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Abstract 
Macros are a powerful facility for various applications, from simple syntax extensions to cre-

ating domain specific languages. However, they have suffered from the fact that the structure 

of variable bindings in a program is only implicitly encoded in the program text—because of 

this, simple program transformations may lead to results not intended by either the macro 

writer or user by violating hygiene. We present the core details of a developing system (by 

Stansifer and Wand) to statically ensure the preservation of α-equivalence and therefore hy-

giene.  

Our contribution comes in two parts. The first is that we finished the implementation of 

the system by creating an interface to an SMT-solver to discharge proof obligations generated 

by the system.  

The second part concerns the usability of this system: we implemented a language with 

ML-like syntax similar to that found in the implementations of related work, and are able to 

show that the burden on the programmer to write down annotations is comparable to similar 

systems because many annotations can be inferred. We also show how errors can be ex-

plained to the user when proof obligations cannot be discharged. 

Knowledge prerequisites 

We assume that the reader is familiar with the basic ideas of the λ-calculus and any functional 

programming language. Some sections require a basic knowledge of type theory for full un-

derstanding. Both of these prerequisites are explained in the first few chapters of Pierce’s 

Textbook on Types and Programming Languages [1]. 
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1 MACROS, BINDING AND HYGIENE 

1.1 Macros 

Macro systems provide the possibility to extend a programming language with new syntactic 

constructs. While there are many different macro systems with different capabilities, at their 

core they all look for patterns in the source code of a program and replace it according to 

some rules. This process is called macro expansion, and should typically end with a program 

in the unextended base language, although there may be several passes of macro expansion 

until we get there. 

Macro systems are especially prominent in the family of LISP-like programming lan-

guages, but other languages offer macro systems too (e.g. LaTeX or C) or have extensions that 

offer macros (e.g. MacroML [2] for OCaml, or Maya [3] for Java). Whatever language is using 

a macro system, if it uses names for variables, then macros may unintentionally introduce 

name clashes. In order to understand what that means, we will briefly explain what binding 

and scope means, and what difficulties we face when we want to write syntax-transforming 

functions. This will lead to the definition of hygiene, a property of macros that rules out name 

clashes. 
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1.2 Binding and Scope 

Almost every programming language features some notion of binding, which means assign-

ing names to objects1 and referencing those objects by their name. These languages come 

with scoping rules that determine which names are accessible and which names reference 

which objects. We say that a name is in scope in an expression if there is a declaration some-

where that binds references of that name in that expression. Conversely, the scope of a decla-

ration is the part of a program where references to its name are bound to it. The scoping rules 

have to specify what happens if the scopes of two declarations with the same name would 

overlap. This can be seen as an error, or one of the declarations must get precedence and 

therefore shadow the other. If shadowing leads to references being bound by a different dec-

laration than the one a programmer intended, we call this a name clash, or unintended cap-

ture. 

In general, scoping rules come in two flavors: static and dynamic. In the latter, bindings 

are dependent on the control flow of the program at run-time, whereas in the former, bind-

ings depend on the structure of the program text.  

Static scoping enables local reasoning about bindings, which is generally seen as a desir-

able property, and most languages follow static scoping rules. To reason locally about bind-

ings, programmers need to know two things about their language of choice: the scoping rules, 

and which parts of the language introduce bindings (that is: what parts of the code are dec-

larations and what parts of those declarations are names). Therefore, following static scoping 

                                                        
1 Here, object is used as a term for language-level objects, such as types and variables. 
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rules as a programmer is usually very easy. If name clashes arise, they can be identified 

quickly by renaming one of the conflicting declarations and all the references that are sup-

posed to refer to it. 

1.3 Naïve Macro Expansion and Unintended Captures 

Naï ve macro expansion is the simple process of searching for patterns in a program and con-

verting matching expressions according to some rules. As binding is only implicitly encoded 

in the syntactic representation of a program, the macro expansion is unaware of it. In princi-

ple, all the macro expansion does is reorder some symbols. In the following, we will explain 

how unintended captures can occur when using naï ve macro expansion. The problem here is 

that programmers do not see the code resulting from the expansion (and also do not want 

to). They rather still want to reason locally about their source code. This is a motivating ex-

ample for many works on macro systems [4] [5] [6]. Herman gives a very detailed explana-

tion [7]. This is not the only class of problems macro systems face. In some cases, program-

mers would like to ensure that none of the introduced references are free in the result [8]. 

1.3.1 Outside references 

Example 1.1 shows a macro definition in Racket syntax. Assume there is a function process-

query that takes something we will call a query and returns some result. The query/default-

 (define-syntax query/default 
   (syntax-rules () 
     [(query/default q d) 
      (let ([s q]) 
        (if s (process-query s) d))])) 

Example 1.1 – The query/default-macro 
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macro takes two arguments, a query expression and a default expression. We assume that 

the query expression returns either a legal query or false. It may also have a side-effect. The 

function process-query does not accept false as argument, so query/default guards against 

the false case and evaluates the default expression if the query expression evaluates to 

false. Binding the result of the query expression to an intermediate variable in the let-

expression ensures that the query expression is evaluated (and hence its side-effect is 

caused) only once. Example 1.2 shows how this macro can be naï vely expanded, while Exam-

ple 1.3 shows how easily naï ve macro expansion can cause trouble:  

(query/default x y) => (let ([s x]) (if s (process-query s) y)) 

Example 1.2 – Naïve expansion of the query/default-macro 

(query/default x s) => (let ([s x]) (if s (process-query s) s)) 

Example 1.3 – A problematic case of naïve macro expansion 

In Example 1.3, the second argument to the macro is just the identifier s, which presumably 

is a bound variable that will contain the actual default value when the program is run. How-

ever, regardless of what value the first argument will evaluate to, the default value will never 

influence the result of the expression the macro expands to. The variable s no longer refer-

ences the binding it was supposed to refer to, because it got captured by the new binding 

introduced by the macro. 

1.3.2 Outside bindings 

The user of a macro is not the only one who may have his bindings destroyed by unintended 

captures. The macro itself is not safe, either. Example 1.4 shows what happens if the user of 
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a macro defines a variable with a name that is referenced in the macro. Suddenly, the refer-

ence to process-query inside the macro body is not a reference to the function that 

query/default is supposed to guard, but to whatever the user bound it to.  

(let ([process-query (get-query “x.exe”)]) 
  (query/default process-query “Don’t know”)) 
=> 
(let ([process-query (get-query “x.exe”)]) 
  (let ([s process-query]) (if s (process-query s) “Don’t know”))) 

Example 1.4 – The binding of a reference in the macro can change, too 

1.3.3 Syntactic Keywords 

Some languages that treat identifiers of both core constructs and user-defined variables 

identically may suffer from those two problems in an additional way: those core constructs 

could be captured, too. For example, in Racket, nothing prevents the user of the 

query/default macro from re-binding the name if and thus capturing the if in the macro. 

Similarly, a macro could also re-bind if, and if an argument to the macro contains an if, it 

might get captured by the definition of the macro.  

1.4 Hygiene 

Hygiene is a term coined by Kohlbecker et al. [4]. They solve the problem of unintended cap-

tures of outside references (see section 1.3.1). To that end, they present a macro expansion 

algorithm that satisfies what they call the Hygiene Condition for Macro Expansion: 

Generated identifiers that become binding instances in the completely 

expanded program must only bind variables that are generated at the same 

transcription step. 
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They also already state a connection between hygiene and α-equivalence, by continuing with 

the note: 

From the λ-calculus, one knows that if the hygiene condition does not hold, it 

can be established by an appropriate number of α-conversions. 

By transcription step, they mean the expansion of one particular macro. Since the expansion 

of a macro can yield another macro invocation, expansion must continue until no more macro 

invocations are present. As we saw in the previous sections, macros may introduce new var-

iables and bindings. If those may only bind variables generated in the same step, they cannot 

bind variables that already were in the code, thus preventing unintentional capture as de-

scribed above. This is achieved with a simple idea: number the transition steps consecutively, 

and assign every variable the number of the transition step where it first appears. That 

means that even if a macro introduces a variable with a name that also appears in the code 

that uses the macro, the names have different timestamps. After everything is expanded, the 

binding structure can be explored and variables with the same name and timestamp can be 

α-renamed together.  

The major drawbacks of the algorithm above are that its time complexity is quadratic in 

the size of the input program, and that it does not solve the second problem we presented: 

the unintended capture of outside bindings (see section 1.3.2). Clinger and Rees [5] combine 

the above article with a concept called syntactic closures [9] by carefully constructing syn-

tactic environments to distinguish user variables from macro variables. They improve the 

running time (now linear in the size of the input program) and solve the problem of outside 
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bindings. However, the set of macros that one may write with this system (syntax-rules) is 

limited. There is a low-level mechanism to write potentially unhygienic macros, but it re-

quires programmers to make all renaming explicit, making it cumbersome to use. 

Dybvig et al. [6] devised an algorithm that also builds on the one by Kohlbecker et al. [4], 

but also exhibits better running time and handles more errors, and even includes a source-

tracking system that relates generated code to the original code, which is useful for debug-

ging. For a long time, hygiene in Scheme macros was defined by what this algorithm did.  

Only recently Herman and Wand explored a formal definition of hygiene based on α-

equivalence [10].  

1.5 α-Equivalence and Related Work 

α-equivalence is one of the core concepts of the field of programming languages. Two pro-

grams are said to be α-equivalent if they only differ in the names of their bound variables. α-

equivalence is an important concept for hygiene, because the whole process of renaming var-

iables to avoid clashes is based on it.  

There are various techniques to simplify reasoning about α-equivalence, notably De 

Bruijn indices [11] and FM-sets [12]. The idea of the former is to not use names for variables, 

but numbers that represent the depth of a reference relative to its binding occurrence. That 

way α-equivalence is the same as syntactic equivalence. While this concept is very machine-

friendly, almost every paper that mentions De Bruijn indices stresses their lack of readability 
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(there are exceptions—McBride and McKinna, for example argue that a mixed representation 

of De Bruijn indices and names can be useful for reasoning about syntax manipulation [13]).  

Gabbay and Pitts [12] established the link between FM-sets and α-equivalence. Intui-

tively, an FM-set represents all infinitely many α-equivalent versions of some syntax tree and 

has nice mathematical properties that enable reasoning about binding, freshness, and tech-

niques such as structural induction and recursion. Together with Shinwell, they then devised 

a language called FreshML [14], which used the theory of FM-sets to reason about the fresh-

ness of names and detect when variables introduced by a syntax transformation might es-

cape and violate the intended binding structure of the program. To that end, FreshML pro-

vided a type system for terms where the binding structure was encoded. While its original 

version provided static checks for FreshML programs (that is, they obtained guarantees be-

fore actually running the syntax transformation), they found that this static system was too 

restrictive in that it rejected many valid programs. Later versions of FreshML would only use 

the type system to avoid naming conflicts dynamically (that is, when an actual program 

would be transformed). 

Over the years, many different systems with types that contain binding specifications 

have been presented, with different goals, but all similar in the key role that α-equivalence 

plays. Ott [15] is a tool to specify languages in a style that looks rather informal, and compiles 

the specification to LaTeX and theorem prover/proof assistant definitions. Ott features bind-

ing specifications and generates boilerplate substitution definitions that respect α-equiva-

lence. Similarly, Weirich et al. [16] worked on binding specifications to avoid boilerplate code 
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when implementing compilers and interpreters and to support constructs of dependently 

typed languages. 

FreshML also spawned more work such as Fresh Objective Caml [17] and pure FreshML 

by Pottier [18]. The latter revisited static checking1 of a syntax-transforming program to en-

sure that variables that are introduced by it are eventually bound, and, more importantly, 

that two α-equivalent programs are mapped to α-equivalent output—which is the definition 

of hygiene following Herman [7]—although it has not been formally proven for pure 

FreshML. 

Recently, Stansifer and Wand [19] have been working on a system that is similar to pure 

FreshML, but features richer binding specifications while offering a simpler semantics, and 

they are currently working on the formal proof of the preservation of α-equivalence. We will 

discuss this system in more detail in the following chapters. 

1.6 Organization 

The rest of this work is organized as follows: in chapter 2, we present Romeo [19], Stansifer 

and Wand’s language featuring binding specifications and a proof system designed to prove 

that macros written in it preserve α-equivalence and are therefore hygienic. In chapter 3, we 

discuss several observations on Romeo and extensions that follow from these observations. 

In chapter 4, we discuss Romeo-L, our implementation of a more concise and useable syntax 

                                                        
1 In fact, Shinwell, Pitts and Gabbay [14] give an example (Normalization by Evaluation) which is rejected by 
FreshMLs static version (called FreshML 2000), but accepted by its dynamic version. However, it can be stati-
cally checked in pure FreshML and is accepted. Appendix I contains our version of this example. 
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as well as the implementation of the link between the proof system and the SMT solver that 

is needed to discharge proof obligations generated by the proof system. We conducted some 

tests and experiments with this new system and present the results in chapter 5, after which 

we will conclude and discuss future work. 
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2 ROMEO 

In this chapter we will present the features of Romeo [19], a language for macros that fea-

tures binding specifications and a type/proof system designed in such a way that admitted 

macros preserve α-equivalence. It is important to note that Romeo is not the work of the 

author of this thesis and that it is work in progress. This may be the first presentation of it, 

based on its current status. Also, the presentation is not complete—we will only present the 

syntax and the proof rules in detail, while giving an intuition on the type system and execu-

tion rules. Romeo is very similar to Pottier’s pure FreshML [18], and we will discuss the sim-

ilarities and differences at the end of this chapter. 

2.1 Definitions 

In this and the following chapters, we will talk about meta-languages for programs that trans-

form programs in object languages. The meta-languages use the concept of an abstract syntax 

tree to represent a program in an object language, and we also use the same concept to talk 

about meta-language programs. The nodes of such a tree are expressions, and conversely, the 

children of a node are the sub-expressions. We will also refer to sub-expressions as branches. 

In the abstract syntax representation of programs, we refer to the names of variables in 

an object language as atoms. An atom is any occurrence of such a name, be it in a declaration 

(which we also call binding occurrence) or a reference. An important point of discussion will 

be reasoning about sets of different kinds of free atoms in the terms of an object language 

program. 
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2.2 Syntax 

Figure 2.1 shows the syntax of Romeo. A Romeo program is a collection of recursively defined 

functions that operate on typed terms, and an expression to evaluate. The latter is not im-

portant for our presentation. We will focus on the function definitions.  

An important observation is that Romeo only allows variables 𝑥 in many places where one 

would usually expect expressions. We marked these occurrences with the superscript 𝑒 (that 

means, 𝑥𝑒 is the occurrence of a variable where one would expect an  

expression). This means that all occurrences of 𝑥𝑒 are references in the meta-language, 

whereas the occurrences of 𝑥 that are not marked are binding occurrences in the meta-lan-

guage, except one: the single 𝑥 in 𝑒𝑞𝑙𝑖𝑡, which is the one place where on would normally ex-

pect a variable in a reference position. This restriction has a reason that we will discuss in 

this chapter; partially lifting it is part of our contribution and will be discussed in section 4.1. 

A function definition consists of a name 𝑓, a declaration of several arguments and their 

types 𝑥: 𝜏̅̅̅̅̅, a precondition 𝐶𝑝𝑟𝑒, a return type 𝜏, an expression as the function body 𝑒 and a 

postcondition 𝐶𝑝𝑜𝑠𝑡.  

Romeo’s type system is used to specify terms of object languages. It knows two different 

types of atoms as base types: Binder and Ref (short for reference). As the names suggest, 

Binder is the type for atoms in binding occurrences, whereas Ref is the type for atoms in 

reference positions. Values of both are drawn from the same countably infinite set of names. 

Furthermore, there are binary sums of the form (𝜏0 + 𝜏1), recursive types of the form 𝜇𝑋. 𝜏, 
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and n-ary products of the form (prod [𝑒𝑞𝑙𝑖𝑡 ↓ 𝛽]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ⇑ 𝛽). While sums and recursive types have 

the usual form1, product types contain what we will call binding specifications, namely an 

import specification ↓ 𝛽 for each field, and an export specification ⇑ 𝛽 for the whole product. 

Their meaning will be discussed in the next section. 

                                                        
1 Pierce [1] gives a very good introduction to the standard parts of the type systems that we use here 

𝑓𝐷 ∈ 𝐹𝑛𝐷𝑒𝑓 ∷= (define-fn (𝑓 𝑥: 𝜏̅̅ ̅̅̅ pre 𝐶𝑝𝑟𝑒): 𝜏 𝑒 post 𝐶𝑝𝑜𝑠𝑡) 

𝑒 ∈ 𝐸𝑥𝑝𝑟 ∷= 𝑒𝑞𝑙𝑖𝑡 | (call 𝑓 𝑥𝑒̅̅ ̅) | (case 𝑥𝑒 (𝑥0 𝑒0) (𝑥1 𝑒1)) | 

(open 𝑥𝑒 as 𝑥̅ in 𝑒) | (fresh 𝑥 in 𝑒) | 

(let 𝑥 be 𝑒𝑣𝑎𝑙 where 𝐶 in 𝑒𝑏𝑜𝑑𝑦) | 

(if 𝑥𝑙
𝑒 equals 𝑥𝑟

𝑒 then 𝑒𝑡 else 𝑒𝑒) 

𝑒𝑞𝑙𝑖𝑡 ∈ 𝑄𝑢𝑎𝑠𝑖𝐿𝑖𝑡 ∷= 𝑥 | (ref 𝑥𝑒) | (inj0 𝑒
𝑞𝑙𝑖𝑡 𝜏1) | (inj1 𝜏0 𝑒

𝑞𝑙𝑖𝑡) | 

(prod [𝑒𝑞𝑙𝑖𝑡 ↓ 𝛽]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ⇑ 𝛽) 

 𝜏 ∈ 𝑇𝑦𝑝𝑒 ∷= Binder | Ref | (𝜏0 + 𝜏1) | μ𝑋. 𝜏 | Prod [𝜏 ↓ 𝛽]̅̅ ̅̅ ̅̅ ̅̅ ̅ ⇑ 𝛽 

𝐶 ∈ 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ∷= true | 𝑧 =val 𝑒
𝑞𝑙𝑖𝑡 | 𝑠 = 𝑠 | 𝑠 ≠ 𝑠 | 𝑠 # 𝑠 | 𝑠 ⊆ 𝑠 | 𝐶 ∧ 𝐶 

𝑠 ∈ 𝑆𝑒𝑡𝐷𝑒𝑠𝑐 ∷= ∅ | 𝑠𝑓(𝑧) | ℱ𝑒(Γ) | (𝑠) | 𝑠 ∪ 𝑠 | 𝑠 ∩ 𝑠 | 𝑠 ∖ 𝑠 

𝑠𝑓 ∈ 𝑆𝑒𝑡𝐹𝑛 ∷= ℱ | ℱ𝑏 | ℱ𝑟 | ℱ𝑥 

𝑣 ∈ 𝑉𝑎𝑙𝑢𝑒 ∷= vatom 𝑎 | inj0 𝑣 | inj1 𝑣 | prod 𝑣̅ 

𝑧 ∈ 𝑆𝑒𝑡𝑉𝑎𝑟 ∷= 𝑥 | ∙ 

Γ ∈ 𝑇𝑦𝑝𝑒-𝐸𝑛𝑣 ∷= 𝑧: 𝜏̅̅ ̅̅  

ρ ∈ 𝑉𝑎𝑙-𝐸𝑛𝑣 ∷= 𝑧: 𝑣̅̅ ̅̅̅ 

𝛽 ∈ 𝐵𝑖𝑛𝑑𝑠𝑝𝑒𝑐 ∷= ℓ̅ 

𝑎 ∈ 𝐴𝑡𝑜𝑚   

ℓ ∈ 𝑁𝑢𝑚𝑏𝑒𝑟   

Figure 2.1 – Syntax of Romeo 
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An expression 𝑒 is either a quasi-literal 𝑒𝑞𝑙𝑖𝑡, a function call (call 𝑓 𝑥̅), or a case-, open-, 

fresh-, let-or if-expression.  

A quasi-literal is either a variable (reference) 𝑥, a binder-to-reference conversion 

(ref 𝑥𝑒) or a constructor. In (ref 𝑥𝑒), 𝑥𝑒 must have type Binder, the expression will then re-

turn an atom of type Ref. The constructors inj0 and inj1 are the introduction form for values 

of sum types—they take a value and the type of the other case of the sum. The constructor 

prod constructs a value of a product type, the binding specifications are the same as in the 

formulation product types. Note that constructors can be nested. 

A function call to a function 𝑓 comes with some variables 𝑥̅ as arguments.  

A case-expression determines the option of the value stored in 𝑥 and binds it to the cor-

responding 𝑥𝑖  in the corresponding 𝑒𝑖. 

An open-expression takes a value of a product type stored in the variable 𝑥 and binds its 

fields to the variables 𝑥̅ in the expression 𝑒.  

A fresh-expression introduces a new variable 𝑥 that stores a fresh atom of type Binder. 

The fact that the atom is fresh means that its name is guaranteed to be distinct from all the 

names that are already in use.  

A let-expression declares a new variable 𝑥 and binds it to the value of first sub-expres-

sion 𝑒𝑣𝑎𝑙 , which we will call the value expression. This value must satisfy the constraint 𝐶, 

which for convenience we also call the postcondition of the let-expression (although it is only 
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a postcondition on the value expression). The variable 𝑥 is then available in the body expres-

sion of the let, 𝑒𝑏𝑜𝑑𝑦.  

An if-expression compares two atoms (that is, 𝑥𝑙
𝑒 and 𝑥𝑟

𝑒 must either both have type 

Binder or both have type Ref), and depending on their equality, either the then-expression 𝑒𝑡 

or the else-expression 𝑒𝑒 is evaluated.  

Constraints can be either pre- or postconditions of functions or postconditions on values 

bound by a let-expression. They describe relations between sets of atoms in terms that must 

hold at certain points in the program. The proof system that we will see later is used to stat-

ically determine that that is actually the case. A constraint is either true, an =val-constraint, 

one of four relations (equality =, inequality ≠, disjointness #, inclusion ⊆) between sets or 

the ∧-connective of two constraints. Constraints of the form 𝑧 =val 𝑒
𝑞𝑙𝑖𝑡 are a shorthand to 

express that 𝑧 was constructed using values from other variables. This constraint cannot be 

annotated by a user of Romeo, but is used by the proof system (and subsequently eliminated 

in a simplification pass). Set expressions can be the empty set ∅, the standard set operations 

∪, ∩ and ∖ (the parentheses are there to control precedence) and functions on variables pro-

ducing sets of atoms. 

We care about the following sets of atoms: the free atoms ℱ, the free binders ℱ𝑏, the free 

references ℱ𝑟 , or the exposable atoms ℱ𝑥. We will define their exact meaning in later sections, 

for now, we only give an intuition of ℱ𝑟 — ℱ𝑟(𝑧) is the set of the free (i.e. unbound) references 

in the value represented by the variable 𝑧. 



Checking Binding Hygiene Statically 

16 
    

The symbol ∙ is a special variable that represents the result of a function or expression in 

a postcondition. It should not appear in a precondition written by a programmer because the 

result is not available at the time of a function call, which is when the precondition must be 

checked. 

Run-time values 𝑣 can be either atoms 𝑎, sum-values tagged with inj0 or inj1, or records 

of a product type with field values 𝑣̅. Value environments 𝜌 keep track of the values of varia-

bles at run-time, while type-environments Γ keep track of their types (both at run-time and 

during checking). 

2.3 Binding 

The core part of Romeo is its system to describe the binding structure of terms. A term is 

either an atom, corresponding to a leaf in an abstract syntax tree, or an arbitrary-size tuple 

of terms, corresponding to a node. Atoms may be binders that introduce bindings, or refer-

ences that may be bound. The import- and export-specifications of product types specify 

scoping rules: what is imported and exported are bindings. A binder by definition exports a 

binding. That alone does not bind any variables—the binding needs to be imported some-

where. An import specification in a product means that the sub-term that it belongs to is in 

the scope of the declarations that generate the bindings that are imported. Those imported 

bindings are specified by natural numbers, which refer to the exported bindings of the sub-

terms with the respective indices. Similarly, an export specification in a product propagates 

the exports of the sub-terms with the respective indices. 
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2.3.1 Binding Specifications 

We will demonstrate the actual meaning of the binding specifications with the following 

examples. 

Prod ([Binder ↓ ∅] [𝐸 ↓ (0)]) ⇑ ∅ 

Example 2.1 – A type for a λ-abstraction 

Example 2.1 shows the basic idea of importing bindings within a product. It represents a λ-

abstraction (𝜆𝑥. 𝑒) with its two components: a body expression 𝑒 and a name 𝑥 that is bound 

in that body. The type of the binding occurrence of 𝑥 is Binder. For the body, we assume that 

𝐸 is some type that represents expressions 𝑒 in the object language. The first field of the 

product does not import anything, but the second field (the body) imports all bindings from 

the first (hence the index 0). This means that the body is in the scope of the declaration of 𝑥, 

so all occurences of 𝑥 in 𝑒 that have type Ref are bound. Nothing outside of the λ-abstraction 

can be in scope of either the declared variable or anything in the body, so we export nothing. 

𝜇𝐸. (Ref + (Prod([Binder↓∅] [𝐸 ↓ (0)]) ⇑ ∅ + Prod([𝐸] [𝐸]) ⇑ ∅)) 

Example 2.2 – Specifying λ-terms 

We can extend the previous example a bit to complete a basic representation of λ-terms. Ex-

ample 2.2 shows a full specification. A λ-term is either a variable reference, a λ-abstraction 

(which we already saw in Example 2.1, although now the type variable 𝐸 is bound), or an 



Checking Binding Hygiene Statically 

18 
    

application, which is a pair of two λ-terms. No additional imports or exports are specified, 

since abstractions are the only places where binders are introduced.  

If we extend our language slightly to allow λ-abstractions with an arbitrary number of 

declarations, we also get to see a non-empty export specification. 

Prod ([ 𝜇𝐴. (Prod() ⇑ ∅ + Prod([Binder] [𝐴]) ⇑ (0 1))  ]   [𝐸 ↓ (0)]) ⇑ ∅ 

Example 2.3 – Argument list for λ-abstraction with multiple arguments 

In Example 2.3, we specify a list of multiple argument declarations. The non-empty product 

can be seen as describing a cons-cell that exports both the values exported from its head and 

its tail. If we replace the simple Binder from Example 2.1 with this argument list specification, 

we get the specification of a λ-abstraction with multiple arguments. 

Figure 2.2 – The flow of bindings for the λ-term 𝜆𝑥 𝑦. (𝑥 (𝑦 𝑧)) 

   Abstraction ⇑∅ 

      Args ⇑(0 1)    App ⇑∅  

   App ⇑∅    x ⇑        Args ⇑(0 1)   x ↓  

  y ↓     z ↓  

0↓∅   1↓∅   

0↓∅   1↓(0)   

0↓∅   1↓∅   

0↓∅   1↓∅   

Export/Declarations 

Import/Scope 

  y ⇑ Empty   

0↓∅   1↓∅   
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Figure 2.2 shows an example of how the binding specifications in the above examples 

work out for the λ-term 𝜆𝑥 𝑦. (𝑥 (𝑦 𝑧)). The left-hand side is a list of binders, in this case 

containing 𝑥 and 𝑦. All binders are exported by the left-hand side (Empty stands for the empty 

product at the end of the list and of course does not export anything), and imported by the 

right-hand side of the abstraction. There, they join all the other variables that already may be 

in scope (represented by the dotted arrows coming down from the Abstraction node)—

every node propagates the declarations already in scope. This way, 𝑥 and 𝑦 in the body of the 

λ-abstraction get correctly bound to the declarations on the left-hand side, while 𝑧 is free, but 

may be bound by some declaration outside of the abstraction. 

To get an idea of how the internal representation of object language terms in Romeo 

works, Example 2.4 shows the representation of 𝜆𝑥 𝑦. (𝑥 (𝑦 𝑧)) in a structure of the type 

given by combining Example 2.2 and Example 2.3.  

(inj1 (inj0 (prod (prod(vatom 𝑥,prod(vatom 𝑦,prod())), 

(prod(vatom 𝑥, (prod (vatom 𝑦, vatom 𝑧))))))) 

Example 2.4 – Representing (𝜆 (𝑥 𝑦) (𝑥 (𝑦 𝑧))) as Romeo value 

It should be noted that the binding specifications are presented here in a slightly simplified 

way. The simplification is that we describe 𝛽 as a list of indices. In actual Romeo, 𝛽s are indi-

ces that are combined by different operators which describe what happens if the same name 

is encountered twice. 
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2.3.2 Free Atoms 

Now that we have discussed how binding specifications work in Romeo, we can explain the 

meaning of the set functions ℱ,ℱ𝑏 , ℱ𝑟 , and ℱ𝑥. The set functions ℱ𝑏 and ℱ𝑟 are the most im-

portant, because the other two can be expressed in terms of them.  

The free binders ℱ𝑏 are the exported declarations of a term and the free references ℱ𝑟 are 

its free variables (we already stated that in section 2.2). The free atoms ℱ in a term are de-

fined as the union of the former two. The free atoms in the environment ℱe are defined as the 

union of the free atoms of all terms represented by variables in the scope of the given envi-

ronment Γ, and the exposable atoms ℱ𝑥 are the free binders in the sub-expressions of a prod-

uct that are not exported (such as the 𝑥 in 𝜆𝑥. 𝑒). The latter are named in a slightly odd way, 

since the exposable atoms are atoms that may not escape. The reason for that is that those 

names are local to their expression (again, think of the 𝑥 in 𝜆𝑥. 𝑒). They should not be able to 

bind anything outside of their expression, nor should they be a free name floating around 

outside of where they ought to be. 

2.4 The Type System 

The typing rules are very simple. Variables in Romeo may not be shadowed—whenever a 

variable is added to the environment, it must be unique. This makes some things easier, as 

we will see in section 2.7. There is no polymorphism and no subtyping. Recursive types are 

equi-recursive. Functions are annotated with their argument and return types, the type of 
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their body expression must exactly match their declared return type, and the types of argu-

ments in function calls must exactly match the annotated argument types. Similarly, the types 

of atoms in the comparison of an if-expression must match. 

2.5 Semantic Subtleties 

The semantics of Romeo, given by its execution system, are largely what one would expect 

from the constructs we have in the syntax—if checks for equality of two atoms and then 

continues evaluation with either the then- or the else-branch depending on the result of that 

check, let evaluates its value expression and then its body with the value available in the 

variable introduced by let, and so on. However, open is a bit special. It uses the binding in-

formation in the types to ensure that name clashes will not occur. Therefore, types cannot be 

erased, but have to be kept around during execution. 

As an example of what open does, consider the aliasing problem discussed by Herman 

[7]. Example 2.5 shows the macro first-arg. It takes two names and uses them to generate 

two nested λ-abstraction, creating a curried binary function that returns its first argument. 

Note that in this macro, the names of the variables are determined by the user of the macro. 

That is, in Romeo, both arguments to the macro would have type Binder.  
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 (define-syntax first-arg 
  (syntax-rules () 
    [(first-arg x y) (lambda (x) (lambda (y) x))])) 
 
 
> (((first-arg a a) 5) 3) 
 
 (((lambda (a) (lambda (a) a)) 5) 3) 
 
 ((lambda (a) a) 3) 
 
 3 

Example 2.5 – The aliasing problem 

Example 2.5 also shows user input that that can make naï ve macro expansion fail to pre-

serve the intended binding structure of the program. When it is given the same name twice, 

applying the resulting function to two values will return the second value instead of the first. 

Example 2.6 shows a Romeo program with simplified syntax (we omitted the constraints in 

the function declaration, and the italic parts are either shorthands for types (first-arg-type, 

λ-term-type) or a function mk-lam that produces a quasi-literal representing a λ-abstraction, 

of the type we showed in Example 2.1).  

first-arg-type = Prod([Binder][Binder]) 
 
(define-fn (t-first-arg ([farg first-arg-type])) : λ-term-type 
  (open farg as (x y) in 
    (mk-lam x (mk-lam y (ref x))))) 

Example 2.6 – first-arg in Romeo (simplified) 

The really important part is the open-expression. It traverses the term stored in farg and 

uses the type information—in this case we know that farg is a product with two binders—

to α-rename atoms that might otherwise cause name clashes. In case of the example user 
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input above, open would rename one of the two identifiers, and we would get the correct 

result again. 

Figure 2.3 shows a selection of Romeo’s big-step execution rules. E-CASE-LEFT is a simple first 

example. When we encounter a case-expression, we check whether the value of the given 

variable 𝑥𝑜𝑏𝑗
𝑒  is tagged with inj0. If it is, we look up its type 𝜏0, bind the inner value 𝑣0 of the 

tagged sum to the variable 𝑥0 in the expression 𝑒0 and evaluate 𝑒0 with an updated type en-

vironment Γ and variable environment 𝜌. 

 The rules for fresh are a bit more complex. The important part is the condition on the 

right—this is also where the difference between the OK- and the FAULT-rule is. In order for a 

fresh-expression not to fault, the atom 𝑎 that it generated may not be free in the result. The 

reason why it may not be free is that it might stay free. Then, if there are two α-equivalent 

ρ(𝑥𝑜𝑏𝑗
𝑒 ) = 𝑖𝑛𝑗0 𝑣0 Γ(𝑥𝑜𝑏𝑗

𝑒 ) = (𝜏0 + 𝜏1) Γ, 𝑥0: 𝜏0 ⊢𝑒𝑥𝑒 〈𝑒0, 𝜌[𝑥0 → 𝑣0]〉
𝑘
⇒𝑣

Γ ⊢exe 〈(case 𝑥𝑜𝑏𝑗
𝑒  (𝑥0 𝑒0) (𝑥1 𝑒1)), 𝜌〉

𝑘+1
⇒  𝑣

E-CASE-LEFT 

𝑎 ∉ fa-env(Γ, 𝜌)

Γ, 𝑥:Binder ⊢exe 〈𝑒, 𝜌[𝑥 → 𝑎]〉
𝑘
⇒ 𝑣 Γ, 𝑥:Binder ⊢type 𝑒: 𝜏 𝑣 = FAULT ∨ 𝑎 ∉ fa(𝜏, 𝑣)

Γ ⊢exe 〈(fresh 𝑥 in 𝑒), 𝜌〉
𝑘+1
⇒  𝑣

E-FRESH-OK
 

𝑎 ∉ fa-env(Γ, 𝜌)

Γ, 𝑥:Binder ⊢exe 〈𝑒, 𝜌[𝑥 → 𝑎]〉
𝑘
⇒ 𝑣 Γ, 𝑥:Binder ⊢type 𝑒: 𝜏 𝑣 ≠ FAULT ∧ 𝑎 ∈ fa(𝜏, 𝑣)

Γ ⊢exe 〈(fresh 𝑥 in 𝑒), 𝜌〉
𝑘+1
⇒  FAULT

E-FRESH-ESCAPE
 

Figure 2.3 – Some execution rules of Romeo 
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programs, and we add distinct fresh and free variables to each of them, they are not α-equiv-

alent any more. 

(define-fn (maybe-faulty (x λ-abs-type)) : some-type 
  …) 

Example 2.7 – Skeleton for examples of faulty and non-faulty programs 

Example 2.7 shows the skeleton of a Romeo function called maybe-faulty. We again use a 

slightly simplified syntax for clarity—the code in the example specifies maybe-faulty as a 

function that takes a term representing a λ-abstraction and returns a term of some type that 

will depend on the example. The body of the function consists of ellipses, and we will now fill 

in several expressions there and see what is faulty and what is not. Imagine that maybe-faulty 

is called with some arbitrary name in the object language program as argument. 

1.) 𝑥 – valid. Identity functions are not a problem for hygiene – clearly, α-equivalent in-

puts are mapped to α-equivalent outputs. 

2.) (fresh 𝑦 in 𝑥) – valid. The fresh binder in 𝑦 is never used and does not escape; maybe-

faulty is still an identity function. 

3.) (fresh 𝑦 in 𝑦) – faulty. The fresh binder in 𝑦 is exported (because that is what values 

of type Binder do), therefore the result of the function now contains a free binder, 

therefore a free atom, and that free atom is the atom introduced by fresh, violating 

the corresponding condition 𝑎 ∉ fa(𝜏, 𝑣) in E-FRESH-OK. 
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4.) (fresh 𝑦 in (mk-lam 𝑦 (ref 𝑦))) – valid. All inputs get mapped to an identity function. 

The actual name in 𝑦 does not matter – it is confined to the λ-abstraction (because 

the type of a λ-abstraction does not specify any exports, and the reference to 𝑦 is 

bound) and does not appear free in the result. 

5.) (fresh 𝑦 in (fresh 𝑧 in (mk-lam 𝑦 (ref 𝑧)))) – faulty. The binders in 𝑦 and 𝑧 are guar-

anteed to be different, so the binder in 𝑦 cannot bind the reference atom created from 

𝑧. This means that we introduce a free variable into the result, and that free variable 

is different from any other free variable. Therefore, two α-equivalent inputs will be 

mapped to functions with different free variables, and thus not be α-equivalent any 

more. Again, the condition 𝑎 ∉ fa(𝜏, 𝑣) would be violated, and thus E-FRESH-ESCAPE 

will fire instead of E-FRESH-OK, and execution will fault. 

The open-rule is even more complex, which is why we refer to Stansifer [19] for an in-depth 

discussion. For our purposes, the intuition suffices that it uses the binding information in the 

types to α-rename terms such that they are fresh relative to the current environment, which 

will prevent name clashes. This is also called freshening, a technique already used by the 

KFFD algorithm [4]. While KFFD had to fully expand all macros first, because binding infor-

mation would only be available at that point, the types in Romeo give the open-rule all the 

information it needs to perform the renaming before expansion. 

The behavior of open in turn ensures that if is well-behaved with regards to α-equiva-

lence—two atoms are equal iff they are related by binding. We will see in chapter 5 that this 

is useful when we want to implement capture-avoiding substitution for the λ-calculus. 
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2.6 The Proof System 

The rules of the execution system presented in the previous section ensure that a program is 

transformed in a hygienic way at the time when the transformation actually happens. But the 

proof system that we will present in this section enables us to prove statically—that is, before 

a Romeo program is actually run on some object language program—that the execution sys-

tem will not fault and hence the program will always preserve α-equivalence.  

Figure 2.4 shows the rules of the proof system as given by Stansifer and Wand [19]. It 

starts at the root of each abstract syntax tree that represents a Romeo function definition 

(P-PROG). The rule P-FNDEF takes the precondition 𝐶𝑝𝑟𝑒, the postcondition 𝐶𝑝𝑜𝑠𝑡 and the body 

expression 𝑒 from the function definition and constructs the initial state: 

Γ ⊢𝑝𝑟𝑜𝑜𝑓 {𝐶𝑝𝑟𝑒} 𝑒 {𝐶𝑝𝑜𝑠𝑡}. The type environment Γ is initialized with the formal function ar-

guments and their types 𝑥: 𝜏̅̅̅̅̅.  

 From this initial state, we traverse the abstract syntax tree. While doing that, we collect 

additional pre- and post-conditions for the current branch we are on. At the leaves of the 

abstract syntax tree, proof obligations are generated from the current set of pre- and post-

conditions. We will now explain this in more detail. 

In general, the rules of the proof system form four groups: 

  P-FRESH and P-OPEN introduce new Romeo variables (𝑥 for P-FRESH, 𝑥̅ for P-OPEN). 

The expressions that these variables represent may contain some kind of free atoms 

in the object languages. As we saw in section 2.5, some of these atoms may not escape. 
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The proof system rules mirror the execution rules in that they add the postcondition 

that the free/exposable atoms ℱ(𝑥)/ℱ𝑥(𝑥𝑜𝑏𝑗
𝑒 ) may not be free in the result ℱ(∙). 

 P-CASE and P-IFEQ each have two branches. Depending on which branch they take in 

the execution, either 𝑒0 or 𝑒1 is evaluated, and so the proof system must check that in 

both cases the postcondition 𝑃 will be satisfied. In each branch, the knowledge about 

⊢ 𝑓𝐷̅̅ ̅̅ ̅̅ ̅ ϵ ⊢proof {true} 𝑒 {true}

⊢proof  𝑓𝐷̅̅ ̅̅  𝑒 ok
P-PROG 

𝑥: 𝜏̅̅ ̅̅̅ ⊢proof {𝐶𝑝𝑟𝑒} 𝑒 {𝐶𝑝𝑜𝑠𝑡}

⊢proof  (define-fn (𝑓 𝑥: 𝜏̅̅ ̅̅̅ pre 𝐶𝑝𝑟𝑒): 𝜏𝑟𝑒𝑡  𝑒 post 𝐶𝑝𝑜𝑠𝑡) ok 
P-FNDEF 

𝑥 fresh for Γ, 𝐻, 𝑃 Γ, 𝑥:Binder ⊢proof {𝐻 ∧ ℱ(𝑥)#ℱ𝑒(Γ)} 𝑒 {𝑃 ∧ ℱ(𝑥)#ℱ(∙)}

Γ ⊢proof  {𝐻} (fresh 𝑥 in 𝑒) {𝑃}
P-FRESH 

𝑥𝑠𝑢𝑏̅̅ ̅̅ ̅̅  fresh for Γ,𝐻, 𝑃 Γ(𝑥𝑜𝑏𝑗
𝑒 ) = Prod[𝜏𝑠𝑢𝑏 ↓ 𝛽𝑠𝑢𝑏]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ⇑ 𝛽𝑒

Γ, 𝑥𝑠𝑢𝑏: 𝜏𝑠𝑢𝑏̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ⊢proof {𝐻 ∧ ℱ𝑥(𝑥𝑜𝑏𝑗
𝑒 )#ℱ𝑒(Γ) ∧ 𝑥𝑜𝑏𝑗

𝑒 =val (prod[𝑥𝑠𝑢𝑏 ↓ 𝛽𝑠𝑢𝑏]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ⇑ 𝛽𝑒)} 𝑒 {𝑃 ∧ ℱ𝑥(𝑥𝑜𝑏𝑗
𝑒 )#ℱ(∙)}

Γ ⊢proof  {𝐻} (open 𝑥𝑜𝑏𝑗
𝑒  as 𝑥𝑠𝑢𝑏̅̅ ̅̅ ̅̅  in 𝑒) {𝑃}

P-OPEN
 

Γ(𝑥) = (𝜏0 + 𝜏1) 𝑥0, 𝑥1 fresh for Γ, 𝐻, 𝑃

Γ, 𝑥0: 𝜏0 ⊢proof {𝐻 ∧ 𝑥
𝑒 =val (inj0 𝑥0 𝜏1)} 𝑒0 {𝑃} Γ, 𝑥1: 𝜏1 ⊢proof {𝐻 ∧ 𝑥

𝑒 =val (inj1 𝜏0 𝑥1)} 𝑒1 {𝑃} 

Γ ⊢proof  {𝐻}(case 𝑥
𝑒 (𝑥0 𝑒0) (𝑥1 𝑒1)) {𝑃}

P-CASE
 

Γ ⊢proof {𝐻 ∧ ℱ(𝑥𝑙
𝑒) = ℱ(𝑥𝑟

𝑒)} 𝑒0 {𝑃} Γ ⊢proof {𝐻 ∧ ℱ(𝑥𝑙
𝑒)#ℱ(𝑥𝑟

𝑒)} 𝑒1 {𝑃} 

Γ ⊢proof  {𝐻} (if 𝑥𝑙
𝑒 equals 𝑥𝑟

𝑒 then 𝑒0 else 𝑒1) {𝑃}
P-IFEQ 

𝑥 fresh for Γ,𝐻, 𝑃, 𝐶 Γ ⊢proof {𝐻} 𝑒𝑣𝑎𝑙  {𝐶} 

typeof(Γ, 𝑒𝑣𝑎𝑙) = 𝜏𝑣𝑎𝑙 Γ, 𝑥: 𝜏𝑣𝑎𝑙 ⊢proof {𝐻 ∧ 𝐶[𝑥 ∙⁄ ] ∧ ℱ(𝑥) ⊆ ℱ𝑒(Γ)} 𝑒𝑏𝑜𝑑𝑦 {𝑃} 

Γ ⊢proof  {𝐻} (let 𝑥 be 𝑒𝑣𝑎𝑙 where 𝐶 in 𝑒𝑏𝑜𝑑𝑦) {𝑃}
P-LET

 

typeof(Γ, 𝑒𝑞𝑙𝑖𝑡) = 𝜏 Γ,∙: 𝜏; 𝐻 ∧ ( ∙  =val 𝑒
𝑞𝑙𝑖𝑡) ⊨hyp 𝑃

Γ ⊢proof  {𝐻} 𝑒
𝑞𝑙𝑖𝑡  {𝑃}

P-QLIT 

rettype(𝑓) = 𝜏

formals(𝑓) = 𝑥𝑓𝑜𝑟𝑚𝑎𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅ argtype(𝑓) = 𝜏𝑓𝑜𝑟𝑚𝑎𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅ Γ; 𝐻 ⊨hyp pre(𝑓)[𝑥𝑎𝑐𝑡𝑢𝑎𝑙
𝑒 /𝑥𝑓𝑜𝑟𝑚𝑎𝑙]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

Γ,∙: 𝜏; 𝐻 ∧ ℱ(∙) ⊆ ℱ𝑒(𝑥𝑎𝑐𝑡𝑢𝑎𝑙
𝑒 : 𝜏𝑓𝑜𝑟𝑚𝑎𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) ∧ post(𝑓)[𝑥𝑎𝑐𝑡𝑢𝑎𝑙

𝑒 𝑥𝑓𝑜𝑟𝑚𝑎𝑙⁄ ]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ⊨hyp 𝑃 

Γ ⊢proof  {𝐻} (call 𝑓 𝑥𝑎𝑐𝑡𝑢𝑎𝑙
𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅) {𝑃}

P-CALL

 

Figure 2.4 – The proof system of Romeo 



Checking Binding Hygiene Statically 

28 
    

why a particular branch was taken can be added to the knowledge. For example, in 

the then-branch of an if, we know that the two compared atoms must be equal. 

 P-LET also has two branches. For the value expression 𝑒𝑣𝑎𝑙 , we need to prove that it 

satisfies the postcondition 𝐶. Then we can use this additional knowledge in 𝐶 that 

describes the value now in 𝑥 and add 𝐶 to the knowledge that we have for the body 

expression 𝑒𝑏𝑜𝑑𝑦. In addition to that, we know that ℱ(𝑥) ⊆ ℱ𝑒(Γ), that is, the free 

atom in the result of the value expression must be a subset of the free atoms in all the 

variables currently in the environment. If there are additional free variables in the 

result, they must have escaped from a fresh- or open-expression, which is illegal and 

prevented elsewhere. 

 P-QLIT and P-CALL. Quasi-literals and function calls are always (and the only possible) 

leaves of the abstract syntax tree, therefore one of these rules must eventually be 

encountered on every branch. Here, finally, proof obligations are generated (with 

⊨hyp). P-QLIT generates the special =val-constraint to express that the result of the 

current branch is some quasi-literal. P-CALL generates two proof obligations. The first 

asserts that the preconditions of the called function are satisfied. The second asserts 

that the knowledge from the postcondition of the called function combined with the 

current knowledge suffice to prove our current postcondition. 
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2.7 Logic  

The relation ⊨hyp is defined in terms of logical entailment ⊨ under the rules of Figure 2.5 

and the underlying atom functions in Figure 2.6. It relates the proof obligations to the execu-

tion system, stating that if we can prove that Γ;𝐻 ⊨hyp 𝑃, then 𝐻 implies 𝑃 under all possible 

value environments (i.e. variable assignments).   

Figure 2.6 gives an exact definition of the different sets of atoms that we will consider—

free binders (ℱ𝑏), free references (ℱ𝑟), free atoms (ℱ), free atoms in the environment (ℱ𝑒) 

and exposable atoms (ℱ𝑥). 

Note that the translation of 𝑆⟦ℱ𝑒(Γ𝑠𝑢𝑏𝑗𝑒𝑐𝑡)⟧Γ,𝜌 to fa-env(Γ𝑠𝑢𝑏𝑗𝑒𝑐𝑡, 𝜌) requires that 

dom(Γ𝑠𝑢𝑏𝑗𝑒𝑐𝑡) ⊆ dom(𝜌) by the definition of fa-env. This is always true because Romeo does 

not allow shadowing of variables, and thus environments can only grow when going down in 

the abstract syntax tree, and not change otherwise. Proof obligations are generated at the 

leaves of the abstract syntax tree, and ℱ𝑒(Γ𝑠𝑢𝑏𝑗𝑒𝑐𝑡) must have been generated on the way. The 

environment Γ𝑠𝑢𝑏𝑗𝑒𝑐𝑡 is therefore a snapshot of the environment Γ taken at some point, which 

means dom(Γ𝑠𝑢𝑏𝑗𝑒𝑐𝑡) ⊆ dom(Γ). Since Γ and ρ always have the same domain, the translation 

is safe. 

2.8 Simplification and Approximation 

Before the proof obligations generated by the proof system go to the SMT-solver, they are 

simplified, and the sizes of their sets are approximated.  
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Γ; 𝜌; 𝐻 ⊨hyp 𝑃 ⇔ if Γ; 𝜌 ⊨ 𝐻, then Γ; 𝜌 ⊨ 𝑃 

Γ;𝐻 ⊨hyp 𝑃 ⇔ ∀𝜌. if Γ ⊢type-env 𝜌 and Γ; 𝜌 ⊨ 𝐻, then Γ; 𝜌 ⊨ 𝑃  

   

Γ; 𝜌 ⊨ 𝐶0 ∧ 𝐶1 ⇔ Γ; 𝜌 ⊨ 𝐶0 and Γ; 𝜌 ⊨ 𝐶1 

Γ; 𝜌 ⊨ 𝑠0 = 𝑠1 ⇔ 𝑆⟦𝑠0⟧Γ,ρ equals 𝑆⟦𝑠1⟧Γ,ρ 

Γ; 𝜌 ⊨ 𝑠0#𝑠1 ⇔ Γ; 𝜌 ⊨ 𝑠0 ∩ 𝑠1 = ∅ 

Γ; 𝜌 ⊨ 𝑠0 ⊆ 𝑠1 ⇔ 𝑆⟦𝑠0⟧Γ,ρ ⊆ 𝑆⟦𝑠1⟧Γ,ρ 

Γ; 𝜌 ⊨ 𝑧 =val 𝑒
𝑞𝑙𝑖𝑡 ⇔ 𝑄⟦𝑧⟧ρ equals 𝑄⟦𝑒

𝑞𝑙𝑖𝑡⟧
ρ

 

Γ; 𝜌 ⊨ true ⇔ Always 

   

𝑄⟦_⟧_ : 𝑄𝑢𝑎𝑠𝑖𝐿𝑖𝑡 × 𝑇𝑦𝑝𝑒-𝐸𝑛𝑣 → 𝑉𝑎𝑙𝑢𝑒 

𝑄⟦𝑥⟧𝜌 = 𝜌(𝑥) 

𝑄⟦(ref 𝑥𝑒)⟧𝜌 = 𝜌(𝑥) 

𝑄⟦(inj𝟎 𝑒
𝑞𝑙𝑖𝑡 𝜏)⟧𝜌 = inj𝟎 𝑄⟦𝑒

𝑞𝑙𝑖𝑡⟧
𝜌

 

𝑄⟦(inj𝟏 𝜏 𝑒
𝑞𝑙𝑖𝑡)⟧𝜌 = inj𝟏 𝑄⟦𝑒

𝑞𝑙𝑖𝑡⟧
𝜌

 

𝑄⟦(prod 𝑒𝑞𝑙𝑖𝑡 ↓ 𝛽𝑖𝑚̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  ⇑ 𝛽𝑒𝑥)⟧𝜌 = 𝐩𝐫𝐨𝐝 𝑄⟦𝑒𝑞𝑙𝑖𝑡⟧𝜌̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

   

𝑆⟦_⟧_,_ : 𝑆𝑒𝑡𝐷𝑒𝑠𝑐 × 𝑇𝑦𝑝𝑒-𝐸𝑛𝑣 × 𝑉𝑎𝑙-𝐸𝑛𝑣 → ℙ(𝐴𝑡𝑜𝑚) 

𝑆⟦∅⟧Γ,𝜌 = ∅ 

𝑆⟦𝑠0 ∪ 𝑠1⟧Γ,𝜌 = 𝑆⟦𝑠0⟧Γ,ρ ∪ 𝑆⟦𝑠1⟧Γ,ρ 

𝑆⟦𝑠0 ∩ 𝑠1⟧Γ,𝜌 = 𝑆⟦𝑠0⟧Γ,ρ ∩ 𝑆⟦𝑠1⟧Γ,ρ 

𝑆⟦ℱ𝑒(Γ𝑠𝑢𝑏𝑗𝑒𝑐𝑡)⟧Γ,𝜌 = fa-env(Γ𝑠𝑢𝑏𝑗𝑒𝑐𝑡, 𝜌) 

𝑆⟦ℱ𝑏(𝑧)⟧Γ,𝜌 = fb(Γ(𝑧), 𝜌(𝑧)) 

𝑆⟦ℱ𝑟(𝑧)⟧Γ,𝜌 = fr(Γ(𝑧), 𝜌(𝑧)) 

𝑆⟦ℱ(𝑧)⟧Γ,𝜌 = fa(Γ(𝑧), 𝜌(𝑧)) 

𝑆⟦ℱ𝑥(𝑧)⟧Γ,𝜌 = fx(Γ(𝑧), 𝜌(𝑧)) 

Figure 2.5 – The interpretation of  ⊨hyp 
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Simplification expands ℱ𝑒 , ℱ𝑎 and ℱ𝑥 to their meanings in terms of ℱ𝑏 and ℱ𝑟 analogous 

to the definitions of fa-env, fa and fx in terms of fb and fr. It also removes constraints of the 

form 𝑧 =𝑣𝑎𝑙 𝑒
𝑞𝑙𝑖𝑡, and for each of them replaces all occurrences of ℱ𝑟 𝑏⁄ (𝑧) with the 

𝐵⟦𝛽⟧ … function that takes a list of sets and returns the union of the sets at indices 𝛽  

   
fb(_,_) : 𝜏 × 𝑣 → 𝑎̅ 

fb(Prod 𝜏 ↓ 𝛽̅̅ ̅̅ ̅̅ ̅ ⇑ 𝛽𝑒𝑥,prod 𝑣̅) ∷= 𝐵⟦𝛽𝑒𝑥⟧(fb(𝜏, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) 

fb(𝜏0 + 𝜏1, inj𝟎 𝑣) ∷= fb(𝜏0, 𝑣) 

fb(𝜏0 + 𝜏1, inj𝟏 𝑣) ∷= fb(𝜏1, 𝑣) 

fb(𝜇𝑋. 𝜏, 𝑣) ∷= fb(𝜏[𝜇𝑋. 𝜏 𝑋⁄ ], 𝑣) 

fb(Binder, 𝑎) ∷= {𝑎} 
fb(Ref, 𝑎) ∷= ∅ 

   
fr(_,_) : 𝜏 × 𝑣 → 𝑎̅ 

fr(Prod 𝜏 ↓ 𝛽̅̅ ̅̅ ̅̅ ̅ ⇑ 𝛽𝑒𝑥,prod 𝑣̅) ∷= ∪ fr(𝜏, 𝑣) ∖ 𝐵⟦𝛽⟧(fb(𝜏, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  
fr(𝜏0 + 𝜏1, inj𝟎 𝑣) ∷= fb(𝜏0, 𝑣) 

fr(𝜏0 + 𝜏1, inj𝟏 𝑣) ∷= fb(𝜏1, 𝑣) 

fr(𝜇𝑋. 𝜏, 𝑣) ∷= fb(𝜏[𝜇𝑋. 𝜏 𝑋⁄ ], 𝑣) 

fr(Binder, 𝑎) ∷= ∅ 
fr(Ref, 𝑎) ∷= {𝑎} 

   
fa-env(_, _) : Γ × 𝜌 → 𝑎̅ 

fa-env(𝛤,𝜌) ∷= ⋃ fa(𝛤(𝑥), 𝜌(𝑥))
𝑥∈Γ

 

   
fa(_, _) : 𝜏 × 𝑣 → 𝑎̅ 
fa(𝜏, 𝑣) ∷= fr(𝜏, 𝑣) ∪ fb(𝜏, 𝑣) 

   
fx(_, _) : 𝜏 × 𝑣 → 𝑎̅ 

fx(Prod 𝜏 ↓ 𝛽̅̅ ̅̅ ̅̅ ̅ ⇑ 𝛽𝑒𝑥,prod 𝑣̅) ∷= (∪ fb(𝜏, 𝑣)) ∖ fb(Prod 𝜏 ↓ 𝛽̅̅ ̅̅ ̅̅ ̅ ⇑ 𝛽𝑒𝑥,prod 𝑣̅) 

Figure 2.6 – Atom functions 
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knowledge we get from deconstructing the quasi-literal. This works just like partially apply-

ing the functions fb and fa, where we do not have all the second arguments yet (they may be 

variables, at which point we leave it at ℱ𝑟 𝑏⁄ (𝑥) for each such variable 𝑥). For example, for the 

constraint 𝑧 =val 𝑒
𝑞𝑙𝑖𝑡, if 𝑒𝑞𝑙𝑖𝑡 constructs some value that does not export anything, we can 

replace all occurrences ℱ𝑏(𝑧) with ∅. On the other hand, if  

𝑒𝑞𝑙𝑖𝑡 = (prod ([𝑥 ↓ ∅][𝑦 ↓ ∅]) ⇑ ∅), 

that is, it constructs the representation of the application (𝑥 𝑦) in the λ-calculus, then we 

know that ℱ𝑟(𝑧) = ℱ𝑟(𝑥) ∪ ℱ𝑟(𝑦), i.e. the free variables in the application are union of the 

free variables in its two sub-expressions. Therefore, we can replace all occurrences of ℱ𝑟(𝑧) 

with ℱ𝑟(𝑥) ∪ ℱ𝑟(𝑦). 

The SMT-solver will have to reason over all possible variable environments 𝜌. As there 

are infinitely many of them, Romeo uses an approximation:  the sets of free binders and ref-

erences become uninterpreted, atomic sets. This approximation is sound, but not complete, 

as set cardinalities may play a role that the proof obligations do not express. Romeo employs 

an abstract counting [20] scheme, trying to infer set size bounds of either zero, one, zero-or-

one or one+ (non-zero). For each proof obligation, these cardinality constraints are added to 

the respective hypotheses for each variable (if they can be inferred). We will further discuss 

incompleteness in chapter 5. 
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2.9 Relation to pure FreshML 

Romeo’s proof system is largely based on that of pure FreshML [18]. Many of the rules are 

similar, some even identical. However, there are a few differences. Pure FreshML has a more 

complicated semantics, in particular, there are two sets of values, one of which treats bound 

variables as bound, whereas the other does not. Romeo’s binding specifications are a bit 

more expressive than pure FreshML’s—it is not possible to specify the binding structure of 

let* in pure FreshML. This is because pure FreshML uses the binding specifications of Cαml 

[21]. Cαml-style “abstractions” do not support nesting in the way that is necessary to specify 

let*, because nested abstraction patterns are conflated into one larger pattern, effectively 

producing letrec.  

Another small difference is the approximation scheme for set cardinalities: pure 

FreshML only distinguishes empty and non-empty sets, while Romeo also knows sets of size 

one. It turns out that this additional precision yields great benefits, because in many situa-

tions, larger finite set sizes can be put together by adding up size-one-constraints. 

Finally, there is no formal proof that pure FreshML actually preserves α-equivalence be-

tween arbitrary input programs. This proof is currently work-in-progress for Romeo. 

Apart from its close relation to Romeo, the main reason why pure FreshML is important 

to us is that there is a prototype implementation of it by Pottier. We modeled Romeo-L, our 

language on top of Romeo, after this prototype implementation. This way, we could use ex-

amples that were published for pure FreshML to test our own system. We will present the 

results of these tests in chapter 5. 
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2.10 Summary and Thesis 

We have introduced the proof system of Romeo, designed to statically prove that macros do 

not let atoms escape the context that they should not escape (and some more user-annotated 

assertions if required). In the next section, we will see some observations that we make about 

Romeo, which will support our thesis. 

Thesis 

Binding hygiene can be checked statically with few annotations and with 

meaningful explanations for errors. 
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3 OBSERVATIONS ABOUT ROMEO 

This chapter discusses observations we made about Romeo. These observations are the basis 

for Romeo-L, a prototype implementation (discussed in chapter 4) of a language based on 

Romeo. 

3.1 Converting proof obligations to SMT input is simple 

Since pure FreshML used a SAT solver to discharge proof obligations for static checking, the 

proof system of Romeo was already designed with SMT solvers in mind. SMT stands for “sat-

isfiable modulo theories”, and the basic idea is to have a front-end for SAT solvers that under-

stands more high-level constructs than just Boolean connectives. SMT solvers are also used 

in other static software verification projects, notably Boogie [22]. In contrast to those wide-

purpose-tools, the proof obligations of Romeo have a very limited structure, and we will see 

in what ways we can exploit that. 

3.1.1 Translating Constraints 

It turns out that the approximated proof obligations map into a decidable (although NP-com-

plete) fragment of SMT problems. The representation is based on arrays, which again are 

based on uninterpreted functions. An overview of decidability of array problems is given by 

Bradley et al. [23]. The concrete theory that we are using here is called combinatory array 

logic (CAL). Its implementation and application to set theory is discussed by de Moura et al. 

[24]. In SMT-solver terminology, types are called sorts. An array maps elements of one sort 
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to elements of another sort, that is, it is an interpreted function from the first to the second 

sort. There are four combinators that we care about:  

 select(𝑎, 𝑖) – returns the value of the array 𝑎 at index 𝑖 

 store(𝑎, 𝑖, 𝑣) – returns a new array that is the same as 𝑎, except that value 𝑣 is stored 

at index 𝑖 

 K𝑆(𝑣) – returns a new array that maps all indices 𝑖 of sort 𝑆 to 𝑣 

 𝑚𝑎𝑝(𝑓, 𝑎1…𝑎𝑛) – for an 𝑛-ary function f, returns a new array 𝑎 s.t. for every index 𝑖, 

the following holds: 𝑠𝑒𝑙𝑒𝑐𝑡(𝑎, 𝑖) = 𝑓(𝑠𝑒𝑙𝑒𝑐𝑡(𝑎1, 𝑖) … 𝑠𝑒𝑙𝑒𝑐𝑡(𝑎𝑛, 𝑖)) 

 The theory is extensional which means that two arrays are treated as equal iff they map the 

same indices to the same values. 

Constraint  CAL 

∅ ≡  K𝐴𝑡𝑜𝑚(false) 

∪ ≡ map ∨ 

∩ ≡ map ∧ 

∖ ≡ ∩ (map ¬) 

⊆ ≡ (map →) =  K𝐴𝑡𝑜𝑚(true) 

size-zero ≡ = ∅ 

size-one ≡ ∃𝑒. (𝑠 = store(∅,𝑒,true)) 

size-zero-or-one ≡ size-one ∨ size-zero 

size-one+ ≡ ≠ ∅ 

Figure 3.1 – Mapping constraints to CAL 



3 Observations about Romeo 

37 
 

Figure 3.1 shows how constraints map to CAL. We introduce an uninterpreted sort Atom, 

and define a sort Set to be an array sort from Atom to the predefined sort Bool. That means 

that a Set is a function that takes an Atom as argument and returns whether that Atom is an 

element of the set. An ∧-connective can be expressed by several consecutive assertions—one 

for each clause.  

The empty set is an array that maps every index to false. Union is the pointwise ∨ of two 

arrays, similarly, intersection is expressed by pointwise ∧. Set difference is the intersection 

of the first set and the complement of the second. Finally, because of the simplification pro-

cess discussed in section 2.8, the only sets that actually appear are of the form ℱ𝑟(𝑧) or ℱ𝑏(𝑧). 

They will be converted into atomic, numbered set constants 𝑠𝑒𝑡𝑖.  

Equality and inequality can be mapped to equality and negated equality. The relation ⊆ 

can be expressed by mapping pointwise implication on two sets and comparing the result to 

an array that only contains true (the implication must hold for every index). As in the logic in 

section 2.7, set disjointness is an assertion that the intersection of two sets is empty. A set 

has size zero if it is equal to the empty set, and size one if exactly one element is stored into 

the empty set. Size zero-or-one is the only point where we produce disjunctions. If a set con-

tains at least one element, this can be expressed by asserting that the set is not empty. 

This covers all the forms that constraints can have after approximation. The only quan-

tifier that appears here is an existential quantifier for the size-one constraint, which will be 

skolemized away.  
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3.1.2 Proof Obligations 

Recall that a proof obligation looks like this: 

Γ;  𝐻 ⊨hyp 𝑃 

Ignoring the environment Γ (which, because we eliminated all occurrences of ℱ𝑒 in the sim-

plifications step, only serves as a link to the logic defined in section 2.7), we have two sets of 

constraints. We call 𝐻 the hypothesis and 𝑃 the goal, and want to prove 𝐻 → 𝑃, or written 

differently, ¬𝐻 ∨ 𝑃. This formula must be valid, so we will ask the SMT-solver whether 𝐻 ∧

¬𝑃 is satisfiable—if it is, we can extract a model which will serve as a counterexample.  

Both 𝐻 and 𝑃 consist of a number of ∧-connected clauses. For 𝐻, that is not a problem—

we just assert each clause individually. 𝑃 = 𝑃1 ∧ 𝑃2 ∧ …∧ 𝑃𝑛 on the other hand is negated, so 

by DeMorgan’s laws our formula looks like this: 𝐻 ∧ (¬𝑃1 ∨ ¬𝑃2 ∨ …∨ ¬𝑃3). This means that 

in order to show that ¬𝐻 ∨ 𝑃 is valid, we need to show that each of the formulae 𝐻 ∧ ¬𝑃1, 

𝐻 ∧ ¬𝑃2…𝐻 ∧ ¬𝑃𝑛 is unsatisfiable. As we will see in sections 3.3 and 4.2, this makes it easier 

to locate errors while not incurring major overhead. 

3.1.3 Decidability and Incompleteness 

Because the theory is decidable, an SMT solver should be able to return either sat or 

unsat. However, like in pure FreshML [18], the system is incomplete because the sets are 

atomic, and Romeo does not have cardinality constraints other than the four that were pre-

sented. 
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3.2 Many Assertions are Inferable 

Romeo has a very restricted syntax. This makes it easier to prove properties of the language, 

but also makes it harder to actually write programs in it. Example 3.2 shows a Romeo pro-

gram. The italic type definitions are shorthands that are not in the syntax. We will briefly 

explain what the program does. 

We consider the core λ-calculus and λlet, which is the λ-calculus extended with a let-ex-

pression. These are their possible terms: 

λ-term 𝑒 ∷= 𝑥 | 𝜆𝑥. 𝑒 | (𝑒 𝑒) 

λlet-term 𝑒𝑙𝑒𝑡 ∷= 𝑥 | 𝜆𝑥. 𝑒𝑙𝑒𝑡 | (𝑒𝑙𝑒𝑡 𝑒𝑙𝑒𝑡) | let 𝑥 = 𝑒𝑙𝑒𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅  in 𝑒𝑙𝑒𝑡 

Figure 3.2 – Terms of λ and λlet 

Their Romeo types are written down in Example 3.2, as the shorthands lam and lam/let. The 

function convert takes a λlet-term and returns an equivalent λ-term, by converting each let-

clause to a λ-expression wrapped in an application. Example 3.1 gives an intuition of how 

convert is supposed to work. 

convert(let 𝑥 =  (𝜆𝑦. 𝑦) in (𝑥 𝑥))  =  ((𝜆𝑥. (𝑥 𝑥)) (𝜆𝑦. 𝑦)) 

Example 3.1 – How the convert function converts a let-expression of the object language 
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lam = μL.(Ref + (Prod([Binder ↓∅] [L ↓0])⇑∅ + Prod ([L ↓∅] [L ↓∅])⇑∅)) 
lvar = Ref 
labs = Prod([Binder ↓∅] [lam ↓0]) ⇑∅ 
lapp = Prod([lam ↓∅] [lam ↓∅])⇑∅ 
 
lam/let = μL. ((Ref + Prod([Binder ↓∅] [L ↓0]) ⇑∅) 
               + 
               (Prod ((L ↓∅) (L ↓∅))⇑∅  
                + 
                Prod ([μLA.(Prod()⇑∅ + Prod([Binder ↓∅] [L ↓∅] [LA ↓∅])⇑(0 2)) ↓∅] 
                      [L ↓0]) ⇑∅)) 
labs/let = Prod([Binder ↓∅] [lam/let ↓0])⇑∅ 
lapp/let = Prod([lam/let ↓∅] [lam/let ↓∅])⇑∅ 
 
res = (inj1 lvar  
        (inj1 labs (prod ([(inj1 lvar (inj0 (prod ([x ↓∅] [crlet ↓0]) ⇑∅) lapp))  ↓∅] 
                          [cbe ↓∅])⇑∅))))))))))) 
 
(define-fn (convert ([e lam/let]) pre true): lam 
  (case e 
    left (case left 
           var (inj0 var (labs + lapp)) 
           abs (open abs as (abs-b abs-e) in 
                 (let ce be (call convert abs-e) 
                   where ℱr(·) = ℱr(abs-e) 
                   in (inj1 lvar (inj0 (prod ([abs-b ↓∅] [ce ↓0]) ⇑∅) lapp)))) 
    right (case right 
            app (open app as (app-l app-r) in 
                  (let cl be (call convert app-l) 
                    where ℱr(·) = ℱr(app-l) 
                    in (let cr be (call convert app-r) 
                         where ℱr(·) = ℱr(app-r) 
                         in (inj1 lvar (inj1 labs (prod ([cl ↓∅] [cr ↓∅])⇑∅)))))) 
            let (open let as (let-b let-e) in 
                  (case let-b 
                    letl (call convert let-e) 
                    letr (open letr as (x be rest) in 
                           (let rlet be (inj1 (+ lvar labs/let) 
                                        (inj1 lapp/let  
                                              (prod ([rest ↓∅][let-e ↓0])⇑∅))) 
                             where ℱr(·) = ℱr(rest) ∪ (ℱr(let-e) ∖ℱb (rest))          
                             in (let crlet be (call convert rlet) 
                                  where ℱr(·) = ℱr(rlet) 
                                  in (let cbe be (call convert be) 
                                       where ℱr(·) = ℱr(be) 
                                       in res 
     post ℱr(·) = ℱr(e)) 

Example 3.2 – Converting let-expressions to λ-expressions in Romeo 
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There are no preconditions on convert, that is, it can take any λlet-term. But we have a post-

condition (ℱ𝑟(·)  =  ℱ𝑟(𝑒), at the end) that asserts that the free references in the output are 

the same as those in the input, and because neither λ-terms nor λlet-terms export any bind-

ings, we know that the free binders are empty in any case. The function works its way recur-

sively through the given expression and preserves the free variables in the conversion, which 

is an additional guarantee over those that the proof system gives us automatically.  

What we see in Example 3.2 is that there are six let-expressions—they and the postcondition 

of the function are highlighted to make them easier to find. All of them have to be there be-

cause the syntax of Romeo would not allow to nest their value-expression into the expression 

where they belong. Five of the six let-expressions make a recursive call to convert, the sixth 

contains a quasi-literal that constructs a new value. Correspondingly, the postconditions of 

the five recursive calls to convert are simply the postcondition of convert, with the formal 

argument name replaced by the actual argument name, and the sixth postcondition describes 

the free atoms in the constructed value—these follow from the types and binding specifica-

tions used in the constructor. Writing these postconditions manually is a very mechanical 

task—the kind of task one would expect computers to do, and we will now show that that is 

indeed possible. 

The proof obligations for function calls and quasi-literals can easily be inferred. We al-

ready saw in section 2.6 that proof obligations are generated only when we encounter either 

a function call or a quasi-literal. We also saw how the postcondition in a let-expression is 



Checking Binding Hygiene Statically 

42 
    

used to transfer knowledge from the value expression to the body. Suppose the proof system 

is checking a function and encounters a let-expression: 

Γ ⊢𝑝𝑟𝑜𝑜𝑓 {𝐻} (let 𝑥 be 𝑒𝑣𝑎𝑙 where 𝐶 in 𝑒𝑏𝑜𝑑𝑦) {𝑃} 

Now assume that 𝑒𝑣𝑎𝑙  is either a quasi-literal or a function call. We look at the two cases 

individually: 

 If 𝑒𝑣𝑎𝑙 = 𝑒
𝑞𝑙𝑖𝑡, then the proof obligation generated for the value expression will be: 

Γ,∙: 𝜏; 𝐻 ∧ ( ∙  =val 𝑒
𝑞𝑙𝑖𝑡) ⊨hyp 𝐶, where 𝜏 is the type of 𝑒

𝑞𝑙𝑖𝑡. 

 If 𝑒𝑣𝑎𝑙 = (call 𝑓 𝑥𝑎𝑐𝑡𝑢𝑎𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅), then two proof obligations will be generated: 

Γ;𝐻 ⊨hyp pre(𝑓)[𝑥𝑎𝑐𝑡𝑢𝑎𝑙/𝑥𝑓𝑜𝑟𝑚𝑎𝑙]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

Γ,∙: 𝜏; 𝐻 ∧ ℱ(∙) ⊆ ℱ𝑒(𝑥𝑎𝑐𝑡𝑢𝑎𝑙: 𝜏𝑓𝑜𝑟𝑚𝑎𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) ∧ post(𝑓)[𝑥𝑎𝑐𝑡𝑢𝑎𝑙 𝑥𝑓𝑜𝑟𝑚𝑎𝑙⁄ ]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ⊨hyp 𝐶 

 (Variables not explained here are to be seen in the context of the P-CALL rule). 

The important proof obligations are those where 𝐶 is the goal. Both have the following layout: 

𝐻 ∧ 𝐴 ⊨hyp 𝐶, where 𝐴 is the additional knowledge generated from what we know about the 

expression. Now the P-LET rule branches to the body expression as follows: 

Γ, 𝑥: 𝜏𝑣𝑎𝑙 ⊢proof {𝐻 ∧ 𝐶[𝑥 ∙⁄ ] ∧ ℱ(𝑥) ⊆ ℱ𝑒(Γ)} 𝑒𝑏𝑜𝑑𝑦 {𝑃} 

Here, 𝐶 represents the additional knowledge that we got from the value expression. We know 

what this additional knowledge actually is: 𝐴. If we set 𝐶 = 𝐴, we transport all the knowledge 

we can get.  
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For 𝑒𝑏𝑜𝑑𝑦, at least one proof obligation will be generated. Consider an arbitrary proof 

obligation from those generated for 𝑒𝑏𝑜𝑑𝑦. It will look as follows: 

Γ′; 𝐻 ∧ 𝐶[𝑥 ∙⁄ ] ∧ ℱ(𝑥) ⊆ ℱ𝑒(Γ) ∧ 𝐻′ ⊨hyp 𝑃′ 

 

Γ′ is the new environment. It is a superset of the environment the proof system had when it 

went on to traverse 𝑒𝑏𝑜𝑑𝑦, and a superset of the environment of the proof obligation for the 

value expression (modulo [𝑥 ∙⁄ ]-renaming). This means that all names in the constraints refer 

to the same variables, hence we can ignore the environments from here on. 𝐻′ is the part of 

the hypothesis that was added by the proof system while traversing 𝑒𝑏𝑜𝑑𝑦. 𝑃′ is the postcon-

dition of the proof obligation, which may or may not contain 𝑃 (the proof obligation could 

come from a value expression of another let, or belong to a function call and assert that the 

precondition of the called function is satisfied).  

We simplify the notation a bit and say that the proof condition looks like: 

𝐶[𝑥 ∙⁄ ] ∧ 𝑅 ⊨hyp 𝑃′ 

Where 

𝑅 ∷= 𝐻 ∧ 𝐻′ ∧ ℱ(𝑥) ⊆ ℱ𝑒(Γ) 
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We claim that there is no collection of clauses 𝐶′ that can be used as a post-condition for our 

let, such that 𝐶′ both follows from 𝐻 ∧ 𝐴 and when used in the proof of the body a postcondi-

tion can be proven that cannot be proven when we use 𝐴—in short, 𝐶′ cannot carry more 

additional information than 𝐴. In a more formal notation, that is: 

(1) 𝐻 ∧ 𝐴 ⊨hyp 𝐶
′ 

(2) 𝐶′[𝑥 ∙⁄ ] ∧ 𝑅 ⊨hyp 𝑃
′ 

(3) 𝐴[𝑥 ∙⁄ ] ∧ 𝑅 ⊭hyp 𝑃′ 

Proof (by contradiction) 

Because of (3), there must be a model ℐ, such that: 

(4) ℐ ⊨hyp  𝐴[𝑥 ∙⁄ ] ∧ 𝑅 

(5) ℐ ⊭hyp 𝑃′ 

From (4) and the definition of R, it follows that: 

(6) ℐ ⊨hyp 𝐴[𝑥 ∙⁄ ] 

(7) ℐ ⊨hyp 𝑅 

(8) ℐ ⊨hyp 𝐻 

From (5), it follows that: 

(9) ℐ ⊭hyp 𝐶
′[𝑥 ∙⁄ ] ∧ 𝑅 
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From (7) and (8), it follows that: 

(10) ℐ ⊭hyp 𝐶
′[𝑥 ∙⁄ ] 

By construction, neither 𝐴 nor 𝐶’ nor 𝐻 contains 𝑥, and neither 𝐻 nor ℐ contains ∙, hence: 

(11) ℐ[∙ 𝑥⁄ ] ⊨hyp 𝐴 

(12) ℐ[∙ 𝑥⁄ ] ⊨hyp 𝐻 

(13) ℐ[∙ 𝑥⁄ ] ⊭hyp 𝐶′ 

This makes ℐ[∙ 𝑥⁄ ] a counterexample for 𝐻 ∧ 𝐴 ⊨hyp 𝐶′, leading to a contradiction. ∎ 

What this result shows us that the only constraint in the program in Example 3.2 that needs 

to be supplied by the programmer is the postcondition of the function. All other constraints 

can easily be inferred. On top of that, as we will see in section 4.4.1, this also enables a great 

deal of optimization: since 𝐻 ∧ 𝐴 ⊨hyp 𝐴 is a tautology, we do not even need to check that 

proof obligation.  

3.3 Errors can be explained in detail 

If the proof system deems a program ok, we have some guarantees about our program: most 

importantly that it preserves α-equivalence, and also respects the other constraints we may 

have written down. On the other hand, if the proof system does not admit a program, we do 

not have any guarantees, and we usually want to fix this. So we ask a simple but very funda-

mental question: 

Why? 
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Ultimately, the usability of any system like Romeo depends on the burden it places on the 

programmer to give it the information it needs, and the quality of its explanations when it 

fails to prove something. In this section, we explore what happens when proof obligations 

cannot be discharged, and what information we can provide to the programmer in such cases.  

3.3.1 Postconditions that are not valid 

In the way we have presented Romeo so far, the only possible cause for the proof system to 

not admit a program is that some postcondition cannot be proven valid.  

As we discussed in section 3.1, we check postconditions clause by clause. That is, we have 

a hypothesis 𝐻 = 𝐻1 ∧ 𝐻2 ∧ …∧ 𝐻𝑛 and a single goal clause 𝐺 = 𝑆1 𝑟𝑒𝑙 𝑆2, where 𝑆1 and 𝑆2 

are set formulas, and 𝑟𝑒𝑙 ∈ {=,≠,⊆, #}. We assert 𝐻 ∧ ¬𝐺 to establish the validity of 𝐻 → 𝐺. 

If 𝐻 ∧ ¬𝐺 has a model, we have a counterexample, and know a postcondition that is not valid. 

Although that postcondition may not come from an annotation that the programmer made, 

we always have a location in the code we can point to. We also can analyze the counterexam-

ple to tell the programmer what went wrong in more detail—this is what we will discuss in 

the next section. First, however, we will briefly discuss why we can always give a good source 

location and simple explanation for a failing postcondition. 
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If we are given a failing postcondition and the knowledge of where the postcondition and 

the proof obligation “came from”1, we can always give the programmer precise source loca-

tion information of what has failed.  

In the simplest case, the postcondition was written as an annotation by the program-

mer—then we can simply point to that location and the expression that generated the proof 

obligation and say that the expression does not guarantee that the part of the postcondition 

that we point to holds.  

If the postcondition was generated by the proof system, there are three possibilities why 

it could have been generated: 

- There was a fresh-expression  

- There was an open-expression 

- There was a function call and we need to check its precondition.  

In the first two cases, the generated proof obligation is about atoms that may not escape. 

If the proof obligation of a fresh-expression fails, this means that the atom introduced by it 

appears free in the result. We can point to the fresh-expression and again the sub-expression 

that generated the proof obligation and inform the programmer of this fact. Similarly, for an 

                                                        
1 What do we mean by “came from”? Proof obligations are only generated at the leaves of the abstract syntax 
tree of a Romeo program. Therefore, they always corresponds to a particular function call or quasi-literal that 
produces a result that should satisfy the goals of the proof obligation.  
For postconditions, they are either directly annotated by the programmer in either a function definition or a 
let-clause, or are generated by either the proof system or by the postcondition inference method described in 
section 3.2. 
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open-expression, at least one of the exposable atoms of the opened term is escaping (alt-

hough we do not know which one)—apart from that, the case is the same as for fresh. In the 

case of a function call, the postcondition is actually related to the precondition of the called 

function, which was definitely written by the programmer. 

Last, if the postcondition was generated by the inference method we presented in section 

3.2, we know that it is trivially valid, so it will never fail, and we never have to give an expla-

nation. 

3.3.2 Analyzing Counterexamples 

In CAL, counterexamples are finite. That means that when we get a model, we get a finite-size 

interpretation of the form 𝑠𝑒𝑡𝑖 = {𝑎1…𝑎𝑛} (the 𝑎s are disjoint instances of the sort atom) for 

each set in the proof obligation that we were checking. As the model is a model for 𝐻 ∧ ¬𝐺, 

it is a model for ¬𝐺, which is what we are really interested in. Recall that 𝐺 is by construction 

limited to relate two set formulas 𝑆1 and 𝑆2, each of which contains set names and the oper-

ators ∩, ∪ , and ∖. Now that we know which atoms are in which set, we can actually evaluate 

𝑆1 and 𝑆2. This makes it possible to point to individual problematic sets in all forms of 𝐺 ex-

cept if 𝐺 represents an inequality constraint. If an inequality-constraint fails, all we know is 

that the two sides may be equal, but finding out which of the sets causes the equality contrary 

to the intentions of the programmer seems infeasible. However, as such a constraint is never 

generated, telling the programmer that the inequality they annotated may not hold should 

be sufficient. 
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For all other relations, we can find the culprits. First, we need to find the problematic 

atoms. Let 𝒜1, 𝒜2 be the sets of atoms in the results of evaluating 𝑆1, 𝑆2, respectively. De-

pending on the relation 𝑟𝑒𝑙 ∈ {=,⊆, #}, the set of problematic atoms is defined as: 

𝒜𝑝 = {

(𝒜1 ∪𝒜2) ∖ (𝒜1 ∩𝒜2), 𝐺 = 𝑆1 = 𝑆2 
𝒜1 ∖𝒜2, 𝐺 = 𝑆1 ⊆ 𝑆2
𝒜1 ∩𝒜2, 𝐺 = 𝑆1  # 𝑆2

 

Figure 3.3 – Finding problematic atoms 

Each atom in 𝒜𝑝 makes the proof obligation un-dischargeable on its own, which means we 

can use any atom in 𝒜𝑝 to generate an explanation.  

In any case, we need to find the possible sources of the atom 𝑎 we choose. A simple way 

to do this is to take the set of source-sets 𝒮 = {𝑠𝑒𝑡𝑖|𝑎 ∈ 𝑠𝑒𝑡𝑖}. Each 𝑠𝑒𝑡𝑖 corresponds to some 

ℱ𝑏(𝑧) or ℱ𝑟(𝑧) in the original postcondition, meaning that our atom is a free binder or free 

reference, respectively, in a variable 𝑥 or the result (∙). We can now point the programmer to 

the failing proof obligation and the expression that does not satisfy it, and tell them that the 

reason for the failure is that there may be an atom that is a free reference in some 𝑧s and a 

free binder in some other 𝑧s. By looking at the proof obligation, and those variables, the pro-

grammer should be able to find out which variables are either missing the free atom or ex-

pose it although they should not. 
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3.3.3 More precision for sources of problematic atoms 

A part of what the programmer has to do with the explanation they get as described in the 

previous section is re-trace the proof obligation to see how the problematic atom turns up in 

the result of each side of the goal. This can actually be done automatically, too.  

Figure 3.4 shows a simple algorithm that takes an atom 𝑎 and a set-formula 𝑆 and returns 

those sets that are actually responsible for why 𝑎 is in the result of 𝑆. The two important rules 

are those for intersection and set-difference. If we are at an intersection, both sides must 

contain sources of 𝑎, in which case the union of the sources on both sides is taken (not the 

intersection, which might be empty). If one of the sides does not contain a source of 𝑎, then 

the current sub-formula is not a source of 𝑎 in the final result. The reasoning for set-differ-

ence is similar.   

3.3.4 Unsatisfiable Postconditions 

Getting a counterexample for a postcondition means that the postcondition cannot always be 

satisfied. But there actually may be cases where a postcondition can never be satisfied, for 

example because it contradicts one of the hypotheses. In such a case, giving the programmer 

a counterexample is a waste of their time because they need to figure out which atoms should 

sources(𝑎, 𝑆)

=

{
 
 

 
 

{𝑠}, 𝑆 = 𝑠 ∧ 𝑎 ∈ 𝑠
sources(𝑎, 𝑆1) ∪ sources(𝑎, 𝑆2), 𝑆 = 𝑆1 ∪ 𝑆2
sources(𝑎, 𝑆1) ∪ sources(𝑎, 𝑆2), 𝑆 = 𝑆1 ∩ 𝑆2 ∧ sources(𝑎, 𝑆1) ≠ ∅ ∧ sources(𝑎, 𝑆2) ≠ ∅

sources(𝑎, 𝑆1), 𝑆 = 𝑆1 ∖ 𝑆2 ∧ sources(𝑎, 𝑆2) = ∅
∅, otherwise

 

Figure 3.4 – Narrowing down the sources of a problematic atom 
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appear where. They may try to fix the problem that causes the specific counterexample, 

which may result in just another counterexample being generated. We can avoid this scenario 

with a simple trick: we can ask the SMT solver whether the postcondition is satisfiable at all.  

So far, we asserted 𝐻 ∧ ¬𝐺 and got a model which is our counterexample. We can assert 

𝐻 ∧ 𝐺 to see if that is satisfiable. If it is not, we can extract an unsatisfiable core of clauses in 

the pre- and postcondition, and show the programmer that those clauses will never be satis-

fiable together. Having to consider preconditions adds some complexity because they have 

more possible sources, but the reasoning is the same as the one we discussed for postcondi-

tions. 

3.4 Summary 

In this chapter, we have presented three key points that contribute to the usability of Romeo 

and thus the applicability of its ideas. First, we showed that the approximated proof obliga-

tions that Romeo produces are already in a format suitable for a direct translation to SMT 

solver input in a decidable form.  

Second, we showed that many assertions can actually be inferred. This will make way to 

partially lift the restriction that only variables are accepted in many places where one would 

usually expect to see expressions. We will show how this works in the next chapter. 

Third, we have discussed how errors in discharging the proof obligations generated by 

the proof system can be linked back to the source code that a programmer wrote. This is 
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important because a system that just tells the user that something failed is not very useful. 

We will discuss some caveats and experiences in the following chapters. 
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4 IMPLEMENTATION 

Given Stansifer’s core implementation of Romeo (containing everything discussed in chapter 

2), we implemented a few extensions based on our observations in the previous chapter. The 

core Romeo implementation was written largely using PLT Redex [25], mixed with Racket 

code. Our implementation uses the same languages, as well as the SMT solver Z3 [26]. In this 

chapter, we introduce Romeo-L, a language implemented as a Racket #lang with ML-like syn-

tax (close to Pottier’s prototype implementation of pure FreshML [18]) that is compiled 

down to core Romeo. Its main advantage in contrast to core Romeo is its enhanced usability 

because of named types1, use of constructors and inference of constraints as discussed in 

section 3.2—which also enables function calls and quasi-literals to be arbitrarily nested. This 

makes it much easier to test Romeo with examples and compare it to other systems. Such 

tests and comparisons will be discussed in chapter 5. We also explain our implementation of 

meaningful error messages based on the observations in section 3.3. 

4.1 Romeo-L 

We present Romeo-L, a “sugared” version of Romeo. Its main features are named types with 

constructors and what we will call argument-expressions. These are based on the observa-

tions in section 3.2 that many of assertions are inferable, namely those of quasi-literals and 

function calls. Argument-expressions represent either quasi-literals or function calls, and 

                                                        
1 However, the names only serve as abbreviations. Type-checking is still done using the typing rules of Romeo, 
which are based on structural equality. 
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they can appear wherever previously a variable was required as a reference. All expressions 

where argument-expressions appear instead of the simple variables that are required in Ro-

meo’s syntax can be wrapped in let-expressions with automatically inferred postconditions. 

4.1.1 Syntax 

Figure 4.1 shows the syntax of Romeo-L. It is actually a bit richer than presented here, be-

cause every Unicode symbol has an ASCII equivalent (e.g. ∧ can be written as &&). We chose 

                                                        
1 We use the same simplification here that we already used in the presentation of Romeo in chapter 2. In the 
actual implementation, Romeo-L offers the same operators as Romeo. 
2 The sets of identifiers need not be distinct. There is only one possible place where identifiers may be ambigu-
ous: in argument-expressions, the notation for function calls and constructor applications are the same. In case 
of an ambiguity, this is interpreted as a function call. 

𝑃𝑟𝑜𝑔𝑟𝑎𝑚 ∷= 𝑑𝑓̅̅̅̅  𝑒 

𝑑𝑓 ∈ 𝐷𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛𝑠 ∷= 𝑡𝐷 | 𝑓𝐷 

𝑡𝐷 ∈ 𝑇𝑦𝑝𝑒𝐷𝑒𝑓𝑠 ∷= type 𝑖𝑑𝑡  is | 𝑖𝑑𝑐  𝑖𝑑𝑡 ↓ 𝛽̅̅ ̅̅ ̅̅ ̅̅ ̅ ↑ 𝛽̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

𝑓𝐷 ∈ 𝐹𝑢𝑛𝐷𝑒𝑓𝑠 ∷= fun 𝑖𝑑𝑓 ( 𝑖𝑑𝑎: 𝑖𝑑𝑡  ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) where 𝐶 returns 𝑖𝑑𝑎: 𝑖𝑑𝑡  where 𝐶 is 𝑒 end. 

𝑒 ∈ 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠 ∷= 𝑒𝑎 | case 𝑒𝑎  of |𝑒𝑐̅̅ ̅̅  end. | fresh 𝑖𝑑𝑎  ̅̅ ̅̅ ̅in 𝑒 | let 𝑖𝑑𝑎 = 𝑒 where 𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ in 𝑒 | 

let 𝑖𝑑𝑎 = 𝑒𝑎  ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ in 𝑒 |  

if 𝑒𝑎 = 𝑒𝑎  then 𝑒 else 𝑒 

𝑒𝑎 ∈ 𝐴𝑟𝑔-𝐸𝑥𝑝𝑟𝑠 ∷= 𝑖𝑑𝑎 | 𝑖𝑑𝑐(𝑒𝑎̅̅ ̅) | 𝑖𝑑𝑓(𝑒𝑎̅̅ ̅) 

𝑒𝑐 ∈ 𝐶𝑎𝑠𝑒-𝐸𝑥𝑝𝑟𝑠 ∷= 𝑖𝑑𝑐  𝑖𝑑𝑎 ⇒ 𝑒 | default ⇒ 𝑒 

𝐶 ∈ 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 ∷= true | 𝑠 = 𝑠 | 𝑠 ≠ 𝑠 | 𝑠 ⊆ 𝑠 | 𝑠#𝑠 | 𝐶 ∧ 𝐶 

𝑠 ∈ 𝑆𝑒𝑡𝑠 ∷= ∅ | ℱ(𝑖𝑑𝑎) | ℱ𝑥(𝑖𝑑𝑎) | ℱ𝑟(𝑖𝑑𝑎) | ℱ𝑏(𝑖𝑑𝑎) | (𝑠) | 𝑠 ∪ 𝑠 | 𝑠 ∩ 𝑠 | 𝑠 ∖ 𝑠 

𝛽 ∷= 𝑛𝑎𝑡𝑢𝑟𝑎𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅1 

𝑖𝑑_ ∈ 𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟𝑠2   

Figure 4.1 – The syntax of Romeo-L 
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the Unicode symbols for the presentation here to match the syntax of Romeo. The formula-

tion of constraints and sets is almost identical to Romeo, expressions are written in a more 

ML-like syntax. 

Type definitions are new and introduce named types. Every type is seen as a union of 

one or more products, each case has its own unique constructor. Import and export specifi-

cations are the same as in core Romeo. There are two pre-defined special types: binder and 

reference—they represent Binder and Ref, respectively. 

Function definitions have a slightly different notation, but contain almost the same ele-

ments. The only addition is a name for the result of the function, which can be used in the 

postcondition. This replaces ∙. If the result of the function is not needed in any constraint, 

the name can be omitted. Constraints can also be omitted and will default to 𝑡𝑟𝑢𝑒. 

Expressions 𝑒 are roughly the same as in core Romeo. Function calls 𝑖𝑑𝑓(𝑒𝑎̅̅ ̅) are part of 

the argument-expressions, and case and open are merged in the case-construct. A case-

expression can contain up to one case per constructor of the type of its argument, plus a 

default case (which must be there if not all constructors are covered). Each case for a con-

structor must mention as many new variables that are bound to the fields of that case. The 

constructs for fresh and let are slightly generalized by letting them have multiple arguments 

that will be converted into several nested expressions. We also have an additional version of 

let. It allows the programmer to omit the postcondition, but accepts only argument-expres-

sions for its value expression. Hence it can automatically infer the right postcondition. Last, 
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if, like case, is extended to allow argument-expressions instead of just variables as argu-

ments. 

Finally, there are argument-expressions 𝑒𝑎. They represent quasi-literals and function 

calls. Note that there is no equivalent to the (ref 𝑥) quasi-literal. This is because it can auto-

matically be placed at the right positions. Recall that Romeo restricted many positions where 

one would expect expressions to only accept variables, which made it necessary to have lots 

of let-expressions. Argument-expressions enable us to keep the promise that we would par-

tially lift this restriction. In Romeo-L, argument-expressions can be used in all these previ-

ously restricted positions. 

4.1.2 Semantics 

Romeo-L is in principle just syntactic sugar for Romeo. Therefore, the semantics of Romeo-L 

is given by a combination of the translation from Romeo-L to Romeo and the semantics of 

Romeo.  

4.1.3 Translation 

The biggest complication in a translation from Romeo-L to core Romeo is the strategy of plac-

ing let-expressions. We will start with three restrictions on Romeo-L which we will lift grad-

ually. First, all places in the syntax that were restricted to variables in Romeo are restricted 

to variables again in Romeo-L. Roughly, that means that argument expressions cannot be 

nested. The only places where they may now appear are in places where normal expressions 

are accepted, and in the value expression of a let without annotated postcondition. Second, 
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there is no difference in terms of types between Binders and Refs. Both references and bind-

ers are converted to type Atom, which may be either a binder or a reference (this was true in 

an earlier version of Romeo). As we will see, in order to be able to lift this restriction, we first 

need to lift the first one. Third: fresh and let can each introduce only one name. 

Simple Translation without Nesting 

The translation works on individual function definitions, which are the main compo-

nents of a Romeo program (and the only one that we are interested in). The function to con-

vert function definitions just has to call the translation functions for all its components and 

piece them back together. Constraints do not have to be translated—they already come in the 

right format from the parser (all the parser has to do is replace the name of the return vari-

able with ∙). Types are straightforward to convert, the most complicated thing that that trans-

lation function has to do is to keep track of already encountered recursive types to use the 

right type variables in the right positions.  

Expressions are translated by two main functions: one for the “real” expressions 𝑒, and 

one for argument expressions 𝑒𝑎. Both functions have access to the function and type defini-

tions. Apart from that, the former simply takes an expression and returns a translated ex-

pression, whereas the latter takes an argument expression, a variable name to bind it to, and 

an expression that possibly contains a reference to the aforementioned variable name. From 

these three components (or rather, their translations), it will generate a let-expression.  

Figure 4.2 shows this basic translation. Most translations are straightforward. Case-expres-

sions and constructors are expanded into slightly larger expressions which we omitted in the 
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figure for space and clarity, but we will give an intuition below. The most interesting lines are 

the conversion of a let without annotated postcondition and the one with an arbitrary argu-

ment expression that is not a variable. What we can see is that the argument expression 

translation function exactly models that interesting let. While that let produces a Romeo-

let that was wanted by the user, an argument-expression in a simple expression-position 

produces a superfluous let of the form (let 𝑥𝑏 …  in 𝑥𝑏), which could just be replaced by its 

value expression. However, this does not change the semantics of the program, so we will 

stick with it for simplicity. 

⟦𝑥⟧𝑒 = 𝑥  

⟦𝑒𝑎⟧
𝑒 = ⟦𝑒𝑎⟧𝑥

𝑎(𝑥) 𝑥 fresh 

⟦let 𝑥 = 𝑒1 where 𝐶 in 𝑒2⟧
𝑒 = (let 𝑥 be ⟦𝑒1⟧

𝑒 where 𝐶 in ⟦𝑒2⟧
𝑒)  

⟦let 𝑥 = 𝑒𝑎 in 𝑒⟧
𝑒 = ⟦𝑒𝑎⟧𝑥

𝑎(𝑒)  

⟦case 𝑥 of | 𝑐 𝑥𝑖̅ ⇒ 𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  end. ⟧
𝑒
 = [case + open] (see below) 

⟦fresh 𝑥 in 𝑒⟧𝑒 = (fresh 𝑥 in ⟦𝑒⟧𝑒)  

⟦𝑖𝑓 𝑥1 = 𝑥2 𝑡ℎ𝑒𝑛 𝑒1 𝑒𝑙𝑠𝑒 𝑒2⟧
𝑒 = (if 𝑥1 equals 𝑥2 then ⟦𝑒1⟧

𝑒 else ⟦𝑒2⟧
𝑒)  

    

⟦𝑥⟧𝑥𝑏
𝑎 (𝑒) = (let 𝑥𝑏 be 𝑥  where 𝐶 in ⟦𝑒⟧

𝑒) 𝐶 inferred 

⟦𝑓(𝑥̅)⟧𝑥𝑏
𝑎 (𝑒) = (let 𝑥𝑏 be (call 𝑓 𝑥̅) where 𝐶 in ⟦𝑒⟧

𝑒)  𝐶 inferred 

⟦𝑐(𝑥̅)⟧𝑥𝑏
𝑎 (𝑒) = let …  [inj0/inj1 +prod] (see below) 

    

Figure 4.2 – Basic translation of Romeo-L to Romeo 
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𝐶s are inferred almost1 exactly as described in section 3.2. A constructor is desugared to 

some number of injections plus one prod at the end—that prod contains the necessary in-

formation to generate the constraint here. For function calls, we retrieve the postcondition 

of function 𝑓 and replace the formal parameter names with the actual parameter names, and 

for some variable we only need to assert that the “new” variable’s binders and references are 

equal to the binders and references of the “old” variable.  

Basic Nesting 

Next, we will allow argument-expressions to appear in case-expressions instead of just var-

iables. This is a rather easy change: all we need to do is to generate a new variable name, 

replace the argument-expression with that variable name and wrap the case-expression in a 

let-statement that declares the generated variables to be the result of the argument-expres-

sion. 

Thus, the translation goes as follows: 

⟦case 𝑒𝑎 of | 𝑐 𝑥𝑖̅ ⇒ 𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  end. ⟧
𝑒
= ⟦𝑒𝑎⟧𝑥𝑛𝑒𝑤

𝑎 (case 𝑥𝑛𝑒𝑤 of | 𝑐 𝑥𝑖̅ ⇒ 𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  end. ) 

Recall that in Romeo(-L), an if statement has four parts because it always has to compare 

two atoms. Having argument-expressions instead of the two variables in an if-expression 

seems to be easy, too, and in principle it is—we only need two let-expressions. However, this 

                                                        
1 The only difference is that the =𝑣𝑎𝑙-constraints that would be generated for variables are instead generated in 
already expanded form. That is, whereas 𝑧 =𝑣𝑎𝑙 𝑒

𝑞𝑙𝑖𝑡  would cause every ℱ𝑏(𝑧) to be replaced with some set-
expression 𝑠𝑏 (similarly for the subscript 𝑟), we generate a constraint ℱ𝑏(𝑧) = 𝑠𝑏 , which is equivalent, and 
matches the syntax of Romeo (since =𝑣𝑎𝑙  is designated for internal use only). 
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is not as easily expressed using the translation function we have for now, so we defer it to the 

next step. 

Arbitrary Nesting 

Of our restrictions on the places where argument-expressions can appear (vis-a -vis the syn-

tax of Romeo-L presented in Figure 4.1), those for if and those for argument-expressions 

themselves are left. if needs up to two, argument-expressions any number ≥ 0 of argu-

ments—and they may even be nested.  

Both needs are addressed with a simple extension of the argument-expression transla-

tion function, shown in Figure 4.3. Instead of just one-argument-expression, it takes a stack 

of variable-argument-expression-pairs as input. We use the overbar notation for stacks sim-

ilar to lists, and colon to represent an equivalent to concatenation. In each step, the function 

looks at the stack. If it is empty, all argument-expressions have been evaluated and we can 

⟦𝑒𝑎⟧𝑥𝑏
𝑎 (𝑒) = t-argexp([𝑥, 𝑒𝑎]: ∅, 𝑒) 

t-argexp(∅, 𝑒) = ⟦𝑒⟧𝑒 

t-argexp([𝑥𝑏 , 𝑥]: 𝑟, 𝑒) = (let 𝑥𝑏 be 𝑥 where 𝐶 in t-argexp(𝑟, 𝑒))  

t-argexp([𝑥𝑏 , 𝑓(𝑥̅)]: 𝑟, 𝑒) = (let 𝑥𝑏 be (call 𝑓 𝑥̅) where 𝐶 in  t-argexp(𝑟, 𝑒)) 

t-argexp([𝑥𝑏 , 𝑓(𝑒𝑎̅̅ ̅)]: 𝑟, 𝑒) = t-argexp([𝑥𝑛𝑒𝑤, 𝑒𝑎]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ : [𝑥𝑏 , 𝑓(𝑥𝑛𝑒𝑤̅̅ ̅̅ ̅̅ )]: 𝑟, 𝑒) 

t-argexp([𝑥𝑏 , 𝑐(𝑥̅)]: 𝑟, 𝑒) = let …  [inj0/inj1 +prod] 

t-argexp([𝑥𝑏 , 𝑐(𝑒𝑎̅̅ ̅)]: 𝑟, 𝑒) = t-argexp([𝑥𝑛𝑒𝑤, 𝑒𝑎]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ : [𝑥𝑏 , 𝑐(𝑥𝑛𝑒𝑤̅̅ ̅̅ ̅̅ )]: 𝑟, 𝑒) 

   

⟦𝑖𝑓 𝑒𝑎1 = 𝑒𝑎2 𝑡ℎ𝑒𝑛 𝑒1 𝑒𝑙𝑠𝑒 𝑒2⟧
𝑒
 = t-argexp([𝑥𝑛𝑒𝑤1, 𝑒𝑎1]: [𝑥𝑛𝑒𝑤2, 𝑒𝑎2]: ∅, 𝑒) 

𝑒 = (𝑖𝑓 𝑥𝑛𝑒𝑤1 = 𝑥𝑛𝑒𝑤2 𝑡ℎ𝑒𝑛 𝑒1 𝑒𝑙𝑠𝑒 𝑒2) 

Figure 4.3 – Extended argument-expression translation function, and new translation of if 
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proceed by translating the wrapped expression. Else, we look at argument-expression in the 

top element. If it is a variable, we do the same thing as in the old translation function. Simi-

larly, if we have a function call or constructor application whose arguments are all variables, 

we do the same thing as before.  

If we have a function call or constructor application that contains some argument-ex-

pression that is not a variable, we generate a new set of variables, one for each such argu-

ment-expression. We put the function call/constructor application back on the stack, with 

the argument-expressions replaced by the generated variables, and then put pairings of the 

argument-expressions with those variables on top of that. This stacking strategy ensures that 

all sub-expressions are evaluated before they are needed, generating a deeply nested tree of 

let-expressions. However, nesting only happens in the bodies of those let-expressions. The 

value-part is always just one quasi-literal or function call, for which we can easily infer the 

postcondition. 

This whole scheme is of course optimizable in a straightforward way by not pushing 

every argument-expression on the stack, but instead only those that are not variables already.  

Binders and References 

The first restriction (only variables in many positions) has fallen. This means it is time to re-

introduce the distinction between binders and references. The core problem here is that Ro-

meo explicitly distinguishes the two and their types. The type-checker does not allow a 

binder and a reference to be compared, but they are both atoms, and it must be possible to 
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compare atoms. A binder can be turned into a reference via the ref quasi-literal. But ref is 

not included in Romeo-L’s syntax, because it can actually be inferred.  

All we have to do is a bit of type inference. We need to keep a type-environment to be 

able to determine what type an expression actually has (due to our translation, only variables 

are in returning positions), and we need to keep around an expectation of what type an ex-

pression should have (although this expectation may also be any, for the value-branches of 

let-expressions, where we will never know what to expect if the bound variable is not used). 

Then, we just care about one special case: if the returned variable 𝑥 has type Binder, but we 

actually expect type Reference, then we replace 𝑥 with  

(let 𝑥𝑛𝑒𝑤 be (𝑟𝑒𝑓 𝑥) where 𝑥𝑛𝑒𝑤 =val (𝑟𝑒𝑓 𝑥) in 𝑥𝑛𝑒𝑤) 

(imagine the =val-constraint properly expanded). All other combinations of non-matching 

types are still illegal. For an if-expression, we can expect both sides of the equality to be 

references, and the inference mechanism will ensure that. 

Without Restrictions 

The last restriction left is that fresh and let can each introduce only one name. This was 

mainly to avoid unnecessary complications in the presentation of the translation. It is easily 

introduced by simply nesting the multiple instances. let therefore actually has let*-like se-

mantics. 
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Case Expressions and Constructors 

Finally, we give an intuition of translating case-expressions and constructors. For case ex-

pressions, it is important to generate the right number of case-open-combinations. Recall 

that a type consists of a non-empty list of constructor definitions. We expect the cases of the 

case-expression to come in the same order and amount (using the constructor names, they 

can be properly ordered beforehand, and default can be used to insert missing cases). Be-

cause the types are translated in a right-associative way, we can (and have to) translate the 

case-expressions in a right-associative way, too. Each first sub-expression of a binary Romeo 

case-expression will be an open-expression, the second part is generated by recurring on the 

rest of the cases. 

For constructors, we have to wrap a product constructor into the right number of injec-

tions. We do this by looking for the current constructor in the list of constructors of the ap-

propriate type. While we have not found it, we place inj1s, where 𝜏0 is the type of the con-

structor we are currently looking at. When we encounter the constructor we were looking 

for, we place an inj0, where 𝜏1 is the type of the rest of the constructors, or no injection at all 

if the constructor is the last one in its type. 

4.2 Interaction with the SMT Solver 

As laid out in section 3.1, the proof obligations (after approximation) are already in a form 

that is simple to convert to SMT solver input. We use the SMT solver Z3 in an interactive 

mode, which enables us to react to errors and extract information about them. Figure 4.4 

shows the general scheme of this interaction. A push operation creates a new sub-scope of 
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assertions that are retracted by the corresponding pop operation. This enables us to use the 

same set of set-names for each proof obligation without having to worry about them inter-

fering. For each proof obligation, we first assert all clauses of the hypothesis. Then, we check 

each goal clause individually, again using push/pop to be able to use the same set of hypoth-

esis assertions for each goal clause. 

If the negated goal clause in combination with the hypothesis is unsatisfiable, all is well. 

If, on the other hand, it is satisfiable, we can extract a model as a counterexample. As dis-

cussed in section 3.3.4, it may well be that the goal itself is unsatisfiable in conjunction with 

the hypothesis, so we get rid of the assertion of its negation and create a new scope with 

pop/push, and assert the positive version of the goal clause. If the positive version of the goal 

for each proof obligation Γ;H ⊨hyp P : 
  push. ;; new scope 
  for each clause hc in H : 
    assert(hc). 
  for each clause pc in P : 
    push. ;; new scope 
    assert(not pc). 
    s ≔ check-sat. 
    if s = sat then 
      m ≔ get-model. 
      pop.        ;; this retracts assert(not pc) 
      push.       ;; new scope 
      assert(pc). 
      s’ ≔ check-sat. 
      if s’ = sat then 
        process-counterexample(m). 
      else 
        u ≔ get-unsat-core. 
        process-unsat-core(u). 
    pop.          ;; retracts either assert(not pc) or assert(pc) 
  pop.            ;; retracts all clauses in the hypothesis 

Figure 4.4 – General scheme of interaction with the SMT solver 
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clause is satisfiable, we really only have a counterexample that we need to explain to the user. 

Otherwise, we can extract the unsatisfiable core and tell the programmer which elements of 

his code will never work together. 

Both get-model and get-unsat-core are operations provided directly by Z3. 

4.3 Explaining Errors 

The most important ideas on how to explain errors were already covered in section 3.3. In 

this section, we discuss a few implementation-specific details. 

4.3.1 Bypassing Romeo 

We have been using Stansifer’s implementation of Romeo as a trusted base so far—for exam-

ple, we did not change the proof system to infer postconditions and generate the right proof 

obligations. We instead generated standard Romeo code. That works well when the programs 

are correct, but when we want to explain errors, we need some more information at the point 

where we encounter the error, that is, in the SMT interface. In particular, we want to know 

where each proof obligation and its clauses come from. The proof obligations that Romeo 

generates do not contain that information.  

To protect the integrity of our trusted base, we opted to leave it unchanged. Instead, we 

are going to use our knowledge of its inner workings. This means that we almost copy eve-

rything Romeo does, and generate the information we need in the same shape as Romeo gen-

erates the proof obligations. We then pass it to the SMT interface along with the proof obli-

gations Romeo generated, where we now can match up the pieces that Romeo generated with 
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those that we generated in Romeo-L. To be precise, this means that we predict every single 

goal clause that will be generated, and generate the corresponding information for each goal 

clause, such that we know where in the source code it came from. This can be integrated in 

the translation process described in section 4.1.3. Of course, this strategy is highly fragile—

any non-trivial change in how Romeo generates proof obligations will likely require a corre-

sponding change in the code that generates the additional information, lest matching of the 

two parts will fail. On the other hand, one can see this as a way of preparing to make the 

implementation of Romeo-L independent from the implementation of Romeo: given the 

work the translation has to do, it only requires some minor changes for it to be able to actu-

ally generate the proof obligations on its own.  

Currently, we predict the number, sequence and shape (what goal clauses) of the proof 

obligations, and collect the necessary information about source locations and involved vari-

ables. The matching function in the SMT interface does some basic checks to ensure that the 

predictions match the proof obligations that were generated (e.g. checking that the predicted 

number of goal clauses matches the actual number of goal clauses). 

4.3.2 Handling Generated Variables 

The important parts of analyzing counterexamples were explained in section 3.3.2. There is 

only one complication: many of the variables may be generated. Implemented naï vely, the 

programmer would get an error message that there may be an atom that is a free reference 

in the variable x474392, which does not appear in the code. We can keep track of what the 

variable was generated for and say that it is the result of the function call xyz. But we can do 
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slightly better: we can track which variables flow into the computation. To be precise, we 

have to track where the binders and references come from. In general, we can determine this 

exactly for variables (both if they are just used as a reference and if they are used as tempo-

rary variables in translations of case-expressions) and very precisely for constructors.  

For function calls, it is not that simple—we would have to use the postcondition to rea-

son about where binders and references come from. But the postcondition might consist of 

an arbitrary number of clauses, including disjointness, inequality and subset-constraints. Or 

it may just be true. The only thing we know for sure is that the free atoms in the result must 

be a subset of the union of free atoms in the arguments. Hence, we approximate this by saying 

that all the variables used as arguments to the function are potential sources of both free 

binders and free references. Similarly to Wand [27], we point to a small set of variables, at 

least one of which is responsible for the error. 

To get back to our example—if our problematic atom may be a free reference in x474392, 

we go and recursively collect all the sources of free references for it. This search is guaranteed 

to terminate, because the generated variables form a tree of dependencies, not a graph, and 

at some point we get to a variable that actually appears in the code, which has no more de-

pendencies.  

Abs(x,App(y,z)) 

Example 4.1 – A nested constructor 
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Consider Example 4.1. It constructs the term 𝜆𝑥. (𝑦 𝑧) (Abs being the constructor for λ-

abstractions, and App for applications). In the translation to Romeo, this expression is 

wrapped into at least one let-expression that binds the result of the application constructor. 

Assume that the whole expression is wrapped in a let, and is given the name x474392, and 

that the name of the result of the application constructor is app123.  From the type of the λ-

abstraction, we know that its left component (the x) is a Binder, so there are no references in 

there. But its right component may have free references. In the construction of this particular 

λ-abstraction instance, the variable on the right side was app123. That means we are now 

looking for the sources of free references of app123. An application can get its free references 

from both components, which were y and z. In our scenario, those have type Ref and thus 

have no further dependencies, so the possible sources of our problematic atom are y and z. 

One last caveat is again the ref quasi-literal. If an atom is converted from a binder to a 

reference, the references in the new variable are dependent on the binders in the old one. We 

have to remember that this switch happened to be able to search at the right places.  

4.4 Experimental Extensions 

The way that we are bypassing core Romeo to transport information from Romeo-L to the 

SMT interface enables us to create a variety of extensions, which we will discuss in this sec-

tion. 

4.4.1 Not Checking Inferred Goals 

As we saw in section 3.2, inferred constraints are trivially valid, since they are part of the 

precondition. We can therefore tell the SMT interface not to check the proof obligations that 
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result from value-expressions of let-expressions where the postcondition was inferred, 

thereby decreasing the run-time of the whole checking process. 

4.4.2 Handling Absurdity 

Some situations in the code may be absurd, that is, they can never be reached because the 

preconditions are not satisfiable, which means that the execution system will never get to 

this point—it would fault before it started to evaluate the leaf of an absurd expression. Ex-

ample 4.2 shows how an absurd case could look like. When we get to the inner if, we already 

established that 𝑥 = 𝑦, hence the else-part of the inner if is absurd. 

if x = y then if x = y then ___ else _!_ else ___ 

Example 4.2 – Absurdity: the inner else-part is absurd and can never be reached 

How these situations should be handled is not entirely clear and depends on the situa-

tion. We decided to warn programmers about absurd preconditions. In order to do that, we 

add a check for satisfiability after the loop that asserts all the clauses of the hypothesis in our 

algorithm presented in Figure 4.4. If the precondition is unsatisfiable, we print a warning. 

Note that this is affected by the optimization presented in the previous section: if we filter 

out all proof obligations that were inferred, they may not be checked for absurdity. 

4.4.3 Absurd and Fail 

Among other things, pure FreshML [18] contains the two statements absurd and fail. absurd 

could be written in the absurd position in Example 4.2, and would ask the SMT solver to ac-
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tually prove that the preconditions there are unsatisfiable. fail on the other hand is a dy-

namic construct. The execution system will stop when it reaches a fail statement. In ex-

change, a fail statement terminates a branch of an expression without generating any proof 

obligations—this is useful for default branches of case-expressions or other non-absurd, but 

problematic scenarios. For example, when we write an interpreter for the λ-calculus, at some 

point we only want abstractions on the left-hand side of an application. We can handle the 

case of an abstraction, and have a default case for all other possible terms, where we let the 

program fail. That way, we do not have to come up with some expressions for these error 

cases that still satisfy the postconditions of the function.  

At present, Romeo does not support absurd or fail, but we can emulate them, which 

enables us to translate a few more examples from the pure FreshML homepage (see chapter 

5). In order to do that, we need to do two things: we need to transform them into code that 

the type checker of Romeo admits, and we need to make sure that the SMT interface knows 

which proof obligations should have absurd preconditions and which proof obligations to 

ignore altogether.  

We can use the way we already transport extra data to the SMT interface (see section 4.3.1) 

to have the SMT solver do the right thing for both absurd and fail. To be able to generate 

code that the type checker admits, we have to trick the type checker. The programmer needs 

to annotate fail and absurd with a type, and the translation process will then replace them 

with a call to a function that takes no parameters and has the return type that the program-
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mer annotated. We never check these functions, but we put them into the dictionary of func-

tions that we give the type checker for reference so it thinks those functions actually exist. 

Programs generated this way are not really valid Romeo programs anymore—they cannot be 

executed—but they can be statically checked so we can see if they would work at least in 

theory. 
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5 EXPERIMENTAL RESULTS 

5.1 About our Experiments 

We conducted some experiments to test the implementation of Romeo-L. Our thanks go to 

François Pottier, who published a number of examples along with pure FreshML on his 

homepage [28] that we could use to evaluate our own system. We also wrote a few smaller 

macros and some erroneous versions of them to test the error messages. For hard numbers, 

we were mostly interested in constraints. How many of them had to be annotated? How many 

could be generated? We also measured how long it takes to check our different examples, and 

how long the individual phases of the checking process take. 

5.2 Translated pure FreshML Examples 

We were able to translate 9 out of 14 examples on the FreshML web page (see Figure 5.1). In 

the cases that could be translated, the translation was mostly straightforward and was only 

about correcting syntactic differences. On the other hand, the reason for why the other pro-

Example Romeo-L Example Romeo-L Example Romeo-L 

anf-direct YES hoist NO metaml YES 

anf YES comb YES nbe YES 

atomlist NO cps YES nbe-delayed YES 

callcc NO debruijn YES typed-nbe YES 

cc NO interpreter NO   

Figure 5.1 – Overview of examples from FreshML homepage and whether they could be easily translated 
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grams could not be translated was that Pottier’s prototype implementation of FreshML in-

troduces some more extensions that we could not easily reproduce, such as constraints for 

type cases (asserting inequality of free names between separate parts of a product) and re-

turn values that are paired with Boolean values which are used in an implication in the post-

conditions. Implementing those as experimental extensions (in fact, we implemented absurd 

and fail in order to be able to translate some of these examples) is surely possible. However, 

in contrast to the experimental extensions that we have actually implemented, these other 

extensions would require extensive surgery in the output of the proof system, thereby re-

moving our theoretical foundation. 
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5.3 Macros and Other Small Functions 

Since the main goal of Romeo is to reason about hygiene in macros, we also wrote the stand-

ard macros from the literature about hygiene [4] [5] [6] [10]. Those macros are: or, swap, let* 

and letrec (transcribed from Herman’s version [7]). We also tested for the aliasing problem 

(see section 2.5) and implemented β-reduction with capture-avoiding substitution. All of 

type expr/base is 
  | Var/base reference 
  | Abs/base binder expr/base ↓0 
  | App/base expr/base expr/base 
  | Set/base reference expr/base 
  | Let/base binder expr/base expr/base ↓0 
  | Seq/base expr/base expr/base 
end. 
    
type expr is 
  | Var reference 
  | Abs binder expr ↓0 
  | App expr expr 
  | Set reference expr 
  | Let binder expr expr↓0 
  | Seq expr expr 
  | Swap reference reference 
end. 
 
fun expand (e : expr) returns r : expr/base where fr(r) = fr(e) is 
  case e of 
  | Var x => Var/base(x) 
  | Abs x ex => Abs/base(x,expand(ex)) 
  | App e1 e2 => App/base(expand(e1),expand(e2)) 
  | Set x ex => Set/base(x,expand(ex)) 
  | Let x vex bex => Let/base(x,expand(vex),expand(bex)) 
  | Seq e1 e2 => Seq/base(expand(e1),expand(e2)) 
  | Swap x1 x2 => expand(swap(x1 x2)) 
  end. 
end. 
    
fun swap (x1 : reference, x2: reference) returns r : expr 
    where fr(r) = fr(x1) ∪ fr(x2) is 
      fresh tmp in  
       Let(tmp,Var(x1),Seq(Set(x1,Var(x2)),Set(x2,Var(tmp))))            
end. 

Example 5.1 – Expressing the expansion of the swap-macro 
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these macros could be verified by Romeo. In section 5.5, we review a few error messages that 

came up while writing these macros.  

The way we formulated the macros follows a general scheme: we specify one type that 

describes terms of the base language, and another type that describes terms of the extended 

language that contains the macro. Finally, there is a macro expansion function that takes a 

term of the extended language and converts it into a term in the base language by recursively 

mapping all terms in the extended language to their base language counterparts, if they exist, 

else it calls the respective macro handling functions.  

Example 5.1 shows a complete example of expressing such a macro for the swap-macro. 

Terms of the base language are of type expr/base, terms of the extended language have type 

type expr is  
  | Var reference 
  | Abs binder expr↓(0) 
  | App expr expr 
  | Letstar let-clauses expr↓(0) 
end. 
    
type let-clauses is  
  | LCNone 
  | LCBind binder expr let-clauses↓(0) ⇑(0 2) 
end. 
   
fun expand [see Example 5.1] 
 
fun letstar(lc : let-clauses, e : expr) returns out : expr 
 where fr(out) = fr(lc) ∪ (fr(e)∖fb(lc)) is 
  case lc of 
  | LCNone => e 
  | LCBind x be rest => App(Abs(x,Letstar(rest,e)),be) 
  end. 
end. 

Example 5.2 – Let* - a recursive macro 
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expr. The function expand takes an expression of the extended language and recursively 

turns it into an expression of the base language. The only really interesting case is the last 

one, where we encounter the swap macro. Here, we do the next expansion step after having 

expanded the macro. In the case of swap, that is not significant, but other macros we will see 

will emit code that contains another macro that has to be expanded. Finally, the swap-function 

models the swap macro’s behavior. We generate a fresh variable for intermediate storage and 

then we do the swap. Generating a fresh variable ensures that there will be no name clashes 

with that macro. 

Example 5.2 shows let*, which is both interesting for its binding structure that Romeo 

can easily model and for being implemented as a recursive macro. It actually generates a 

Letstar-term instead of directly calling itself—the expand-function will do that. 

Finally, Example 5.3 shows beta-reduction and capture-avoiding substitution. This ex-

ample is interesting because it shows the automated freshening that Romeo does, similarly 

to FreshML. Notice that in the abstraction case of capture-avoiding substitution, we do not 

need to check whether x and y are equal—the system will use the information from the type 

system to make sure (by proper renaming if need be) that the two have distinct names.  
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type term is 
  | Var reference 
  | Abs binder term↓(0) 
  | App term term 
end. 
 
fun reduce( t: term) returns r : term is 
  case t of 
  | App t1 t2 =>  
    case reduce(t1) of 
    | Abs x tt => reduce(subst(tt,x,t2)) 
    | default => fail term 
    end. 
  | default => t 
  end. 
end. 
 
fun subst( t: term, x : binder, arg : term) returns r : term where fr(r) ⊆ 
(fr(t) \ fb(x)) ∪ fr(arg) is 
 case t of 
 | Var y => if x = y then arg else t 
 | Abs y tt => Abs(y,subst(tt,x,arg)) 
 | App t1 t2 => App(subst(t1,x,arg),subst(t2,x,arg)) 
 end. 
end. 

Example 5.3 - β-reduction and capture-avoiding substitution 

5.4 Inferred Annotation Ratio and Running Time 

Figure 5.2 shows data collected when running the translated pure FreshML examples and—

below the thick black separator—the other programs we implemented. We show the total 

number of proof obligations generated for each example, but then split them up into goal 

clauses, that is, all the ∧-connected parts of the postconditions. We can see that on average, 

proof obligations have about two goal clauses. Of these goal clauses, we manually counted 

how many were annotated in the source code. Although we also wrote a small number of 

preconditions, we ignored them for this presentation. We automatically measured the num-

bers of proof obligations and goal clauses that were generated and the numbers of those that 
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were actually discharged. The ones that were not discharged must have been flagged as ig-

norable, which are exactly those constraints that were inferred. The Savings columns show 

what percentage of goals did not have to be discharged because they were flagged as ignora-

ble (SMT), and what percentage of user annotations could be inferred (Annot.). 
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anf-direct 69  132 0 86 46 65% 100% 47.1 1.6% 14.0% 83.1% 1.3% 

anf 74  132 0 76 56 58% 100% 95.9 3.0% 17.4% 79.1% 0.5% 

comb 57  102 1 69 33 68% 99% 6.5 5.6% 19.2% 69.1% 6.1% 

cps 74  145 0 106 39 73% 100% 30.8 2.3% 14.5% 80.1% 3.2% 

debruijn 56  98 1 61 37 62% 98% 4.8 6.3% 15.6% 72.3% 5.8% 

metaml 298  521 8 313 208 60% 98% 2044.9 0.4% 16.8% 82.7% 0.1% 

nbe 53  97 1 56 41 58% 98% 12.9 3.9% 16.8% 76.7% 2.6% 

nbe-delayed 59  108 1 62 46 57% 98% 39.6 5.2% 6.0% 87.8% 1.0% 

typed-nbe 83  145 4 87 58 60% 96% 28.1 3.0% 8.9% 86.4% 1.7% 

alias 17 31 1 20 11 65% 95% 2.1 9.2% 14.9% 69.1% 6.8% 

β-reduction 26 43 1 24 19 56% 96% 2.8 11.5% 10.8% 74.1% 3.6% 

letrec 98 178 7 117 61 66% 94% 183.6 1.2% 13.5% 85.0% 0.4% 

let* 22 39 2 22 17 56% 92% 5.1 18.3% 9.6% 69.3% 2.7% 

or 40 70 2 44 26 63% 96% 24.176 1.5% 17.1% 80.7% 0.7% 

swap 42 74 2 48 26 65% 96% 15.421 1.9% 16.9% 78.9% 2.3% 

Figure 5.2 – Distribution of sources of goal clauses and running times for  
pure FreshML examples and standard macros 
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We also automatically measured the running times of the various phases of checking in 

our implementation. We used the built-in Racket time-apply construct to obtain these num-

bers, and used the “real” time component for this chart. The actual times vary somewhat 

when checking the same program more than once, but the distribution among the different 

phases is largely the same. We ran the checks on a machine that has an Intel Core i7 dual-

core processor with 2.7 GHz per core and 8GB of main memory running Racket 5.3.3 (limited 

to 2GB of memory) on Windows 7. 

Benefits of inferred constraints 

What we see from the relations between total goal clauses and inferred goal clauses is that 

we can save about 60% of the work for the SMT solver by not discharging inferred goals. 

Similarly, the savings in proof obligations that would otherwise have to be annotated are 

huge.  

There is one caveat to these numbers, though: code-generation could be made more ef-

ficient, pressing down the number of inferred and therefore total proof obligations. This 

would reduce the percentage of savings in annotated constraints. In particular, all argument-

expressions that are not simply a variable are always nested into a let, even if they are in the 

return position. Also, multiple nested constructors could be translated into nested quasi-lit-

erals, which as of now is not done—each constructor causes at least one let-expression to be 

generated.  We only coded a few of the examples manually in Romeo, but we estimate that 

more intelligent code generation could in reduce the number of inferred constraints by about 

50%. The translation of nested constructors is the biggest source of inefficiency, whereas 
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nested function calls only incur the overhead once—in the return position. However, the 

number of inferred constraints would still grow drastically with the size of functions, while 

the number of constraints that have to be annotated are roughly linear (with a very small 

constant multiplier) in the number of functions. 

Running time 

A major concern about using an SMT solver and an NP-complete implementation of set the-

ory may be that running time could explode for larger programs. Based on our measure-

ments, this is not the case—or at least, it is not the SMT solver’s fault: we see that in the 

longest-running example, the Meta-ML interpreter, the portion of time spent interacting with 

the SMT solver is by far the lowest. The explanation for why NP-completeness does not play 

a huge role here is that because of the way our proof obligations are structured, we naturally 

use a technique called Verification Condition Splitting [29]. There, constraints that are given 

to an SMT solver are split along the control flow of the program to get smaller problems for 

the SMT solver to solve—which is similar to what we do. We even prove each goal clause 

separately, and the size of the input for such a goal is related to the complexity of the function 

it belongs to. As a design principle, functions should not be overly complex, and if they are 

not, the time spent interacting with the SMT solver with grow linearly with the number of 

functions.  

So why does checking our small examples still take quite a while? The answer is that the 

implementation is inefficient, in large parts because of the heavy use of PLT Redex [25]. The 

code to simplify and approximate proof obligations and then translate them to SMT solver 
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input takes by far the largest chunk of time, most probably because it does a lot of pattern 

matching against large data structures. The benefit of this is that the algorithms can be writ-

ten a way that is very close to mathematical notation, which is perfect for our purposes. Of 

course, a more realistic implementation of this system could and should implement these 

parts in a more efficient way. It may even suffice rewrite this part of the program in standard 

Racket. 

5.5 Error Messages 

In this section, we will review some of the error messages our system generates and how 

they can be interpreted. 

5.5.1 Free References 

Example 5.4 shows the code of the or macro. It is the simpler variant of the query/default 

macro we saw in chapter 1, in that it ensures that the expression e1 is evaluated only once, 

and if it is false, the value of e2 is returned. We introduce a fresh variable 𝑥 to avoid any 

unintended captures.  

fun or (e1 : expr, e2: expr) returns r: expr is 
  fresh x in Let(x, e1, If(Var(x),Var(x),e2)) 
end. 

Example 5.4 – The or-macro, slightly incomplete 
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When we check this macro and its expander, we get the error message in Example 5.5. What 

information do we get from this? Because it is highlighted, it is clear that the one goal clause 

of the annotated postcondition could not be discharged. The reason for that, according to the 

error message, is that e1 may contain a free reference that does not appear in the result (that 

is why e1 is marked). The arrow of the or-case is highlighted because it signals the branch 

where the failed postcondition comes from (in case the responsible variable does not turn 

up in the respective line). We are also informed that in the generated counterexample, our 

problematic atom also appears as a free reference in e2. That is strange: it means that one or 

more free references in both arguments to or are somehow lost. But all we do at this point 

are two function calls: one to expand itself—which assures that whatever expression it gets, 

the free references stay the same, and the call to the or-function. A quick inspection tells us 

fun expand (e : expr) returns r : expr/base where fr(r)=fr(e) is 
  case e of 
  | Const c => Const/base(c) 
  | Var x => Var/base(x) 
  | Abs x ex => Abs/base(x,expand(ex)) 
  | App e1 e2 => App/base(expand(e1),expand(e2)) 
  | If e1 e2 e3 => If/base(expand(e1),expand(e2),expand(e3)) 
  | Let x e1 e2 => Let/base(x,expand(e1),expand(e2)) 
  | Or e1 e2 => expand(or(e1,e2)) 
  end. 
end.   

There may be an atom that is: 

  - A free reference in e1 

and thus free on the right-hand side, but not on the left-hand side. 

 

In the counterexample, the atom appears as: 

  - A free reference in e2 

  - A free reference in e1 

Example 5.5 – Something is wrong with the free references 
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that we forgot to write a postcondition for the or-function. Because we want to preserve the 

free references from the input in the output, that postcondition must be: 

ℱ𝑟(𝑟) = ℱ𝑟(𝑒1) ∪ ℱ𝑟(𝑒2) 

5.5.2 Binders vs. References 

In the letrec-algorithm that we transcribed1 from Herman [7], we encountered another pos-

sible mistake: the algorithm first “unzips” all the let-clauses into two lists—one contains the 

binders and one contains the value expressions. It also generates a list of equal length that 

contains false-literals—these will be used for the initial values of all the recursively defined 

variables. At the end of the unzipping process, an n-ary λ-abstraction is generated that uses 

the accumulated list of binders as its list of formals. Essentially representing a let-

expression, this λ is immediately applied to the list of false-literals. The body of the abstrac-

tion is another macro that generates a set-expression for every let-clause, followed by the 

body of the letrec.  

That other macro again needs a list of atoms to generate a set-expression for each of 

them. In a set-expression, we need a reference atom. We know that Romeo-L handles the 

conversion between references and binders automatically as needed, so instead of defining 

our own type for a list of references, we can try to use the list of free binders as an argument 

for the macro (called Begin-Set).  

                                                        
1 See the complete transcribed algorithm in Appendix I. 
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Example 5.6 shows us the error message we get for trying the above shortcut. Again, the 

expand-function is the first to fail, telling us that it cannot preserve the free references in case 

it encounters a Begin-Set.  We are told that the result may contain a free reference that was 

not in the argument. Because a function may do anything with its arguments and it is not 

easy to deduce the flow from arbitrary postconditions, we have to mark all arguments to a 

function call if its result is problematic (as discussed in section 4.3.2). That is not very helpful. 

fun expand (e : expr) returns r : expr/base where fr(r)=fr(e) is 
  case e of 
  | Const c => Const/base(c) 
  | Var x => Var/base(x) 
  | Abs xs ex => Abs/base(xs,expand(ex)) 
  | App ex exs => App/base(expand(ex),expand/list(exs)) 
  | Set x ex => Set/base(x,expand(ex)) 
  | Seq e1 e2 => Seq/base(expand(e1),expand(e2)) 
  | Letrec lrc ex => expand(letrec(lrc,ex)) 
  | Letrec/Unzip fs inis acts lrc ex =>  
          expand(letrec/unzip(fs inis acts lrc ex)) 
  | Begin-Set refs acts ex => expand(begin-set(refs acts ex)) 
  end. 
end. 

There may be an atom that is: 

  - A free reference in refs, acts, OR ex 

and thus free on the left-hand side, but not on the right-hand side. 

 

In the counterexample, the atom appears as: 

  - A free reference in refs, acts, OR ex 

  - A free binder in refs 

Example 5.6 – An error in an attempt to implement letrec 
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What is helpful, though, is where in the counterexample our problematic atom also appears: 

as a free binder in refs, which is our list of binders. Of course! These get converted into ref-

erences in the set-expressions—we are currently evaluating the body of the λ-abstraction 

that binds them. The postcondition of the begin-set-function correctly states this conver-

sion, but expand cannot work with that. There, the free binders in refs are actually exposable 

atoms in e and should therefore not be free in the result anyway. The solution in this case is 

to write a work-around: we introduce a type for lists of references and write a function to 

convert from a list of binders to a list of references. A postcondition of that function asserts 

this conversion by saying that the free binders in the argument are the free references in the 

result. Then, the unzipping macro just has to convert the list in its last step and put it as an 

argument to begin-set in its output. The complete code can be found in Appendix I. 
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fun escape() returns binder is 
  fresh x in ladidah(x) 
end. 
 
fun ladidah (x: binder) returns binder is 
  x 
end. 

The following constraints cannot be simultaneously satisfied: 

- Freshness of variable x 

- Knowledge after function call  

  (free atoms in result must be subset of free atoms of arguments) 

- Inferred set size:  

   There is exactly one free binder in the result of the call to ladidah 

Example 5.7 – An error related to a fresh-expression 

5.5.3 Freshness and Unsatisfiability 

In Example 5.7, we try to fool the proof system by generating a fresh variable and then trying 

to expose it by giving it to an identity function for binders and returning the result of that 

call. But the proof system caught us. It can even tell us that this is never going to be satisfiable, 

and explains (slightly re-ordered):  

 The atom in 𝑥 is fresh, so it may not escape.   

 We know that there must be a free binder in the result of the function call 

 But the free atoms in the result of the function call must be a subset of the free atoms 

in its arguments (and 𝑥 is the only one) 
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 Therefore, the atom in 𝑥 would always escape, so this program will never work 

5.6 Incompleteness 

Example 5.8 shows a two functions in a simple Romeo-L program. The proof obligations of 

the first one are absurd, those of the second one are correct. Both of these statements cannot 

be proven by the proof system. The reason is the incomplete approximation: in both cases, 

we do not generate precise enough set size constraints to let the SMT solver know that the 

number of references in the pair is two. 

In the first function, we assert that the union of free references in three distinct atoms is a 

subset of the free references in the pair. This is absurd, but the proof system cannot prove 

that—the absurdity assertion is rejected. 

Similarly, in the second function, we have a postcondition that will always be satisfied: if 

the sets of free references in two distinct atoms are both subsets of the free references in a 

type Pair is 
  | P reference reference 
end. 
 
fun incomp1 (r1 : reference, r2 : reference, r3 : reference, p : Pair) 
  where fr(r1) # fr(r2) ∧ fr(r1) # fr(r3) ∧ fr(r2) # fr(r3) ∧ 
        fr(r1) ∪ fr(r2) ∪ fr(r3) ⊆ fr(p) 
  returns out : Pair where fr(out) = fr(p) is 
    absurd Pair 
end. 
 
fun incomp2 (r1 : reference, r2 : reference, p : Pair) 
  where fr(r1) # fr(r2) ∧ fr(r1) ⊆  fr(p) ∧ fr(r2) ⊆ fr(p) 
  returns out : Pair where fr(out) \ fr(r1) = fr(r2) is 
    p 
end. 

Example 5.8 – Incompleteness of Romeo’s approximation strategy 
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pair, we know that the former must constitute both and therefore all parts of the pair, and 

removing one of them just leaves the other. The proof system however generates a counter-

example that says that the result may contain an additional free atom that comes from the 

argument p.  

This is nevertheless an improvement over pure FreshML’s incompleteness, which only 

considered the difference between empty and non-empty. In fact, the difference is more than 

just adding one as possibility. Given several size-one-constraints, the SMT-solver can add 

them up appropriately: in Example 5.8, we could actually correctly determine the size of p 

and thus prove that the constraints hold if we would deconstruct p with a case expression.   

5.7 Gravity 

‘I like to think of types as warping our gravity, so that the direction we 

need to travel becomes "downhill".’ 

Conor McBride, cited by Kiselyov et al. [30] 

Sadly, this statement is not true for Romeo(-L). The same written program may be valid with 

different kinds of binding specifications and constraints. However, the binding specifications 

affect the semantics of the program, and the constraints affect the guarantees. Simply relax-

ing the constraints to get a program to be admitted by the proof system may not result in the 

program one would have wanted, similarly, changing the binding structure may yield a pro-

gram that is very different from the original one, which may or may not be closer to the goal.   
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6 EPILOGUE 

6.1 Closing the Loop 

Recall the query/default-macro from Example 1.1 that we used to explain problems with na-

ï ve macro expansion in section 1.3. Example 6.1 shows how this macro is expressed in Ro-

meo-L when following the style discussed in section 5.3. Romeo will make sure that this func-

tion is executed in a hygienic way. We have seen some more examples in the previous chapter, 

and the Appendix contains the code for two more examples—taken from the literature dis-

cussed in chapter 1—which can be checked and are accepted by Romeo(-L). 

6.2 Summary 

We have analyzed the proof system of Romeo [19] and showed that it can be used in a way 

that minimizes the additional burden it places on the programmer to write down annota-

tions. We also showed that errors that arise when we are not able to discharge a proof obli-

gation can be explained to the programmer in a meaningful way, by which we mean that we 

type expr is 
  … 
  | Query expr 
  | Query/Default expr expr 
end. 
 
fun query/default(e1 : expr, e2: expr) returns r :expr  
 where fr(r) = fr(e1) ∪ fr(e2) is 
  fresh x in Let(x,e1,If(Var(x),Query(Var(x)),e2)) 
end. 

Example 6.1 – The query/default-macro in Romeo-L 
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can point to related positions in the actual source code and give some background infor-

mation on where problematic atoms might turn up. 

We took these observations and used them to implement Romeo-L, which provides a 

simpler syntax to write Romeo programs. In the translation process to Romeo, we also collect 

all the necessary data to provide error reporting.  

Working with examples, we saw that the benefits of inferred constraints are huge, and 

that the complexity of set theory does not seem to affect the running time of the process of 

discharging proof obligations. 

6.3 Future Work 

Apart from keeping up with core Romeo, there are various other ways in which Romeo-L 

could be improved. First, we saw in section 5.3 that the way we model macros is relatively 

uniform. The next logical step after Romeo-L would be to look at ways to make macro-writing 

easier, without the boilerplate code for the expand-function and the doubled type definitions. 

Romeo-L currently does only rudimentary type-checking—mostly to be able to infer 

conversions between binders and references, and at some places for debugging output. Im-

plementing type-checking there would make it easier to give error messages about typing 

errors.  

Since Romeo-L already generates almost all the constraint information in order to be 

able to match it with the actual constraints to provide error reports, one could go even fur-

ther and just let Romeo-L generate the proof obligations on its own. The simplification and 
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approximation procedures would have to be rewritten, too, but in the end, there would be a 

more uniform system that could generate proof obligations right with their error reporting 

data included instead of having to match them up later. 

Our ability to express cardinality constraints for sets is currently limited because it is not 

supported by the theory that we are using. However, there are theories that offer cardinality 

constraints with Presburger Arithmetic [31]. It is unclear whether this extension would give 

an immediate benefit without also changing the logic behind the proof system, but this path 

seems worth exploring. 

Finally, increasing the “gravity” of the proof system will be a challenging, but worthwhile 

task. There may at least be heuristics that can produce explanations for common errors that 

lead programmers into a reasonable direction.
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APPENDIX I - ADDITIONAL CODE 

1 Letrec 

;; Translated from the algorithm given by Herman [7] 
type const is 
  | False 
  | Any 
end. 
 
type expr is 
  | Const const 
  | Var reference 
  | Abs binder-list expr↓(0) 
  | App expr expr-list 
  | Set reference expr 
  | Seq expr expr 
end. 
    
type expr/ext is 
  | Const/ext const 
  | Var/ext reference 
  | Abs/ext binder-list expr/ext↓(0) 
  | App/ext expr/ext expr-list/ext 
  | Set/ext reference expr/ext 
  | Seq/ext expr/ext expr/ext 
  | Letrec letrec-clauses expr/ext↓(0) 
  | Letrec/Unzip binder-list const-list/ext  
                 expr-list/ext letrec-clauses expr/ext↓(0 3) 
  | Begin-Set ref-list expr-list/ext expr/ext 
end. 
    
type expr-list is 
  | ENil | ECons expr expr-list 
end. 
    
type expr-list/ext is 
  | ENil/ext | ECons/ext expr/ext expr-list/ext 
end. 
    
type const-list/ext is 
  | CNil/ext | CCons/ext const const-list/ext 
end. 
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type binder-list is 
  | BNil | BCons binder binder-list ⇑(0 1) 
end. 
 
type ref-list is 
  | RNil | RCons reference ref-list 
end. 
   
type letrec-clauses is 
  | LRNil | LRCons binder expr/ext↓(0 2) letrec-clauses↓(0) ⇑(0 2) 
end.  
 
fun expand (e : expr/ext) returns r : expr  
 where fr(r) = fr(e) is 
  case e of 
  | Const/ext c => Const(c) 
  | Var/ext x => Var(x) 
  | Abs/ext xs ex => Abs(xs,expand(ex)) 
  | App/ext ex exs => App(expand(ex),expand/list(exs)) 
  | Set/ext x ex => Set(x,expand(ex)) 
  | Seq/ext e1 e2 => Seq(expand(e1),expand(e2)) 
  | Letrec lrc ex => expand(letrec(lrc,ex)) 
  | Letrec/Unzip fs inis acts lrc ex =>  
       expand(letrec/unzip(fs inis acts lrc ex)) 
  | Begin-Set refs acts ex => expand(begin-set(refs acts ex)) 
  end. 
end. 
   
fun expand/list (e : expr-list/ext) returns r : expr-list  
 where fr(r) = fr(e) is 
  case e of 
  | ENil/ext => ENil() 
  | ECons/ext ex rest => ECons(expand(ex),expand/list(rest)) 
  end. 
end. 
    
fun letrec(lrc : letrec-clauses, e : expr/ext) returns r: expr/ext 
 where fr(r) = fr(lrc) ∪ (fr(e) \ fb(lrc)) is 
  Letrec/Unzip(BNil(),CNil/ext(),ENil/ext(),lrc,e) 
end. 
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fun const-to-expr-list (cs : const-list/ext)  
 returns es: expr-list/ext where fr(es) = ∅ is 
  case cs of 
  | CNil/ext => ENil/ext() 
  | CCons/ext c rest =>  
      ECons/ext(Const/ext(c),const-to-expr-list(rest)) 
  end. 
end. 
   
fun binder-to-ref-list (bs : binder-list) returns rs: ref-list where fr(rs) = 
fb(bs) is 
  case bs of 
  | BNil => RNil() 
  | BCons x rest => RCons(x,binder-to-ref-list(rest)) 
  end. 
end. 
  
fun letrec/unzip (formals : binder-list,  
                  initials : const-list/ext,  
                  actuals : expr-list/ext,  
                  clauses : letrec-clauses,  
                  body : expr/ext)  
  returns r : expr/ext 
 where fr(r) = (fr(body)∪ fr(actuals) ∪  fr(initials)∪ fr(clauses))  
                    \ (fb(formals) ∪fb(clauses)) is 
  case clauses of 
  | LRNil =>  
     App/ext(Abs/ext(formals, 
                     Begin-Set(binder-to-ref-list(formals), 
                               actuals, 
                               body)), 
             const-to-expr-list(initials)) 
  | LRCons x e rest =>  
      letrec/unzip(BCons(x,formals),  
                   CCons/ext(False(),initials),  
                   ECons/ext(e,actuals),  
                   rest, body) 
  end. 
end. 
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fun begin-set  
  (formals : ref-list, actuals : expr-list/ext, body : expr/ext) 

 returns r : expr/ext  
 where fr(r) = fr(body) ∪ fr(actuals) ∪ fr(formals) is 
  case formals of 
  | RNil => case actuals of  
            | ENil/ext => body  
            | default => fail expr/ext  
            end. 
  | RCons x rr => 
    case actuals of 
    | ENil/ext => fail expr/ext 
    | ECons/ext e er =>  
      fresh tmp in  
       App/ext(Abs/ext(BCons(tmp,BNil()), 
               Begin-Set(rr,er, 
                         Seq/ext(Set/ext(x,Var/ext(tmp)),body))), 
               ECons/ext(e,ENil/ext())) 
    end. 
  end. 
end. 

  



Appendix I - Normalization by Evaluation 

99 
 

2 Normalization by Evaluation 

;; Translated from Pottier’s version [18], where it is based on the algorithm 
given by Shinwell, Pitts and Gabbay [14]. 
 
type lam is 
  | Var reference 
  | Lam binder lam↓(0) 
  | App lam lam 
end. 
 
type sem is 
  | L env binder lam↓(0 1) 
  | N neu 
end. 
 
type neu is 
  | V reference 
  | A neu sem 
end. 
 
type env is 
  | ENil 
  | ECons env binder sem ⇑(0 1) 
end. 
 
fun reify (s : sem) returns r : lam is 
  case s of 
  | L env y t => 
      fresh x in 
      Lam(x,reify(evals(ECons(env,y,N(V(x))),t))) 
  | N n => 
      reifyn(n) 
  end. 
end. 
 
fun reifyn (n : neu) returns r: lam 
  is 
  case n of 
  | V x => 
    Var(x) 
  | A nn d => 
    App(reifyn(nn),reify(d)) 
  end. 
end. 
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fun evals (env : env t : lam) returns v : sem 
  where fa(v) ⊆ fr(env) ∪ (fa (t) \ fb(env)) is 
  case t of 
  | Var x => 
    case env of 
    | ENil => 
      N(V(x)) 
    | ECons tail y v => 
      if x = y then v 
      else evals(tail,t) 
    end. 
  | Lam x tt => 
    L(env x tt) 
  | App t1 t2 => 
    case evals(env t1) of 
    | L cenv x tt => 
      evals(ECons(cenv,x,evals(env,t2)) tt) 
    | N n => 
      N(A(n,evals(env,t2))) 
    end. 
  end. 
end. 
 
fun eval (t : lam) returns sem is 
  evals(ENil(),t) 
end. 
 
fun normalize (t : lam) returns lam is 
  reify(eval(t)) 
end. 
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