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Abstract. Coalgebras for a functor on the category of sets subsume
many formulations of the notion of transition system, including labelled
transition systems, Kripke models, Kripke frames and many types of
automata. This paper presents a multimodal language which is bisim-
ulation invariant and (under a natural completeness condition) expres-
sive enough to characterise elements of the underlying state space up
to bisimulation. Like Moss’ coalgebraic logic, the theory can be applied
to an arbitrary signature functor on the category of sets. Also, an up-
per bound for the size of conjunctions and disjunctions needed to obtain
characteristic formulas is given.

1 Introduction

Rutten [19] demonstrates that coalgebras for a functor generalise many notions of
transition systems. It was then probably Moss [16] who first realised that modal
logic constitutes a natural way to formulate bisimulation-invariant properties on
the state spaces of coalgebras.

Given an arbitrary signature functor on the category of sets, the syntax of
his coalgebraic logic is obtained via an initial algebra construction, where the
application of the signature functor is used to construct formulas. This has the
advantage of being very general (few restrictions on the signature functor), but
the language is abstract in the sense that it lacks the usual modal operators O
and <.

Other approaches [9, 10, 13, 17, 18] devise multimodal languages, given by
a set of modal operators and a set of atomic propositions, which are based on
the syntactic analysis of the signature functor (and therefore only work for a
restricted class of transition signatures).

This paper aims at combining both methods by exhibiting the underlying
semantical structures which give rise to (the interpretation of) modal operators
with respect to coalgebras for arbitrary signature functors.

After a brief introduction to the general theory of coalgebras (Section 2), we
look at examples of modal logics for two different signature functors in Section
3. The analysis of the semantical structures, which permit to use modalities
to formulate properties on the state space of coalgebras, reveals that modal
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operators arise through a special type of natural transformation, which we chose
to call “natural relation”.

Abstracting away from the examples, Section 4 presents a concrete multi-
modal language which arises through a set of natural relations and can be used
to formulate predicates on the state space of coalgebras for arbitrary signature
functors. On the semantical side, it is shown that a set of natural relations in-
duces a translation from coalgebras to Kripke models, and that the semantics
of formulas wrt. coalgebras coincides with the semantics of formulas wrt. the
induced Kripke model. We then prove in Section 5 that the interpretation of
the language is indeed invariant under (coalgebraic) bisimulation. In the last
section we characterise the expressive power of the language, and prove that
under a natural completeness condition, every point of the state space can be
characterised up to bisimulation. We also give an upper bound for the size of
conjunctions and disjunctions needed to obtain characteristic formulas.

2 Transition Systems and Coalgebras

Given an endofunctor T' : Set — Set on the category of sets and functions, a
T'-coalgebra is a pair (C,~) where C'is a set (the state space or carrier set of the
coalgebra) and v : C' — T'C is a function. Using this definition, which dualises
the categorical formulation of algebras, many notions of automata and transition
systems can be treated in a uniform framework. We only sketch the fundamental
definitions and refer the reader to [11, 19] for a more detailed account.

Ezxample 1 (Labelled Transition Systems). Suppose L is a set of labels. Labelled
transition systems, commonly used to formulate operational semantics of process
calculi such as CCS, arise as coalgebras for the functor TX = P(L x X). Indeed,
given a set C of states and a transition relation R; for each label I € L, we obtain
a T-coalgebra (C,v) where v(c) = {(I,é) € L x C | ¢ R; ¢}. Conversely, every
coalgebra structure v : C' — TC gives rise to a family of transition relations
(Rp)ier via ¢ Ry ¢ iff (I, ) € v(c).

Many types of automata can also be viewed as coalgebras for an appropriate
type of signature functor on the category of sets:

Example 2 (Deterministic Automata). Let TX = (O x X)!+ F and (C,v:C —
TC) be a T-coalgebra. Given an element of the state space ¢ € C, the result
~(¢) of applying the transition function is either an error condition e € E or a
function f: I — O x C € (O x C)!. Supplying an input token i € I, the result
f(@) of evaluating f gives us an output token o € O and a new state ¢’ € C.

Morphisms of coalgebras are functions between the corresponding state spaces,
which are compatible with the respective transition structures. Dualising the cat-
egorical formulation of algebra morphisms, a coalgebra morphism between two
T-coalgebras (C,~) and (D, d) is a function f : C — D such that Tfo~y =4do f.



Diagrammatically, f must make the diagram
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commutative. The reader may wish to convince himself that in the case of la-
belled transition systems above, a coalgebra morphism is a functional bisimula-
tion in the sense of Milner [15]. It is an easy exercise to show that coalgebras for
a functor T, together with their morphisms, constitute a category.

One important feature of the functional (ie. coalgebraic) formulation of tran-
sition systems is that every signature functor comes with a built in notion of
bisimulation. Following Aczel and Mendler [1], a bisimulation between two coal-
gebras (C,~v) and (D, 9) is a relation B C C x D, that can be equipped with
a transition structure g : B — T B, which is compatible with the projections
wc : B — C and mp : B — D. More precisely, B C C x D is a bisimulation, if
there exists 0 : B — T'B such that

iyel ™D

c B D
P L I
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commutes. Again, the reader may wish to convince himself that in the case of
labelled transition systems, coalgebraic bisimulations, as just defined, are indeed
bisimulations of labelled transition systems.

3 Modal Logic for Coalgebras: Examples

We exemplify the connection between modal logics and coalgebras for a functor
by means of the examples given in the previous section. In both examples we
observe that the modalities and atomic propositions of the respective languages
arise via special types of natural transformation, the “natural relations” already
mentioned in the introduction.

The general theory developed in the subsequent sections is based on this
observation in that it shows, that every set of natural relations induces a multi-
modal language which allows to formulate bisimulation invariant properties on
the state spaces of coalgebras for an arbitrary signature functor.

3.1 Labelled Transition Systems

Consider the functor TX = P(L x X) on the category of sets and functions.
We have demonstrated in Example 1, that T-coalgebras are labelled transition
systems over the set L of labels. It is well known that Hennessy-Milner logic [§]



(also discussed in [22]) is an expressive, bisimulation invariant language, which
allows to formulate predicate on the state space of labelled transition systems.

Consider the set £ of formulas built up from the atomic propositions tt, ff,
conjunctions, disjunctions and a pair of modal operators O; and <, for every
I € L. Given a T-coalgebra (labelled transition system) (C,+) and a formula
¢ € L, we write [¢](c) for the set {c € C | (¢,7) | ¢} of points ¢ € C,
which satisfy the formula ¢ with respect to the transition structure «y, and drop
the subscript (C,~) if the transition structure is clear from the context. Omit-
ting the straightforward interpretation of atomic propositions, conjunctions and
disjunctions, the interpretation of the formula 0;¢ is given by

[Bi6]icy) ={ceC |V € Cl,¢) €ev(c) = ¢ € [dlicm} (1)

for any [ € L.
Note that the same definition can be used for any carrier set and transition

structure. This leads us to define, given [ € L, a parameterised relation p;(A) C
TA x A, given by

aw(A)a <<= (L,a)€a (2)

for an arbitrary set A, a € TA and a € A.
Using this definition, we can now reformulate (1) as

[Ci8](cy) = {c € C |V € Cvle) m(C) ¢ = ¢ € [¢licn} 3)

and obtain the interpretation of the existential modality via
[©1¢l(cy ={c € C|3c € Cvle) m(C) ! A" € [dlcm}- (4)
The fact that (2) is a canonical definition, which works for any set A, is

witnessed by the following universal property: For any function f: A — B, the
diagram of sets and relations

TA wi(A)

A
iG(Tf) i»G(f)
wi(B)

TB————>1B

()

commutes (where we write R : A+ B for a relation R C A x B and G(f) for
the graph of a function; composition of the arrows in the diagram is relational
composition).

Parameterised relations, which satisfy condition (5) will be called natural
relations in the sequel. Thus summing up, one can say that natural relations
give rise to the interpretation of modalities.



3.2 Input/Output Automata

In Example 2 we have seen that deterministic input/output automata are coal-
gebras for the functor TX = (O x X)! + E. We now go on to demonstrate that
the modalities needed to describe properties of these automata also arise via
parameterised relations, that is, relations which satisfy the naturality condition
(5).

Given a T coalgebra (C,y : C — TC) and a state ¢ € C, the modality
of interest here describes the behaviour of a (possible) successor state, which
arises after supplying an input token, if the result v(c) of applying the transition
function does not yield an error condition e € F.

Given i € I and an arbitrary set A, we consider the relation p;(A) C TAx A,
given by

api(A)a iff 3f:T—(0OxA) e (OxA).a=inl(f)Aras0 f(i)=a,

where inl : (O x A)! — (O x A)! + E is the canonical injection and 74 denotes
the projection function O x A — A. Note that this parameterised relation also
satisfies the naturality condition (5) and allows us to define a pair of modalities
O, and ©; using equations (3) and (4).

In order to obtain a language which allows to specify the behaviour of a state
¢ € C, we furthermore need atomic propositions to be able to formulate that the
application 7(c) of the transition function yields an error condition e € E and
that — in case v(c) € (O x C)! — supplying an input token i € I yields an output
token o € O.

This is taken care of by a set of atomic propositions {p. | e € E} U {p( o) |
(i,0) € I x O}. The interpretation of the atomic propositions in this example is
straightforward:

[pedicqy = {c € Cr(e) = inr(e)} (6)

and

[P0y ={c€C|3f € (0% C) y(c) =inl(f) Amoo f(i) =0},  (7)

where inr : E — (OxC)!+E is again the canonical injection and 7o : OxC — O
denotes the projection function.

In both cases it deserves to be mentioned that the atomic propositions arise
as subsets of the set T'1 (where we write 1 = {x} for the terminal object in the
category of sets and !¢ : C' — 1 for the unique morphism).

To be more precise, consider the sets

Pelr1 = {inr(e) [ e € E} (8)

and
a0l = {il(f) | f € (O x ) Amo o f(i) = o}, (9)
where in this case inr : E — (O x 1) + E and inl: (O x 1)! — (Ox 1)I +E.



Using the subsets defined by (8) and (9), we now recover the interpretation
of the atomic propositions, originally given by (6) and (7) as

[pel(c.y) = (Tl o) (PelT1)

and
[P0l ey = (Tle o) (Pgi0)l11),
respectively.

Thus one can say that atomic propositions in modal logics for T-coalgebras
arise as subsets of the set T'1.

4 From Natural Relation to Modal Logics

If T : Set — Set is an endofunctor, the examples in the previous section suggest,
that modal logics for coalgebras of a functor are induced by a set of natural rela-
tions for T and a set of predicates on T'1. The remainder of the paper is devoted
to showing that this is indeed the case. We start by exhibiting the modal lan-
guage which arises from a set of natural relations and a set of atomic propositions
and show in the subsequent sections, that the language presented is bisimula-
tion invariant and (under a completeness condition on the set of relations) strong
enough to distinguish non-bisimilar points.

4.1 Natural Relations

Categorically speaking, natural relations are natural transformations between
functors mapping from the category Set of sets and functions to the category
Rel of sets and relations. This is captured in

Definition 1 (Natural Relations). Suppose T is an endofunctor on the cat-
egory of sets. A natural relation for T is a natural transformation

ToT —1,

where T : Set — Rel is the identity on sets and sends every function to the
relation given by its graph.

Unravelling the definition of natural transformations we obtain the formula-
tion of the naturality requirement, which is present in the examples:

Proposition 1 (Universal Property of Natural Relations). Suppose T :
Set — Set is a functor and p(A) CTA X A is a relation for every set A. Then
is a natural relation, iff for every function f : A — B, the diagram of sets and

relations

n(A)
TA——F+—A

JV(G(Tf) %G(f)
w(B)
TB—+——1DB

commutes with respect to relational composition.



Regarding examples of natural relations, we refer the reader to the examples
discussed in Section 2.

By moving from a relation R : A+ B to a function Sg : A — P(B) given
by Sr(a) = {b € B | a R b}, we can also view natural relations Zo T — 7 as
natural transformations (we write P for the covariant powerset functor):

Proposition 2 (Natural Relations as Natural Transformations). Sup-
pose T is an endofunctor on the category of sets. Then there is a one-to-one cor-
respondence between the set Nat(Z o T, Z) of natural transformations ZoT — T
and the set Nat(T, P) of natural transformations T — P given by

Nat(ZoT,Z) 5 p+— S, € Nat(T,P)

where
Su(X) = Sp(x)
for all sets X.

The above proposition is as an instance of a far more general fact!. Note that
the category Rel of sets and relations can be equivalently described as the Kleisli
category of the powerset monad (P, {-},U) on Set, see for instance [14], Example
T2. One then recovers the inclusion functor Z as the functor which sends every
function f : X — Y to the composition {-} o f : X — P(Y) of f with the
singleton map {-}, considered as map Z(f) : X — Y in the Kleisli category of
the powerset monad.

In the same spirit one defines a canonical functor Z : C — KI(M), embedding
C in the Kleisli category KI1(M) of M, for any monad M on a category C. Now
suppose T : C — C is any endofunctor, M is the underlying functor of the monad
M and px : TX — MX is a family of morphisms in C, indexed by the objects
of C. Then an easy diagram chase shows that the naturality of p : T — M is
equivalent to the naturality of p: ZoT — Z, where the components of / are the
components of p, considered as morphisms in the Kleisli category KI(M).

It should also be pointed out that every set A of subsets of T'1 gives rise to
a natural transformation P4 : T — P(A), where P(A) is the constant functor
which sends every set to P(A).

Proposition 3. Suppose T is an endofunctor on the category of sets and A is
a set of subsets of T1. Define a function Py x : TX — P(A) for any set X by

Pax(z)={aec A|Tlx(x) € a}.
Then P4 : T — P(A) is a natural transformation.

For the remainder of this section we assume, that T : Set — Set is an
endofunctor on the category of sets and functions, M is a set of natural relations
for T', A is a set of subsets of T'1 and  is a cardinal number.

! We would like to thank one of the anonymous referees for pointing this out



4.2 Syntax and Semantics of £L(M, A, k)

As it is often the case with modal languages, we sometimes need infinitary con-
structs in the language to obtain enough expressive power. In order to be able
to deal with the general case later, we fix a cardinal number k, which serves as
upper bound for the size of conjunctions and disjunctions.

The language £(M, A, k) induced by the set M of natural relations and A
of atomic propositions is given by the least set of formulas containing

— An atomic proposition p, for every a € A

— The formulas A ® and \/ &, if @ is a set of formulas of cardinality less than
or equal to k, and

— The formulas ¢,¢ and O,¢ for every p € M and every formula ¢ of
LM, A, R).

Note that £(M, A, k) contains as a special case the formulas A and \/ 0,
which we shall abbreviate to tt and ff, respectively.

In order to simplify the exposition of the semantics of £L(M, A, k), we intro-
duce an easy bit of notation.

Definition 2. Suppose R C AX B is a relation. Then R induces two operations,
which we denote by Og and Og, both mapping P(B) — P(A), whose definitions
are given by

Or(bC B)={acA|FeBaRbANbE Db}

and
Or(bCB)={acA|Vbe BaRb = becb},

respectively. Following Moss [16], we introduce a further operator Ag : P(B) —
P(A) defined by
Ag(b C B) =0g(b) N[ ) Or({b}),
beb

which we will use later.

The semantics of [¢] ¢, of a formula ¢ € L(M, A, k) can now be inductively
defined:

— [pad(c,y) = (T'c o)~ *(a) for atomic propositions p, given by a € A

— [APlcy) = Nyealdlic.y) and [V @] (c.y) = Ugealdl(c,y) for conjunctions
and disjunctions (following standard conventions, we set [tt](c,,) = C and
[#](c) = 0), and

= [Budlicry) = Bucrocm [8lic.y) and [Oudl ey = Cucroam (19l c.y) for
the modal operators.

If the transition structure is clear from the context, we sometimes abbreviate
[#](c,y) to [¢]c (and sometimes even to [¢]). In case we want to emphasise that
a formula ¢ holds at a specific point ¢ € C of the underlying set, we also write

¢y ¢ for c € [9](c)-



4.3 Translation to Kripke Models

We show that, given a set of natural relations M and a set of atomic propositions
(subsets of T1) A, we obtain a translation of T-coalgebras to Kripke models.
This translation is canonical in the sense that the semantics of formulas wrt. T-
coalgebras coincides with the standard textbook semantics of modal logic wrt.
the induced Kripke model.

Suppose A is a set of atomic propositions and M a set determining the
modalities. Kripke models over A and M, which support the interpretation of
multimodal languages, are generally given by triples (C, (R,)u.em, V) where C
is the carrier set of the model (the set of possible worlds), R, C C x C is an
endorelation (transition relation) on C for every p € M and V : C — P(A) is
a (valuation) function, which assigns to every world ¢ € C the set V(c) C A of
propositions valid in world ¢ € C.

Suppose M = (C,(R,)uem,V) is a Kripke model. The standard textbook
semantics (as described for the finitary case for instance in [7]) (¢) s of a formula
¢ € LM, A, k) is inductively defined by the clauses

— Wa)ar =V I({p}) ={ce€ C|peV(C)} for atoms p, (where a € A)

= INP)vr = NyeaBm and (V) = Uyep(d)ar for conjunctions and dis-
junctions, and

= (B8 = Or, ((#)ar) and (G, d)ar = Or,, ((#)ar) for the modal operators.

Now suppose that 7" is an endofunctor on Set, M a set of natural relations
for T and A is a set of subsets of T'1. With every T-coalgebra we associate a
Kripke model K(C,~) as follows:

K(C> 7) = (07 (RH)MEMv V)
where R, = u(C) o G(y) and V(c¢) = {a € A| Tlc o(c) € a}.

Proposition 4 (L(A, M, k) is canonical). Suppose (C,v) is a T-coalgebra.
Then
[¢](c) = (@Dxcm)

for all formulas ¢ € L(A, M, k).

Proof. Follows from the respective definitions by induction on the structure of
the formulas. 0

5 Invariance Properties of £L(M, A, K)

In this section, we demonstrate that £(M, A, k) is an adequate logic for T-
coalgebras. We do this by proving that the semantics of formulas is invariant
under coalgebra morphisms and that bisimilar elements of the state space of
coalgebras satisfy the same set of formulas.

For the whole section assume that T is an endofunctor on Set, M is a set of
natural relations for T', A is a set of subsets of T'1 and « is a cardinal number.



Theorem 1 (Morphisms preserver semantics). Suppose f : (C,v) — (D, ?)
is a morphism of coalgebras. Then

[l = F~*([¢]p)
for all formulas ¢ of LM, A, K).

Before we embark on the proof of of the theorem, we isolate some properties
of the relational operators introduced in Definition 2. One readily proves the
following

Lemma 1 (Simple Properties of Og, Or). Suppose R : A+ B and S :
B+ C are relations and f : A — B is a function.

1. DSOR:DRODS
2. OSOR:OROOS
8. For every b C b, Og(s)(b) = gy (b) = f71(b).

We are now ready for the

Proof (of Theorem 1). We proceed by induction on the structure of the formulas.
If o € A (thus p, is an atomic proposition), the claim follows from considering
the diagram

C —1T1¢C

D———TD
which commutes by functoriality of T

For the case of modal operators, suppose ¢ € L(M, A, k) with [¢p]c =
ft[¢]p and p € M and consider the diagram

G c
c (Iv) TC u(= ) c
iG(f) JV(G(TJ“) %G(f)
G D
D ( ) D H(I ) D

of sets and relations and apply Lemma 1.
It is immediate that the semantics is stable under conjunctions and disjunc-
tions. a

We have an easy and immediate

Corollary 1. Suppose f : (C,y) — (D,9) is a morphism of coalgebras and
ce C. Then

ckEy o iff flo) s o
for all formulas ¢ € LM, A, k).



We now turn to the second invariance property mentioned at the beginning
of this chapter and show that bisimilar points satisfy the same sets of formulas.
Although this essentially follows from Theorem 1, its importance warrants to
state it as

Theorem 2 (Bisimilarity implies logical equivalence). Suppose (C,~) and
(D, ) are T coalgebras and the points c € C and d € D are related by a bisimu-
lation. Then

c ’:'y ¢ Zﬁ d ':6 (b

for all formulas ¢ € LM, A, k).

6 Expressivity

This section shows, that the language £(M, A, k) also satisfies an abstractness
condition in the sense, that under a natural completeness condition on the pair
(M, A), non-bisimilar points of the carrier set of coalgebras can be distinguished
by formulas of L(M, A, k).

For the proof we assume the existence of a terminal coalgebra, that is, of
a greatest fixed point for the signature functor 7. We represent the greatest
fixed point of the signature functor 7" as limit of the so-called terminal sequence,
which makes the succession of state transitions explicit. The categorical dual of
terminal sequences is commonly used to construct initial algebras, see [2, 21].
We use Theorem 2 of Adamek and Koubek [3], which states that in presence of a
terminal coalgebra, the latter can be represented as a fixed point of the terminal
sequence. Suppose for the remainder of this section, that T is an endofunctor
on the category of sets, M is a set of natural relations for 7" and A is a set of
subsets of T'1.

6.1 Complete Pairs

It is obvious that we cannot in general guarantee that the language £L(M, A, k) is
strong enough to actually distinguish non-bisimilar points, since the set M might
not contain enough relations or we do not have enough atomic propositions. We
start by giving a completeness criterion on the sets M and A, which ensures
that this does not happen.

We use the same notation as in Proposition 2 and 3 and write Sg(a) = {b €
B|aRb}if R: A+ B is arelation and a € A. We also write P4 x(z) = {a €
A|T'x(z) € a} if x € X for the set of atomic propositions a € A satisfied by
x € TX. We shall abbreviate P4 x to P4 (or even to P) in the sequel.

Definition 3 (Completeness of (M, A)). We call the pair (M, A) complete,
if
{SC} = ﬂ {‘T, eTX | S[L(X)(I/) = SM(X)(x)} N ﬂ (T')il(a)
HeEM a€P 4 (z)

for all sets X and all elements r € TX.



Intuitively, the pair (M, A) is complete, if, given any set X, every element
x € TX is determined by its p(X)-successors and the atomic propositions which
are satisfied by x.

Using the natural transformations defined in Proposition 2 and 3, we can give
a necessary (and under a natural assumption on the set of atomic propositions)
sufficient criterion for completeness of a pair (M, A).

Proposition 5 (Characterisation of Completeness). Suppose 1 denotes
the natural transformation

n:T — HPXP(.A)
nemM

induced by (M, A).

1. If (M, A) is complete, then n is monic (in the functor category [Set, Set]).
2. Suppose A separates points (that is, for every x € T1 we have ({a € A |
x € a} = {x}). Then (M, A) is complete iff n is monic.

The next example shows, that the assumption of separating points cannot
be dropped from the premises of Proposition 5.

Fzample 8. Suppose L = {lp,l1} and TX = L x X. Define the relation px : L x
X+ X for every set X by ux = {((l,z),z) |l € LAz € X} and consider the set
A of subsets of T1 = Lx {x} consisting of ag = {(lo, *)} and a1 = {(lo, *), (I1, %) }.
Then the induced transformation n : T — P x P(A) is injective although (M, A)
is not complete.

We briefly note that the natural relations and atomic propositions defined in
Section 3 give rise to complete pairs:

Ezample 4 (Complete pairs).

1. Consider the signature functor TX = P(L x X). If M = { |l € L} is
the set of natural relations defined in Section 3.1 and A = 0, then (M, A)
is complete.

2. Suppose TX = (O x X)! + E as in Section 3.2 and let M = {y; | i € I}
and A = {pc|r1 | e € E} U {pg,0)lT1 | (i,0) € I x O} be the set of natural
relations and atomic propositions defined there, respectively. Then (M, A)
is complete.

6.2 Existence of Complete Pairs

It seems very hard to find a semantical characterisation of functors which admit
a complete pair (M, A) of natural relations and subsets of T'l. However, we can
give some closure properties of the class of functors, which admit a complete
pair. These closure properties are summarised in the next theorem, which is
easy, but tedious to prove.



Theorem 3 (Closure Properties). The class of functors which admit o com-
plete pair contains

— the identity functor
— all constant functors
— the (covariant) powerset functor

and is closed under

— small limits
— small coproducts.

Note that the class of functors admitting a complete pair is not closed under
composition:

Ezample 5. Let T'="P o P. Then T does not admit a complete pair.
For a proof, assume the contrary, and suppose (M, A) is a complete pair for
T. Then Proposition 5 provides us with a monic natural transformation

n:PoP — H P x 4,
a<k
where & is the cardinality of the set M of natural relations (evidently, x > 1).
Thus, for every set X of cardinality greater than one, we obtain an injection

ix : PPX — P(X)~

where £ = £ + 1. Now take X =[] . #'. Then X = &’ x X and P(X)r =
Pk x X) 2 P(X), and ix gives rise to an injection P(P(X)) — P(X), since
|X| > k" =k + 1> 2, which is clearly impossible.

We would like to close the section by discussing an example of an endofunctor
T, which admits a complete pair (and thus an expressive logic, as shown in the
next section). Although the structure of T is fairly simple, we would like to point
out that it does not fall within the scope of of functors discussed in [10, 13, 17],
since an inductive type is used.

Ezample 6. Denote by List(X) the set of all finite lists of elements of X. Clearly
List extends to a functor on Set, whose action on a function is given pointwise
applying f to every element of the list (the “map” as in functional programming
languages). Now let
TX = L x List(X)

for a set L of labels. The functor T' then models finitely branching, but infinite
trees. It now follows from Theorem 3, that T" admits a complete pair, which can
also be seen directly: For each [ € L, let

a;={(l,z) | x € List(1)}

and put A = {a; | | € L}. For the set M of natural relations, consider py(X) C
TX x X given by

(p)nej (X)) z <=  k<jhaz,=uz,

where we denote a list of elements in X by the finite sequence (x,,),<; of its
elements. Now let M = {p | kK € w}. Then (M, A) is complete.



6.3 The Expressivity Theorem

This section proves that £(M, A, k) is expressive enough to distinguish non-
bisimilar points, subject to the completeness of (M, .A) and the size of k. The
cardinality of conjunctions and disjunctions needed to obtain expressivity is
given in terms of the cardinality of the final coalgebra and the convergence of
the terminal sequence.

Before we state the expressiveness theorem, we briefly review the construction
of greatest fixed points for set functors using terminal sequences. We only give
a brief exposition, for details see the original paper by Adamek and Koubek [3]
(or Worell [25] for a more categorical treatment).

The terminal sequence of an endofunctor T on the category of sets is an
ordinal-indexed sequence Z, of sets together with functions f, g : Zo, — Z3 for
all ordinals § < a such that Zy = {*}, Zo11 = T(Zy) and Z\ = Lim 4«2 Zs. Tt
can be seen as the continuation of the sequence

11 Tr1 T%(I71)

1 T1 T21 T31...

through the class of all ordinal numbers.

Note that the terminal sequence generalises the construction of initial alge-
bras and terminal coalgebras to functors, which do not preserve w-colimits (resp.
wP-limits). It has been shown in [3], Theorem 2, that in presence of a final T
coalgebra, the terminal sequence converges (ie. there exists a (limit) ordinal «
such that fo41, is an isomorphism) to the terminal coalgebra (Z,, f(x_—&l,a)' If
fa+1,o 1s an isomorphism, we say that the terminal sequence stabilises at o.

We are now ready to state the expressiveness theorem:

Theorem 4 (L(M, A, ) has characteristic formulas). Suppose (M, A) is
a complete pair, T admits a terminal coalgebra (Z,( : Z — TZ) and Kk is a
cardinal such that

— k> [Suz)(2)] for all z € TZ and p € M
— k> M| and k > |A| and
— The terminal sequence for T stabilises at k.

Then there is a formula ¢* € L(M, A, k) such that [¢*](z,¢) = {2} for all z € Z.

Given z € Z, the proof defines a formula ¢*(«) for each ordinal a < k and
z € Z with the property [¢*(a)]z = fio({fra(2)}) by “induction along the
terminal sequence” (Zy, fa,3) for T. The formula ¢* = ¢*(x) then characterises
z.

Before embarking on the proof of Theorem 4, we collect some simple obser-
vations:

Lemma 2. Suppose (Zy, fa,) is the terminal sequence for T and X is a limit
ordinal. Then, for any p € Zy,

{r}= () U@}

a<



Lemma 3. Suppose R : A+ B is a relation. Then
Ag(S(a)) = {a’ € A|S(a) =S(a’)}
for all a € A.

Invoking Definition 3 of completeness, the previous lemma admits an imme-
diate corollary, which will then be used in the proof of Theorem 4.

Corollary 2. Suppose (M, A) is complete and X is a set. Then

{z} = ﬂ (D) Sy () N ﬂ (T'x)""(a)

neEM a€P(x)
forallz e TX.

We are now ready for the

Proof (of Theorem 4). Suppose (Zq, fa,3) is the terminal sequence for T' (thus
(Zy, f,;im,) is the terminal T-coalgebra, which we denote by (Z,()).

Let z € Z. For each ordinal a@ < x we define a formula ¢*(«) such that
[0*()]z = frt({fr.a(2) }). To simplify notation, we use the shorthand A, & =
O Vgea N Npea Ond if @ is a set of formulas of L(M, A, k) of cardinality less
than or equal to k.

For a = 0 let ¢*(a) = tt. Clearly f ¢({fe0(2)}) = foo({}) = Z = (T'z0
1) TH(T) = [t] 2.

For a successor ordinal o + 1 let @Z(a) = {¢Y(2) | y € Suz.)(frar1(2))}
(note that u(Z,) : Zav1 = TZo+ Z,) and define

(a+1) /\A@Z /\ Pa-

neM aeIP’(fm+1(Z))

The defining property of natural relations together with the fact that the ter-
minal sequence for T stabilises at ~ (ie. T preserves the limit Z, = Lim g<,Zg)
yields the commutative diagram

G(¢) w(Z)

Z | TZ = zZ (10)
G(Tfr.a G(fr,a
TZ, —+— > 7,

of sets and relations. Using (10), we derive

L [Suza) (frat+1(2))] < K, ie. AP (a) is indeed a formula of L(M, A, k),

2. [A,% (o >]]—f,€,i+1<A ) (Su(z.)(2))), and
3. [pal = frba(T) H(a )(where' Z —1).



Putting the last two together, we obtain

[¢*(a+ D] = fras ({frar1(2)}),

by Corollary 2, which proves the claim for successor ordinals o + 1.
If A < i is a limit ordinal, we let ¢*(A) = Az_, ¢*(3) and conclude [¢*(N)] =
f;i({fﬁk(z)}) using Lemma 2. Defining ¢* = ¢*(k) finally proves the theorem.
O

Some remarks concerning the conditions on the cardinal x in Theorem 4 are
in order. Clearly, we need conjunctions and disjunctions over possibly all atomic
propositions and modalities. The third condition is also very natural, since we
build the characteristic formula step by step, until we reach the terminal coalge-
bra, ie. the index, where the terminal sequence stabilises. The only unintuitive
condition is the first, giving a lower bound for x in terms of the final coalgebra.
When looking at examples, one however notices that the restriction on the size of
successors is very often already implicit in the signature functor 7. One can for
example show, that all polynomial functors 7" admit a set of natural relations M,
such that for all sets X and all ¢t € TX, the cardinality of the set of successors
Su(x () is at most one. Also, since we require 7" to have a terminal coalgebra,
T cannot contain an unbounded powerset construction, hence the signature has
to determine an upper bound of the set of successors also in this case.

As a corollary we conclude that in presence of a terminal coalgebra, any two
bisimilar points satisfy the same sets of formulas. Note that for the corollary to
work, we need the signature functor 7' to preserve weak pullbacks, since other-
wise also non-bisimilar points are identified in the terminal coalgebra. Since in
cases, where the signature functor does not preserve weak pullbacks, bisimula-
tion fails to capture the notion of behavioural equivalence, we do not consider
the restriction to weak pullback preserving functors as a defect of our theory.

In cases where the signature functor does not preserve weak pullbacks, Kurz
argues in [12], that observable equivalence is not captured by bisimulation as de-
fined by Aczel and Mendler [1], and — in presence of a final coalgebra — one should
consider two state bisimilar, when they are identified in the final coalgebra, a
notion, which can be equivalently described using co-congruences.

Corollary 3 (£L(M, A, k) is adequate). Suppose T preserves weak pullbacks
and the hypothesis of Theorem 4. If (C,~) is a T-coalgebra and ¢ € C, there
exists a formula ¢¢ € LM, A, k) such that

[6Tcy ={c' € Clc=c}
(where ¢ < d iff there is a bisimulation R C C x D such that ¢ R d).
Theorem 4 also allows us to derive a characterisation of coalgebraic bisim-

ulation in logical terms. To this end, we denote by Th(c) = {¢ € LM, A, k) |
¢ =y ¢} the set of formulas satisfied by a point ¢ € C for a T-coalgebra (C, ).



Corollary 4 (Bisimulation is logical equivalence). Suppose T preserves
weak pullbacks and the hypothesis of Theorem 4. If (C,~v) and (D,d) are T-
coalgebras and (c,d) € C x D, then

Th(c) = Th(d) <= c=d
(where again ¢ < d iff there is a bisimulation R C C x D with ¢ R d).

We conclude by re-examining Example 6 and check the conditions of Theorem
4 for the functor TX = L x List(X).

Ezample 7. Consider the functor TX = LxList(X) form Example 6 and suppose
that M = {uy | k € w} and A = {a; | I € L} are the sets of natural relations
and atomic propositions defined there. We check the conditions on the cardinal
k given in Theorem 4 for this example.

First note, that for any T-coalgebra (C,v) and any t € TC, thesetS,, () (t) =
{c € C| (t,c) € ux(C)} of pg-successors of t has cardinality at most one, for
every k € w. If the set L of labels is at most countable, then the second condi-
tion of Theorem 4 holds for all cardinals x > w. Regarding the third condition,
Proposition 2.2 of [5] shows, that T is w-bicontinuous, so the third condition is
also satisfied if kK > w. Hence £(M, A,w) distinguishes non-bisimilar points of
T-coalgebras, if |L| < w.

7 Conclusions and Related Work

We have exhibited two semantical principles which allow to use multimodal
logics to specify bisimulation invariant properties of coalgebras for an arbitrary
signature functor T. The same issue has been addressed in [4, 13, 16, 17]. We
briefly compare the results presented in this paper to the contributions just
mentioned.

Regarding the work of Moss [16], it has already been pointed out that the
construction of the language used to formalise properties on state spaces of coal-
gebras is very general, and imposes few restrictions on the signature functor 7'
Since the construction of the language is carried out in the category of classes
and set-continuous functions, T has to be set-based (ie. the action of T on classes
has to be defined by its action on sets). In order to obtain a characterisation
result, the signature functor 7T is also assumed to be uniform, a condition, which
also appears (in slightly different form) in [24, 23]. Note that the defining prop-
erty of uniformity (taken from [24], section 5.5) is the existence of a natural
transformation p : T — P o W, where T is the extension of T to the category of
classes, P is the powerset functor and W maps a class C to the carrier of the P
algebra free over C'. Hence T' can be embedded into a powerset construction, but
it in general this does not seem to imply that 7" can be embedded into a product
[I.<, P of the power set functor for a fived cardinal x. It remains as open ques-
tion, whether in presence of an accessibility condition on T', such an embedding
can be obtained, which would also lead to a better semantical characterisation
of the class of functors, which admit complete pairs.



We turn to the work of Baltag [4], where a logical characterisation of simula-
tion is given by extending a set functor T to a relator, that is, to an endofunctor
Rel(T") : Rel — Rel on the category of sets and relations. Baltag argues, that
different extensions of T' to a relator give rise to different notions of simulation,
including bisimulation, which is captured by extending T to a strong relator.
The logical language used to obtain a characterisation of (various notions of)
simulation is similar to that used in [16]. One of the main goals of the present
paper was to obtain languages, which (only) characterise bisimulation. In case
the signature functor T' preserves weak pullbacks, it is shown in [6] (which is
also used in [20] giving — to the authors knowledge — the first characterisation of
bisimulation in terms of relators) that T can be uniquely extended to a strong
relator Rel(T). In this case, natural relations can be equivalently described as
natural transformations Rel(T) o Z — Z, where Z : Set — Rel is the canonical
embedding. While this reformulation does not seem to simplify our treatment
of coalgebraic modal logic, it would be interesting to see, whether replacing the
strong relator Rel(T") by a different extension of T to a relator, the languages
constructed in this paper give also rise to a characterisation of the different forms
of simulation as discussed in [4].

The work of [10, 13, 17] focuses on an inductively defined class of functors,
and the languages considered there are built by induction on the structure of
the signature functor. We have shown in Theorem 3, that most of the functors
considered in these approaches admit a complete pair. The notable exception
are functors which contain more than one “occurrence” of the powerset func-
tor P, for example TX = P(A x P(B)). The logic described in [17] admits a
characterisation result even for those functors, but at the expense of a language
constructed by an iteration of inductive definitions. That is, at every “occur-
rence” of the powerset functor, one has to close the language constructed so far
under propositional connectives and modalities and uses the set thus obtained
as the base case for a new inductive definition. This technique could be mim-
icked in the framework of natural relations by considering a chain of relations
T="T,"T._, Hegv..om Tp = 1d, where each set of relations T; — T;_1 enjoys
a completeness property. Looking at examples, the approach seems promising,
but we have not yet worked out the details which then would lead to a more
general theory.

Finally, we would like to comment on the predicate liftings used in [10]. By
an easy inductive argument, one can see, that the “paths to identity” used in loc.
cit. in order to obtain modal operators give rise to natural relations T+ Id. On
the other hand, every natural relation p determines a pair of predicate liftings 3,,
and V. Here we use the term “predicate lifting” in the general sense, indicating a
natural transformation 2 — 20T (2 denotes the contravariant powerset functor)
in contrast to [10], where one associates a fixed predicate lifting to each functor
T by induction on its syntactical structure. It should also be noted that from
a logical perspective, the interpretation of the modal operator associated to the
predicate liftings 3, and V,, coincides with the interpretation of the existential
and universal modality ¢, and O, induced by a natural relation p : T+ Id.



It thus seems, that predicate liftings also give rise to logics for coalgebras, but
expressiveness results are probably more difficult to obtain, since one can not
argue in terms of successors any more (as we did in the proof of Theorem 4).
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