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Abstract. We develop a general criterion for cut elimination in sequent
calculi for propositional modal logics, which rests on absorption of cut,
contraction, weakening and inversion by the purely modal part of the rule
system. Our criterion applies also to a wide variety of logics outside the
realm of normal modal logic. We give extensive example instantiations
of our framework to various conditional logics. For these, we obtain fully
internalised calculi which are substantially simpler than those known in
the literature, along with leaner proofs of cut elimination and complex-
ity. In one case, conditional logic with modus ponens and conditional
excluded middle, cut elimination and complexity are explicitly stated as
open in the literature.

1 Introduction

Cut elimination, originally invented by Gentzen [5], is one of the core concepts of
proof theory and plays a major role in particular for algorithmic aspects of logic,
including the subformula property, the complexity of automated reasoning and,
via interpolation, modularity issues. The large number of logical calculi that are
currently in use, in particular in various areas of computer science, motivates
efforts to define families of sequent calculi that cover a variety of logics and admit
uniform proofs of cut elimination, enabled by suitable sufficient conditions. Here,
we present such a method for modal sequent calculi that applies to possibly non-
normal normal modal logics, which appear, e.g. in concurrency and knowledge
representation. We use a separation of the modal calculi into a fixed underlying
propositional part and a modal part; the core of our criterion is absorption
of cut by the modal rules. This concept generalises the notion of resolution
closed rule set [9, 12], dropping the assumption that the logic at hand is rank-1,
i.e. axiomatised by formulas in which the nesting depth of modal operators is
uniformly equal to 1 (such as K).

Our method is reasonably simple and intuitive, and nevertheless applies to a
wide range of modal logics. While we use normal modal logics such as K and T
as running examples to illustrate our concepts at the time of introduction, our
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main applications are conditional logics, which have a binary modal operator
read as a non-monotonic implication (unlike default logics, conditional logics al-
low nested non-monotonic implications). In particular, we prove cut-elimination
(hence, since the generic systems under consideration are analytic, the subfor-
mula property) for the conditional logics CK, CKMP, CKCEM, and CKMPCEM
using our generic procedure. An easy analysis of proof search in the arising cut-
free calculi moreover establishes that the satisfiability problem of each of these
logics is in PSPACE . This is a tight bound for CK and CKMP, whereas the
provability problem in extensions of CKCEM can be solved in coNP , as we show
by a slightly adapted algorithmic treatment of our calculus using a dynamic
programming approach in the spirit of [13]. We point out that while (different)
cut-free labelled sequent calculi for CK, CKMP, CKCEM, and some further con-
ditional logics, as well as the ensuing upper complexity bounds, have previously
been presented by Olivetti et al., the corresponding issues for CKMPCEM have
explicitly been left as open problems [8].

Related work A set of sufficient conditions for a sequent calculus to admit cut
elimination and a subsequent analysis of the complexity of cut elimination (not
proof search) is presented in [10]. The range of application of this method is very
wide and encompasses, e.g. first-order logic, the modal logic S4, linear logic, and
intuitionistic propositional logic. This generality is reflected in the fact that the
method as a whole is substantially more involved than ours. A simpler method
for a different and comparatively restrictive class of calculi, so-called canonical
calculi, is considered in [1]; this method does not apply to typical modal systems,
as it considers only so-called canonical rules, i.e., left and right introduction rules
for connectives which permit adding a common context simultaneously in the
premise and the conclusion. (In fact, it might be regarded as the essence of
modal logic that its rules fail to be canonical, e.g. the necessitation rule A/�A
does not generalise to Γ,A/Γ,�A for a sequent Γ .) Moreover, the format of the
rules in op.cit. does not allow for the introduction of more than one occurrence
of a logical connective, which is necessary even for the most basic modal logics.
The same applies to [4]. In [3], logical rules are treated on an individual basis,
which precludes the treatment of cuts between two rule conclusions. Overall,
our notion of absorption is substantially more general when compared to similar
notions in the papers discussed above, which stipulate that cuts between left
and right rules for the same connective are absorbed by structural rules. In our
own earlier work [9], we have considered a special case of the method presented
here in the restricted context of rank-1 logics; in particular, these results did not
cover logics such as K4, CKMP, or CKMPCEM.

2 Preliminaries and Notation

A modal similarity type (or modal signature) is a set Λ of modal operators with
associated arities that we keep fixed throughout the paper. Given a set V of

2



propositional variables, the set F(Λ) of Λ-formulas is given by the grammar

F(Λ) 3 A,B ::= ⊥ | p | ¬A | A ∧B | ♥(A1, . . . , An)

where p ∈ V and ♥ ∈ Λ is n-ary. We use standard abbreviations of the other
propositional connectives >, ∨ and →. A Λ-sequent is a finite multiset of Λ-
formulas, and the set of Λ-sequents is denoted by S(Λ). We write the multiset
union of Γ and ∆ as Γ,∆ and identify a formula A ∈ F(Λ) with the sin-
gleton sequent containing only A. If S ⊆ F(Λ) is a set of formulas, then an
S-substitution is a mapping σ : V → S. We denote the result of uniformly sub-
stituting σ(p) for p in a formula A by Aσ. This extends pointwise to Λ-sequents
so that Γσ = A1σ, . . . , Anσ if Γ = A1, . . . , An. If S ⊆ F(Λ) is a set of Λ-formulas
and A ∈ F(Λ), we say that A is a propositional consequence of S if there exist
A1, . . . , An ∈ S such that A1 ∧ · · · ∧ An → A is a substitution instance of a
propositional tautology. We write S `PL A if A is a propositional consequence
of S and A `PL B for {A} `PL B for the case of single formulas.

3 Modal Deduction Systems

To facilitate the task of comparing the notion of provability in both Hilbert and
Gentzen type proof systems, we introduce the following notion of a proof rule
that can be used, without any modifications, in both systems.

Definition 1. A Λ-rule is of the form Γ1,...,Γn

Γ0
where n ≥ 0 and Γ0, . . . , Γn

are Λ-sequents. The sequents Γ1, . . . , Γn are the premises of the rule and Γ0 its
conclusion. A rule Γ0

without premises is called a Λ-axiom, which we denote by
just its conclusion, Γ0. A rule set is just a set of Λ-rules, and we say that a rule
set R is substitution closed, if Γ1σ . . . Γnσ/Γ0σ ∈ R whenever Γ1 . . . Γn/Γ0 ∈ R
and σ : V → F(Λ) is a substitution.

In view of the sequent calculi that we introduce later, we read sequents disjunc-
tively. Consequently, a rule Γ1, . . . , Γn/Γ0 can be used to prove the disjunction
Γ0, provided that

∨
Γi is provable, for all 1 ≤ i ≤ n. We emphasise that a rule

is an expression of the object language, i.e. it does not contain meta-linguistic
variables. As such, it represents a specific deduction step rather than a family
of possible deductions, which helps to economise on syntactic categories. In our
examples, concrete rule sets are presented as instances of rule schemas.

Example 2. For the modal logics K, K4 and T , we fix the modal signature
Λ = {�} consisting of a single modal operator � with arity one. The language
of conditional logic is given by the similarity type Λ = {⇒} where the conditional
arrow ⇒ has arity 2. We use infix notation and write A ⇒ B instead of ⇒ (A,B)
for A,B ∈ F(Λ). Deduction over modal and conditional logics are governed by
the following rule sets:

1. The rule set K associated to the modal logic K consists of all instances of
the necessitation rule (N) and the distribution axiom (D) below.

(N)
A

�A
(D)�(A → B) → (�A → �B) (4)��A → �A (R)�A → A
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The rule sets for T and K4 arise by extending this set with the reflexivity axiom
(R) and the (4)-axiom, respectively. We reserve the name (T) for the reflexivity
rule in a cut-free system.

2. Conditional logic, e.g. the system CK of [2] is axiomatised by the rule set
that consists of all instances of (RCEA) on the left, and (RCK) on the right below:

A ↔ A′

(A ⇒ B) ↔ (A′ ⇒ B)
B1 ∧ · · · ∧Bn → B

(A ⇒ B1) ∧ · · · ∧ (A ⇒ Bn) → (A ⇒ B)

As additional axioms, we consider

(ID)A ⇒ A (MP)(A ⇒ B) → (A → B) (CEM)(A ⇒ B) ∨ (A ⇒ ¬B)

that induce extensions of CK that we denote by juxtaposition of the respective
axioms, e.g. CKMPCEM contains the rules for CK and the axioms (MP) and
(CEM).

Rules with more than one premise arise through saturation of a given rule set
under cut that, e.g. leads to the rules (CKg) and (MPg) presented in Section 6.

The notion of deduction in modal Hilbert systems then takes the following form.

Definition 3. Suppose R is a set of rules. The set of R-derivable formulas in
the Hilbert-system given by R is the least set of formulas that

• contains Aσ whenever A is a propositional tautology and σ is a substitution
• contains B whenever it contains A and A → B
• contains

∨
Γ0 whenever it contains

∨
Γ1, . . . ,

∨
Γn and Γ1...Γn

Γ0
∈ R.

We write HR ` A if A is R-derivable.

In other words, the set of derivable formulas is the least set that contains propo-
sitional tautologies, is closed under uniform substitution, modus ponens and
application of rules. We will later consider Hilbert systems that induce the same
provability predicate based on the following notion of admissibility.

Definition 4. A rule set R′ is admissible in HR if HR ` A ⇐⇒ H(R∪R′) ` A
for all formulas A ∈ F(Λ). Two rule sets R,R′ are equivalent if R is admissible
in HR′ and R′ is admissible in HR.

In words, R′ is admissible in HR if adding the rules R′ to those of R leaves the
set of provable formulas unchanged. We note the following trivial, but useful
consequence of admissibility.

Lemma 5. HR ` A iff HR′ ` A if R and R′ are equivalent and A ∈ F(Λ).

The next proposition is concerned with the structure of proofs in Hilbert systems
and is the key for proving equivalence of Hilbert and Gentzen-type systems.

Proposition 6. The set HT(R) = {A ∈ F(Λ) | HR ` A} is the smallest set
S of formulas that contains a formula A ∈ F(Λ) whenever there are rules
Θ1/Γ1, . . . , Θn/Γn ∈ R and substitutions σ1, . . . , σn : V → F(Λ) such that∨

∆σi ∈ S for all ∆ ∈ Θi (i = 1, . . . , n) and {
∨

Γ1σ, . . . ,
∨

Γnσ} `PL A.
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In other words, in a modal Hilbert system, each provable formula is a proposi-
tional consequence of rule conclusions with provable premises. This result forms
the basis of our comparison of Hilbert and Gentzen systems, and we show that
cut elimination essentially amounts to the fact that – in the corresponding
Hilbert system – each valid formula is a consequence of a single rule conclu-
sion with provable premise.

We now set the stage for sequent systems that we are going to address in
the remainder of the paper. The notion of derivability in the sequent calculus
associated with a rule set R is formulated parametric in terms of a set X of
additional rules that will later be instantiated with relativised versions of cut,
weakening, contraction and inversion.

Definition 7. Suppose R and X are sets of Λ-rules. The set of RC+X-derivable
sequents in the Gentzen-system given by R is the least set of sequents that

• contains A,¬A,Γ for all sequents Γ ∈ S(Λ) and formulas A ∈ F(Λ)
• contains ¬⊥, Γ for all Γ ∈ S(Λ)
• is closed under instances of the rule schemas

Γ,¬A,¬B

Γ,¬(A ∧B)
Γ,A Γ,B

Γ,A ∧B

Γ,A

Γ,¬¬A

where A ∈ F(Λ) ranges over formulas and Γ ⊆ F(Λ) over multisets of formulas.
We call the above rules the propositional rules and the formula occurring in the
conclusion but not in Γ principal in the respective rule.
• is closed under the rules in R ∪ X, i.e. it contains Γ0 whenever it contains

Γ1, . . . , Γn for Γ1...Γn

Γ0
∈ R ∪ X.

We write GR + X ` Γ if Γ can be derived in this way and GR ` Γ if X = ∅.

The set X of extra rules will later be instantiated with a relativised version of
the cut rule and additional axioms that locally capture the effect of weakening,
contraction and inversion, applied to rule premises. This allows to formulate local
conditions for the admissibility of cut that can be checked on a per-rule basis.

Many other formulations of sequent systems only permit axioms of the form
Γ, p,¬p where p ∈ V is a propositional atom. The reason for being more liberal
here is that this makes it easier to prove admissibility of uniform substitution,
at the expense of loosing depth-preserving admissibility of structural rules. We
come back to this matter in Remark 12.

The following proposition is readily established by an induction on the prov-
ability predicate RH `.

Proposition 8. Suppose Γ ∈ S(Λ) is a sequent. Then RH `
∨

Γ if RG ` Γ .

The remainder of the paper is concerned with the converse of the above propo-
sition, which relies on specific properties of the rule set R.
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4 Generic Modal Cut Elimination

In order to establish the converse of Proposition 8 we need to establish that the
cut rule is admissible in the Gentzen system GR defined by the ruleset R. Clearly,
we cannot expect that cut elimination holds in general: it is well known (and
easy to check) that the sequent system arising from the rule set consisting of all
instances of (N) and (D), presented in Example 2 does not enjoy cut elimination.
In other words, we have to look for constructions that allow us to transform a
given rule set into one for which cut elimination holds. The main result of our
analysis is that cut elimination holds if the rule set under consideration satisfies
four crucial requirements that are local in the sense that they can be checked on
a per-rule basis without the need of carrying out a fully-fledged cut-elimination
proof: absorption of weakening, contraction, inversion and cut.

The first three properties can be checked for each rule individually and
amount to the admissibility of the respective principle, and the last requirement
amounts to the possibility of eliminating cut between a pair of rule conclusions.
We emphasise that these properties can be checked locally for the modal rules,
and cut elimination will follow automatically. It is not particularly surprising
that cut elimination holds under these assumptions. However, isolating the four
conditions above provides us with means to convert a modal Hilbert system into
an equivalent cut-free sequent calculus. We now introduce relativised versions of
the structural rules that will be the main tool in the proof of cut elimination.

Definition 9. Suppose Γ is a Λ-sequent and let A(Γ ) consist of the axioms

• Γ,A for all A ∈ F(Λ)
• ∆, A if Γ = ∆, A,A for some ∆ ∈ S(Λ), A ∈ F(Λ)
• ∆, A if Γ = ∆,¬¬A for some ∆ ∈ S(Λ), A ∈ F(Λ)
• ∆,¬A1,¬A2 if Γ = ∆,¬(A1 ∧A2) for some ∆ ∈ S(Λ), A1, A2 ∈ F(Λ)
• ∆, Ai for i = 1, 2 if Γ = ∆, (A1 ∧A2) for some ∆ ∈ S(Λ), A1, A2 ∈ F(Λ)

We say that a rule set R absorbs the structural rules if

GR + A(Γ1) ∪ · · · ∪ A(Γn) ` Γ

for all Γ1...Γn

Γ0
∈ R and all Γ ∈ A(Γ0).

In other words, a deduction step that applies weakening, contraction or inversion
to a rule conclusion can be replaced by a (possibly different) rule where the cor-
responding structural rules are applied to the premises. We discuss a number of
standard examples before stating that absorption of the structural rules implies
their admissibility.

Example 10. The rule sets containing all instances of either of the following
rule schemas (K), (T) and (K4)

¬A1, . . . ,¬An, A0

¬�A1, . . . ,¬�An,�A0, Γ

¬A,¬�A,Γ

¬�A,Γ

¬A1,¬�A1, . . . ,¬An,¬�An, B

¬�A1, . . . ,¬�An,�B,Γ
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absorbs the structural rules. We note that (K) absorbs weakening due to the
presence of Γ in the conclusion, and the absorption of contraction in (T) and
(K4) is a consequence of the presence of the negated �-formulas in the premise.
The absorption of inversion in a consequence of the weakening context Γ in (K)
and (K4) and implied by duplicating the context Γ in (T). On the other hand,
the rule sets defined by

¬A1, . . . ,¬An, A0

¬�A1, . . . ,¬�An,�A0

¬A,Γ

¬�A,Γ

fail to absorb the structural rules: the rule on the left fails to absorb weakening,
whereas the right-hand rule does not absorb contraction.

It should be intuitively clear that absorption of structural rules implies their
admissibility, which we establish next.

Proposition 11. Suppose R absorbs the structural rules. Then all instances of
the rule schemas of weakening, contraction and inversion

Γ

Γ,A

Γ,A, A

Γ,A

Γ,¬¬A

Γ,A

Γ,¬(A1 ∧A2)
Γ,¬A1,¬A2

Γ,A1 ∧A2

Γ,Ai
(i = 1, 2)

where Γ ∈ S(Λ) and A,A1, A2 ∈ F(Λ) are admissible in GR.

Remark 12. 1. The main purpose for introducing the notion of absorption
of structural rules (Definition 9) is to have a handy criterion that guarantees
admissibility of the structural rules (Proposition 11). Our definition offers a
compromise between generality and simplicity. In essence, a rule set absorbs
structural rules, if an application of weakening, contraction or inversion can be
pushed up one level of the proof tree. A weaker version of Definition 9 would
require that an application of weakening, contraction or inversion to a rule con-
clusion can be replaced by a sequence of deduction steps where the structural
rule in question can not only be applied to the premises of the rule, but also
freely anywhere else, provided that these additional applications are smaller in
a well-founded ordering. However, we are presently not aware of any examples
where this extra generality would be necessary.

2. In many Sequent systems, the statement of Proposition 11 can be strength-
ened to say that weakening, contraction and inversion are depth-preserving ad-
missible, i.e. does not increase the height of the proof tree. This is in general
false for the systems considered here as axioms are of the form A,¬A,Γ for
A ∈ F(Λ) and, for instance, (A∧B),¬(A∧B) is derivable with a proof of height
one (being an axiom), but, e.g. A∧B,¬A,¬B cannot be established by a proof
of depth one (not being an axiom). It is easy to see that weakening, inversion and
contraction are in fact depth-preserving admissible if only atomic axioms of the
form p,¬p, Γ are allowed, for p ∈ V a propositional variable. The more general
form of axioms adopted in this paper allows us to simplify many constructions
as we do not have to consider a congruence rule explicitly which would allow us
to prove (rather than to assume as axioms) sequents of the form �A,¬�A,Γ .
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Having dealt with the structural rules, we now address our main concern: the
admissibility of the cut rule. In contrast to the absorption of structural rules,
we need one additional degree of freedom in that we need to allow ourselves to
apply cut to a structurally smaller formula.

Definition 13. The size of a formula A ∈ F(Λ) is given inductively by size(p) =
size(⊥) = 1, size(A∧B) = size(A∨B) = 1+ size(A)+ size(B) and, for the modal
case, size(♥(A1, . . . , An)) = 1 + size(A1) + · · ·+ size(An).

A ruleset R absorbs cut, if for all rules (r1)Γ1,...,Γn

A,Γ0
, (r2)∆1,...,∆k

¬A,∆0
∈ R

GR + Cut(A, r1, r2) ` Γ0,∆0

where Cut(A, r1, r2) consists of all instances of the rule schemas

Γ,C ∆,¬C

Γ,∆

Γ

Γ,A

Γ,A, A

Γ,A

Γ,¬¬A

Γ,A

Γ,¬(A1 ∧A2)
Γ,¬A1,¬A2

Γ,A1 ∧A2

Γ,Ai

where size(C) < size(A) in the leftmost rule and i = 1, 2 in the rightmost schema,
together with the axioms Γ1, . . . , Γn,∆1, . . . ,∆k and all sequents of the form Γ,∆
where Γ,∆ ∈ S(Λ) and, for some B ∈ F(Λ),

• Γ,B and ∆,¬B ∈ {Γ1, . . . , Γn,∆1, . . . ,∆k}, or
• Γ,B = Γ0, A and ∆,¬B ∈ {∆1, . . . ,∆k}, or
• Γ,B = ∆0,¬A and ∆,¬B ∈ {Γ1, . . . , Γn}.

A rule set that absorbs structural rules and the cut rule is called absorbing.

The intuition behind the above definition is similar to that of absorption of
structural rules, but we have two additional degrees of freedom: we can not only
apply the cut rule to rule premises, but we can moreover freely use both cut on
structurally smaller formulas and the structural rules. This allows us to use the
standard argument, a double induction on the structure of the cut formula and
the size (or height) of the proof tree, to establish cut elimination. This is carried
out in the proof of the next theorem.

Theorem 14. Suppose R is absorbing. Then the cut rule

Γ,A ∆,¬A

Γ,∆

is admissible in GR.

The proof proceeds by a double induction on the size of the cut formula and the
size of the proof tree, and analyse all possible ways in which the cut rule can be
applied. The case of cuts arising between conclusions of modal rules follows from
absorption of cut. Cuts between conclusions of a modal and a propositional rule
can be eliminated by using the absorption of structural rules.

We illustrate the preceding theorem by using it to derive the well-known fact
that cut-elimination holds for the modal logics K,K4 and T and use it to derive
cut-elimination for various conditional logics in Section 6.
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Example 15. The rule sets K,K4 and T are absorbing. We have already seen
that they absorb weakening, contraction and inversion in Example 10 so every-
thing that remains to be seen is that they also absorb cut. For (K), we need to
apply cut to a formula of smaller size. For the two instances

(r1)
¬A1, . . . ,¬An, A0

¬�A1, . . . ,¬�An,�A0, Γ
(r2)

¬B1, . . . ,¬Bk, B0

¬�B1, . . . ,¬�Bk,�B0,∆

we need to consider, up to symmetry, the cases Ai = B0, �Ai ∈ ∆ and ¬�A0 ∈
∆, for i = 1, . . . , n. Here, we only treat the first case for i = 1 where we have
to show that ¬�A2, . . . ,¬�An,�A0,¬�B1, . . . ,¬�Bk, Γ, ∆ is derivable from
GR + Cut(�A1, r1, r2), which follows as the latter system allows us to apply cut
on A1 = B0. The case �Ai ∈ ∆ and ¬�A0 ∈ ∆ are straight forward.

The argument to show that (K4) is absorbing is similar, and uses an addi-
tional (admissible) instance of cut on a formula of smaller size and contraction.
For (T) we only consider instances of cut between two conclusions of

(r1)
¬A,¬�A,Γ

¬�A,Γ
(r2)

¬B,¬�B,∆

¬�B,∆

of the T-rule. We only demonstrate the case �A ∈ ∆. In this case, ∆ = ∆′,�A
and we have to show that ¬�B,Γ, ∆′ can be derived in Cut(�A, r1, r2). The
latter system allows us to cut ¬�A between the conclusion of (T) on the left
and the premise of the right hand rule, i.e., we have that Cut(�A, r1, r2) `
¬B,¬�B,Γ, ∆′) and an application of (T) now gives derivability of ¬�B,Γ, ∆′.

5 Equivalence of Hilbert and Gentzen Systems

We now investigate the relationship between provability in a Hilbert-system and
provability in the associated Gentzen system. We note the following standard
lemmas that we will use later on.

Lemma 16. Suppose A ∈ F(Λ) is a propositional tautology. Then GR ` A. If
moreover R is closed under substitution, then GR ` Γσ whenever GR ` Γ for all
Γ ∈ S(Λ).

Remark 17. Being able to prove the previous lemma is the main reason for
formulating axioms as A,¬A,Γ where A ∈ F(Λ) rather than p,¬p, Γ . Both
formulations are equivalent if the modal congruence rule

A1 ↔ A′
1 . . . An ↔ A′

n

♥(A1, . . . , An) → ♥(A′
1, . . . , A

′
n)

is admissible. However, Lemma 16 can be proved without the assumption that
congruence is admissible using axioms of the form A,¬A,Γ .

Theorem 18. Suppose R is absorbing and substitution closed. Then GR ` Γ ⇐⇒
HR `

∨
Γ for all Γ ∈ S(Λ).

9



Proof (Sketch). We only need to show the direction from right to left. Inductively
assume that HR `

∨
Γ for Γ ∈ S(Λ). By Proposition 8 we have that there are

rules Θi/Γi and substitutions σi, i = 1, . . . , n such that

• HR ` ∆σi whenever ∆ ∈ Θi (i = 1, . . . , n)
• {

∨
Γ1σ1, . . . ,

∨
Γnσn} `PL

∨
Γ .

By induction hypothesis, GR ` ∆σi for all i = 1, . . . , n and ∆ ∈ Θi. By Lemma
16 we have

GR `
∨

Γ1σ1 ∧ · · · ∧
∨

Γnσn →
∨

Γ.

The claim follows by applying cut, contraction and inversion.

The construction of an absorbing rule set from a given set of axioms and rules
essentially boils down to adding the missing instances of cut, weakening, contrac-
tion and inversion to a given rule set. The soundness of this process is witnessed
by the following two simple lemmas, which we use in this section to derive an
absorbing rule set for K and to establish cut-elimination for a large range of
conditional logics in the next section.

Lemma 19. Suppose Γ1, . . . , Γn/¬A,Γ0 and ∆1, . . . ,∆k/A, ∆0 ∈ R. Then the
rule Γ1, . . . , Γn,∆1, . . . ,∆k/Γ0,∆0 is admissible in HR.

The same applies to instances of the structural rules of weakening, contraction
and inversion. As we are extending the rule set while leaving the provability pred-
icate in the Hilbert calculus unchanged, the following formulation is handy for
our purposes – in particular it implies the fact that we can freely use structural
rules both in the premise and conclusion.

Lemma 20. Suppose that Γ1, . . . , Γn/Γ0 ∈ R. If ∆0, . . . ,∆1 ∈ S(Λ) and both

{
∨

∆1, . . . ,
∨

∆k} `PL

∨
Γi(1 ≤ i ≤ n) and

∨
Γ0 `PL

∨
∆0

then the rule Γ1, . . . , Γk/Γ0 is admissible in HR.

This gives us a recipe for constructing rule sets that absorb contraction and cut:
simply add more rules according to the lemmas above. This will not change the
notion of provability in the Hilbert system, but when this process terminates, the
ensuing rule set will be absorbing and gives rise to a cut free sequent calculus.

Example 21 (Modal Logic K). In a Hilbert-style calculus, the axiomatisation
of K is usually described in terms of the distribution axiom (which we view as
a rule with empty premise) and the necessitation rule:

(D) �(A → B) → �A → �B (N)
A

�A

We first apply Lemma 19 to break the propositional connectives in the dis-
tribution axiom. We have that the axiom ¬�(A → B),¬�A,�B is admissi-
ble by Lemma 20, and applying Lemma 19 to this axiom and the instance

10



A → B/�(A → B) of the necessitation rule gives admissibility of the all in-
stances of

¬A,B

¬�A,�B

with the help of (admissible) propositional reasoning in the premise. The same
procedure, applied to the instances

¬A,B → C

¬�A,�(B → C)
¬�(B → C),¬�B,�C

gives admissibility of the left hand rule below,

¬A,¬B,C

¬�A,¬�B,�C

¬A1, . . . ,¬An, A0

¬�A1, . . . ,¬�An,�A0, Γ

and continuing in this way and absorbing weakening, we obtain admissibility of
the rule on the right, where Γ ∈ S(Λ) is an arbitrary context. We have shown
previously that this rule set is absorbing, and it is easy to see that it is equivalent
to the rule set consisting of all instances of (N) and (D).

6 Applications: Sequent Calculi for Conditional Logics

After having seen how the construction of absorbing rule sets gives rise to cut-
elimination for a number of well-studied normal modal logics, in this section we
construct a cut-free sequent calculus for a number of conditional logics.

Conditional logics [2] are extensions of propositional logic by a non-monotonic
conditional A ⇒ B, read as “B holds under the condition that A”. The con-
ditional implication is non-monotonic in general, that is the validity of A ⇒ B
does not imply that also (A ∧ C) ⇒ B is a valid statement.

Axiomatically, the first argument A of the conditional operation A ⇒ B
behaves like the � in neighbourhood frames and only supports replacement of
equivalents, whereas the second argument B obeys the rules of K. We recall
from Example 2 that CK CK is axiomatised by the rules (RCEA) and (RCK) that
we augment with a subset of the following axioms:

(ID) A ⇒ A (MP) (A ⇒ B) → A → B (CEM) (A ⇒ B) ∨ (A ⇒ ¬B).

The first axiom embodies a form of identity in the sense that A holds under
condition A and (MP) is a conditional form of modus ponens. The axiom (CEM)
is the conditional excluded middle. We denote combination of rule sets by jux-
taposition so that CKID comprises all instances of CK and ID.

6.1 Cut Elimination for Extensions of CK without CEM

We first treat extensions of the basic conditional logic CK with axioms ID and
MP, but not including CEM and discuss CEM later, as the effect of adding CEM
leads to a more general form of the CK rule. We start by introducing some
notation that provides a shorthand for expressing the bi-implications in the
premise of CK.

11



Notation 22. If A0, . . . , An ∈ F(Λ) are conditional formulas, we write A0 =
· · · = An for the sequence of sequents consisting of ¬A0, Ai and ¬Ai, A0 for all
1 ≤ i ≤ n.
If we absorb cuts using Lemmas 19 and 20 we see that all instances of

(CKg)
A0 = · · · = An ¬B1, . . . ,¬Bn, B0

¬(A1 ⇒ B1), . . . ,¬(An ⇒ Bn), (A0 ⇒ B0), Γ

are admissible in HCK. It is easy to see that the rule set CKg is actually absorbing:
Theorem 23. The rule set CKg is absorbing and equivalent to CK. As a con-
sequence, GCKg has cut-elimination and GCKg ` A iff HCK ` A whenever
A ∈ F(Λ).

Proof. Using Lemmas 19 and Lemma 20 it is immediate that the rule set CKg is
admissible in HCK. The argument that show that CKg is absorbing is analogous
to that for the modal logic K (Example 15), and the result follows from Theorem
18.

The logic CKID arises form CK by adding the identity axiom A ⇒ A to the rule
set CKH that axiomatises standard conditional logic. Applying Lemma 19 to the
two rule instances on the left

¬A,B ¬B,A

¬(A ⇒ A), (A ⇒ B)
A ⇒ A (IDg)

A = B

A ⇒ B,Γ

gives rise to the rule schema (IDg) on the right where we have used Lemma 20
to absorb weakening. If we denote the rule set consisting of all instances of CKg

and IDg by CKIDg, we obtain:
Proposition 24. The rule set CKIDg is absorbing and equivalent to CKID.

Proof. It is easy to see that CKIDg absorbs the structural rules, and that CKID
is equivalent to CKIDg. Cuts between conclusions of (IDg) are readily seen to be
absorbed, and absorption of cuts between an instance of CKg and an instance of
ID follows by construction.

The logic CKMP arises by augmenting the logic CK with the additional axiom
(A ⇒ B) → (A → B). The effect of adding (MP) is similar to that of enriching
the modal logic K with the (T)-axiom. Adding the missing cuts to CK augmented
with (MP) and absorbing the structural rules leads to the rule schema

(MPg)
A,¬(A ⇒ B), Γ ¬B,¬(A ⇒ B), Γ

¬(A ⇒ B), Γ

and we denote the rule set consisting of all instances of CKg and MPg by CKMPg.
Our cut elimination theorem then takes the following form:
Proposition 25. The rule set CKMPg is absorbing and equivalent to CKMP.

Proof. Again, it is easy to see that CKMPg is admissible in HCKMP and the
converse follows by construction. All we have to show is that CKMPg is absorbing,
where the absorption of structural rules is easy and left to the reader. For the
absorption of cut, the argument is similar to cut elimination in the modal logic
T.
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6.2 Cut Elimination for Extensions of CKCEM

To construct an absorbing rule set for conditional logic plus the axiom

(CEM)(A ⇒ B) ∨ (A ⇒ ¬B)

we start from the admissible rule set for CK and close under cuts that arise with
(CEM). Repeated applications of Lemma 19 and Lemma 20 lead to the rule set

(CKCEMg)
A0 = · · · = An B0, . . . , Bj ,¬Bj+1,¬Bn

(A0 ⇒ B0), . . . , (Aj ⇒ Bj),¬(Aj+1 ⇒ Bj+1), . . . ,¬(An ⇒ Bn), Γ

for 1 ≤ j ≤ n.

Proposition 26. The rule set CKCEMg is absorbing and equivalent to CKCEM.

As a consequence, cut elimination holds in CKCEMg. We can apply essentially the
same argument to an extension of CK with both conditional modus ponens and
conditional excluded middle, but have to take care of the cuts arising between
MPg and CKCEMg, which leads to the new rule

(MPEMg)
A, (A ⇒ B), Γ B, (A ⇒ B), Γ

(A ⇒ B), Γ
.

If we denote the extension of CKCEMg with MPg and MPEMg by CKCEMMPg,
we obtain:

Proposition 27. CKCEMMPg is absorbing and equivalent to CKCEMMP.

We note that the latter theorem was left as an open problem for the sequent
system presented in [8]. In summary, we obtain the following results about ex-
tensions of the conditional logic CK.

Theorem 28. Suppose that L is one of CK, CKID, CKMP, CKCEM or CKCEMMP.
Then GLg ` A whenever HL ` A for all A ∈ F(Λ). Moreover, cut elimination
holds in GL.

The theorem follows, in each of the cases, from Theorem 14 and Theorem 18
together with the fact that the rule set L and Lg are equivalent and the latter is
absorbing.

7 Complexity of Proof Search

It is comparatively straightforward to extract complexity bounds for provability
of the logics considered above by analysing the complexity of proof search under
suitable strategies in the cut-free sequent systems obtained. Clearly, in those
cases where all modal rules peel off exactly one layer of modal operators, the
depth of proofs is polynomial in the nesting depth of modal operators in the
target formula, and therefore, proof search is in PSPACE under mild assumptions
on the branching width of proofs [12, 9]. Besides reproving Ladner’s classical
result for K [7], we thus have
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Theorem 29. Provability in CK and CKID is in PSPACE.

This reproves known complexity bounds originally shown in [8] (alternative short
proofs using coalgebraic semantics are given in [11]). For CKCEM, the bound can
be improved using dynamic programming in the same style as in [13]:

Theorem 30. Provability in CKCEM is in coNP.

More interesting are those cases where some of the modal operators from the
conclusion remain in the premise, such as T, K4, CKMP, and CKCEM (where the
difference between non-iterative logics, i.e. ones whose Hilbert-axiomatisation
does not use nested modalities, such as T, CKMP, and CKMPCEM, and itera-
tive logics such as K4 is surprisingly hard to spot in the sequent presentation).
For K4, the standard approach is to consider proofs of minimal depth, which
therefore never attempt to prove a sequent repeatedly, and analyse the maximal
depth that a branch of a proof can have without repeating a sequent. For T, a
different strategy is used, where the (T ) rule is limited to be applied at most
once to every formula of the form ¬�A in between two applications of (K) [6]. A
similar strategy works for the conditional logics CKMP and CKMPCEM, which
we explain in some additional detail for CKMP.

We let CKMP0
g and CKMP1

g denote restricted sequent systems where in
CKMP0

g, a formula ¬(A ⇒ B) is marked on a branch as soon as the rule (MPg)
has been applied to it (backwards) and unmarked only at the next applica-
tion of rule (CKg). Rule (MPg) applies only to unmarked formulas. In CKMP1

g,
we instead impose a similar restriction where rule (MPg) applies to a sequent
¬(A ⇒ B), Γ only in case Γ does not contain a propositional descendant of ei-
ther A or ¬B. Here, a sequent ∆ is called a propositional descendant of a formula
A if it can be generated from A by applying propositional sequent rules back-
wards (e.g. the propositional descendants of (¬(A∧B)∧C) are ¬(A∧B); C; and
¬A,¬B). It is easy to check that CKMP1

g-proofs can be converted into CKMP0
g-

proofs, i.e. CKMP1
g is the most restrictive system. One shows that CKMP1

g admits
contraction and inversion by verifying that the corresponding proof transforma-
tions in CKMPg preserve CKMP1

g-proofs. It is then clear that every application of
the rule (MPg) that violates the CKMP1

g-restriction can be replaced by inversion
and contraction, so that CKMP1

g, and hence also CKMP0
g, proves the same for-

mulas as CKMPg. Proofs in CKMP0
g are easily seen to have at most polynomial

depth. Essentially the same reasoning applies to CKMPCEM. Therefore, we have

Theorem 31. Provability in CKMP is in PSPACE; provability in CKMPCEM
is in coNP.

We note that the complexity of CKMPCEM was explicitly left open in [8].

8 Conclusions

We have established a generic method of cut elimination in modal sequent sys-
tem based on absorption of cut and structural rules by sets of modal rules. We
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have applied this method in particular to various conditional logics, thus ob-
taining cut-free unlabelled sequent calculi that complement recently introduced
labelled calculi [8]. In at least one case, the conditional logic CKMPCEM with
modus ponens and conditional excluded middle, our calculus seems to be the
first cut-free calculus in the literature, as cut elimination for the corresponding
calculus in [8] was explicitly left open. We have applied these calculi to obtain
complexity bounds on proof search in conditional logics; in particular we have re-
proved known upper complexity bounds for CK, CKID, CKMP [8] and improved
the bound for CKCEM from PSPACE to coNP using dynamic programming
techniques following [13]. Moreover, we have obtained an upper bound coNP
for CKMPCEM, for which no bound has previously been published. We con-
jecture that our general method can also be applied to other base logics, e.g.
intuitionistic propositional logic or first-order logic, which is subject to further
investigations.
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