollary D.11 implies either ν is a bad cast

or Ψ′ ⊢ e ′ −▸∞ ν : τ holds. Again, in the former case we are done. In the latter case, Theorem 7.3

implies Ψ′ ⊢ e ′ ∞ ν : τ holds. Applying Lemma D.8 and the assumption that τ ⊑ τ ′ holds, one
can easily show this achieves our goal. �

D.4 Gradual Reflection
Lemma D.12.

∀e,v . e ⊑ v =⇒ e = v

Proof. By induction on the proof of e ⊑ v . �

Lemma D.13. For every Ψ and Ψ′ where Ψ ⊑ Ψ′ holds,

∀e1, e
′
1
, e ′

2
. e1 ⊑ e ′

1
∧ Ψ′ ⊢ e ′

1
R e ′

2
=⇒

∃e2. Ψ ⊢ e1 R e2 ∧ e2 ⊑ e ′
2

or
Ψ ⊢ e1 bad-cast

or
∀τ . Ψ ⊢ e1 lapse τ

Proof. By induction on the proof of Ψ ⊢ e ′
1
R e ′

2
, applying Lemma D.12 to get values, and

applying Lemma D.7 in cases with variable substitutions. �

Lemma D.14. For every Ψ and Ψ′ where Ψ ⊑ Ψ holds,

∀ε, e, e ′.
(

e ⊑ e ′

Ψ′ ⊢ e ′ erroneous ε

)
=⇒

Ψ ⊢ e erroneous ε
or

∀τ . Ψ ⊢ e lapse τ

Proof. By induction on the proof ofΨ′ ⊢ e ′ erroneous ε , applying LemmaD.12 to get values. �

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 56. Publication date: October 2017.

56:44 Fabian Muehlboeck and Ross Tate

Lemma D.15. For every Ψ and Ψ′ where Ψ ⊑ Ψ′ holds,

∀e, e ′,ν ′,τ ′.
(

e ⊑ e ′

Ψ′ ⊢ e ′ −▹∞ ν ′ : τ ′

)
=⇒

Ψ ⊢ e −▸∞ ν ′ : τ ′

or
∃ε . Ψ ⊢ ε bad-cast ∧ ∀τ . Ψ ⊢ e −▸∞ ε : τ

or
∀τ . Ψ ⊢ e −▸∗ lapse τ

Proof. In the case where ν ′ is∞, Lemma D.13 implies either Ψ ⊢ e −▹∞ ∞ : τ ′ or e optimistically

reduces to some bad cast or a lapse of any type τ . Lemma D.2 then implies that either those

optimistic reductions are also pessimistic reductions or e pessimistically reduces to a lapse of any

type τ . Any of the resulting cases achieve our goal.

In the case where ν ′ is some value v of type τ ′, Lemmas D.13 and D.12 imply either Ψ ⊢ e −▹∞

v : τ ′ or e optimistically reduces to some bad cast or a lapse of any type τ . Lemma D.2 then implies

that either those optimistic reductions are also pessimistic reductions or e pessimistically reduces

to a lapse of any type τ . Any of the resulting cases achieve our goal.

In the case where ν ′ is some error ε , Lemmas D.13 and D.14 imply either Ψ ⊢ e −▹∞ ε : τ ′ or
e optimistically reduces to some bad cast or a lapse of any type τ . Lemma D.2 then implies that

either those optimistic reductions are also pessimistic reductions or e pessimistically reduces to a

lapse of any type τ . Any of the resulting cases achieve our goal. �

Lemma D.16. For every Ψ and Ψ′ where Ψ ⊑ Ψ′ holds,

∀e, e ′, ,τ ,τ ′. e ⊑ e ′ ∧ τ ⊑ τ ′ ∧ Ψ′ ⊢ e ′ lapse τ ′ =⇒ Ψ ⊢ e lapse τ

Proof. By induction on the proof of Ψ′ ⊢ e ′ lapse τ ′. �

Theorem 8.4 (Gradual Reflection). For every Ψ, Ψ′, e , e ′, τ , and τ ′ such that ⊢ Ψ, ⊢ Ψ′, Ψ ⊢ τ ,
Ψ′ ⊢ τ ′, Ψ ⊢ e ◃ τ , and Ψ′ ⊢ e ′ ◃ τ ′ hold,

∀ν ′.
©«

Ψ ⊑ Ψ′

τ ⊑ τ ′

e ⊑ e ′

Ψ′ ⊢ e ′ ∞ ν ′ : τ ′

ª®®®¬ =⇒ ∃ν . Ψ ⊢ e ∞ ν : τ ∧
ν ⊑ ν ′

or
Ψ ⊢ ν bad-cast

Proof. By Theorem 7.4, Ψ′ ⊢ e ′ ∞ ν ′ : τ ′ implies either Ψ′ ⊢ e ′ −▹∗ lapse τ ′ or Ψ′ ⊢

e ′ −▹∞ ν ′ : τ ′ hold. In the former case, Lemma D.13 followed by Lemmas D.2 and D.16 imply

e pessimistically reduces to some bad cast or to a lapse of type τ . In the latter case, Lemma D.15

implies Ψ ⊢ e −▸∞ ν ′ : τ ′ holds or e pessimistically reduces to some bad cast or to a lapse of type τ .
Altogether, this leaves us with three cases to consider. In the case where e pessimistically reduces

to some bad cast, this achieves our goal, so we consider the other two cases.

Suppose e pessimistically reduces to a lapse of type τ . Theorem 8.1 implies any pessimistically

typed refinement of e with respect to τ will optimistically reduce to some bad cast. By definition,

this means Ψ ⊢ e ∞ ν : τ holds for some bad cast ν , achieving our goal. Note that Theorem 8.1

is stronger than necessary for this. In particular, we do not need to know that a bad cast will be

identified immediately if reduction of the original program becomes optimistically ill-typed; we

only need to know that one will be identified eventually.

Suppose instead that Ψ ⊢ e −▸∞ ν ′ : τ ′ holds. In the case where ν ′ is ∞ or some error ε , then
Ψ ⊢ e −▸∞ ν ′ : τ holds as well, achieving our goal. In the case where ν ′ is some value v , then either

v has type τ or not. If it does, then Ψ ⊢ e −▸∞ ν ′ : τ holds, achieving our goal. If it does not, then

Ψ ⊢ v lapse τ holds, implying e pessimistically reduces to a lapse of type τ . As above, we can then

apply Thoerem 8.1 to show that Ψ ⊢ e ∞ ν : τ holds for some bad cast ν , achieving our goal. �

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 56. Publication date: October 2017.

	Abstract
	1 Introduction
	2 Background
	2.1 Casting Strategies
	2.2 Properties of Gradual Type Systems
	2.3 Overhead of Gradual Typing
	2.4 Gradual Typing for Object-Oriented Languages

	3 Towards Well-Behaved and Efficient Gradual Typing
	3.1 Transparency
	3.2 Immediate Accountability
	3.3 Run-Time Type Information
	3.4 Discussion

	4 The Optimistic Perspective
	5 The Type System
	5.1 Dispatch Modes
	5.2 Subtyping
	5.3 Expression Typing
	5.4 Class and Interface Validation

	6 The Direct Semantics
	7 The Cast Semantics
	8 The Guarantees
	8.1 Immediacy
	8.2 Immediate Accountability
	8.3 The Gradual Guarantee
	8.4 Transparency

	9 Experimental Evaluation
	9.1 The Experimental Compiler
	9.2 Design of Benchmark Programs
	9.3 Benchmark Results
	9.4 Validity

	10 Discussion
	10.1 Designing for Performance
	10.2 Scaling to Industry
	10.3 Increasing Expressiveness

	11 Conclusion
	Acknowledgments
	References
	A Inferring Dispatch Modes
	A.1 Restricting Dispatch Modes
	A.2 Resolving Ambiguities
	A.3 Aggregating Return Types

	B Proof of Soundness
	B.1 Progress
	B.2 Pessimistic-Type Preservation
	B.3 Pessimistic Identification

	C Proof of Semantic Preservation
	C.1 Translation Irrelevance
	C.2 Translation Existence
	C.3 Pessimistic-Valuation Preservation
	C.4 Optimistic-Valuation Reflection

	D Proof of Guarantees
	D.1 Immediacy
	D.2 Gradual Optimism
	D.3 Gradual Preservation
	D.4 Gradual Reflection

